Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 3;278(40):39014-9.
doi: 10.1074/jbc.M306705200. Epub 2003 Jul 11.

Formation of novel TRPC channels by complex subunit interactions in embryonic brain

Affiliations
Free article

Formation of novel TRPC channels by complex subunit interactions in embryonic brain

Carsten Strübing et al. J Biol Chem. .
Free article

Abstract

Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined. We performed a systematic biochemical study of TRPC interactions in mammalian brain and identified previously unrecognized channel heteromers composed of TRPC1, TRPC4, or TRPC5 and the diacylglycerol-activated TRPC3 or TRPC6 subunits. The novel TRPC heteromers were found exclusively in embryonic brain. In heterologous systems, we demonstrated that assembly of these novel heteromers required the combination of TRPC1 plus TRPC4 or TRPC5 subunits along with diacylglycerol-sensitive subunits in the channel complexes. Functional interaction of the TRPC subunits was verified using a dominant negative TRPC5 mutant (TRPC5DN). Co-expression of TRPC5DN suppressed currents through TRPC5- and TRPC4-containing complexes; TRPC3-associated currents were unaffected by TRPC5DN unless TRPC1 was also co-expressed. This complex assembly mechanism increases the diversity of TRPC channels in mammalian brain and may generate novel heteromers that have specific roles in the developing brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources