Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 1;63(9):2139-44.

Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol

Affiliations
  • PMID: 12727831

Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol

David B Solit et al. Cancer Res. .

Abstract

The phosphatidylinositol 3'-kinase/Akt pathway is activated frequently in human cancer, and has been implicated in tumor proliferation, cell survival, and resistance to apoptotic stimuli. Akt forms a complex with heat shock protein (Hsp) 90 and Cdc37, and inhibitors of Hsp90 cause Akt degradation. 17-allylamino-17-demethoxygeldanamycin (17-AGG) is an Hsp90 inhibitor currently in Phase I clinical trial. 17-AAG inhibits Akt activation and expression in tumors, and has antitumor activity in breast cancer xenografts. The combination of 17-AAG and Taxol is synergistic, and 17-AAG sensitizes tumor cells to Taxol-induced apoptosis in a schedule-dependent manner. Transfection of membrane-bound p110 PI3k prevented 17-AAG inactivation of Akt and abrogated the enhancement of Taxol-induced apoptosis caused by the drug. 17-AAG and Taxol could be administered together at their maximally tolerated doses to tumor-bearing mice. Doses of 17-AAG that induce HER2 degradation and cause Akt inactivation but have no single agent activity were effective in sensitizing tumors to Taxol. Enhancement was schedule-dependent and maximal when Taxol and 17-AAG were administered on the same day. These results suggest that Hsp90 inhibitors can effectively suppress Akt activity in animal models of human cancer at nontoxic doses, thus sensitizing tumor cells to proapoptotic stimuli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms