Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 12;3(1):4.
doi: 10.1186/1476-5926-3-4.

Scavenger properties of cultivated pig liver endothelial cells

Affiliations

Scavenger properties of cultivated pig liver endothelial cells

Kjetil H Elvevold et al. Comp Hepatol. .

Abstract

BACKGROUND: The liver sinusoidal endothelial cells (LSEC) and Kupffer cells constitute the most powerful scavenger system in the body. Various waste macromolecules, continuously released from tissues in large quantities as a consequence of normal catabolic processes are cleared by the LSEC. In spite of the fact that pig livers are used in a wide range of experimental settings, the scavenger properties of pig LSEC has not been investigated until now. Therefore, we studied the endocytosis and intracellular transport of ligands for the five categories of endocytic receptors in LSEC. RESULTS: Endocytosis of five 125I-labelled molecules: collagen alpha-chains, FITC-biotin-hyaluronan, mannan, formaldehyde-treated serum albumin (FSA), and aggregated gamma globulin (AGG) was substantial in cultured LSEC. The endocytosis was mediated via the collagen-, hyaluronan-, mannose-, scavenger-, or IgG Fc-receptors, respectively, as judged by the ability of unlabelled ligands to compete with labelled ligands for uptake. Intracellular transport was studied employing a morphological pulse-chase technique. Ninety minutes following administration of red TRITC-FSA via the jugular vein of pigs to tag LSEC lysosomes, cultures of the cells were established, and pulsed with green FITC-labelled collagen, -mannan, and -FSA. By 10 min, the FITC-ligands was located in small vesicles scattered throughout the cytoplasm, with no co-localization with the red lysosomes. By 2 h, the FITC-ligands co-localized with red lysosomes. When LSEC were pulsed with FITC-AGG and TRITC-FSA together, co-localization of the two ligands was observed following a 10 min chase. By 2 h, only partial co-localization was observed; TRITC-FSA was transported to lysosomes, whereas FITC-AGG only slowly left the endosomes. Enzyme assays showed that LSEC and Kupffer cells contained equal specific activities of hexosaminidase, aryl sulphates, acid phosphatase and acid lipase, whereas the specific activities of alpha-mannosidase, and glucuronidase were higher in LSEC. All enzymes measured showed considerably higher specific activities in LSEC compared to parenchymal cells. CONCLUSION: Pig LSEC express the five following categories of high capacity endocytic receptors: scavenger-, mannose-, hyaluronan-, collagen-, and IgG Fc-receptors. In the liver, soluble ligands for these five receptors are endocytosed exclusively by LSEC. Furthermore, LSEC contains high specific activity of lysosomal enzymes needed for degradation of endocytosed material. Our observations suggest that pig LSEC have the same clearance activity as earlier described in rat LSEC.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Receptor specificity. Specificity of uptake of 125I-AGG (A), 125I-FSA (B), 125I-collagen (C), 125I-mannan (D), or 125I-FITC-bHA (E) in LSEC in the presence of mannose (50 mM), FSA (0.1 mg/ml), COLLA (0.1 mg/ml), hyaluronan (0.1 mg/ml) and AGG (0.3 mg/ml). Uptake (cell-associated radioactivity (solid bars) plus acid soluble radioactivity in spent medium [open bars]) was measured after 120 min incubation at 37°C. Results, given as % of control, are means of three experiments, each consisting of three parallels. Error bars represent standard deviation (+SD).
Figure 2
Figure 2
Intracellular transport of endocytosed ligands. Cultures of LSEC were pulsed with both TRITC-FSA and FITC-AGG for 1 h at 4°C. Chasing was performed after removal of unbound ligand by washing, and transferring of the cultures to 37°C. The cultures were fixed after chase periods of 10 min or 2 h and examined in fluorescence microscope. At 10 min (A) all TRITC-FSA co-localized with FITC-AGG (yellow colour indicates co-localization) in large ring-shaped vesicles (large arrowheads), and some vesicles with only FITC-AGG were observed (small arrowheads). After 2 h (B), co-localization of FITC-AGG and TRITC-FSA in large vesicles (arrows) was observed together with big vesicles with only FITC-AGG (large arrowheads) and small vesicles with only TRITC-FSA (small arrowheads). Controls show a more perinuclear appearance of TRITC-FSA when pulsed and chased for 2 h alone (C). In other experiments, TRITC-FSA was injected intravenously 1.5 h before isolation of the cells. Following an additional 6.5 h of cultivation at 37°C cultures of LSEC were pulsed with FITC-FSA (D-E), FITC-collagen (F-G), or FITC-mannan (H-I) for 1 h at 4°C. Following a 10 min chase, the FITC-ligands were observed to appear in small vesicles (arrowheads), and did not co-localize with TRITC-FSA (D, F and H). After 2 h, the FITC-ligands were transported to perinuclear compartments that co-localized almost completely with TRITC-FSA (small arrows in E, G and I). Other cultures of LSEC were pulsed for 10 min at 37°C with FITC-bHA. Following a 20 min chase, the FITC-bHA was observed in vesicles distributed all over the cell (arrowheads in J), and a similar appearance was observed after 2 h (arrowheads in K). Occasionally, cells that did not take up TRITC-FSA in vivo, but endocytosed FITC-ligands in vitro (big arrow in I), were observed. Scale bars: 10 μm.

Similar articles

Cited by

References

    1. Ytrebo LM, Nedredal GI, Langbakk B, Revhaug A. An experimental large animal model for the assessment of bioartificial liver support systems in fulminant hepatic failure. Scand J Gastroenterol. 2002;37:1077–1088. doi: 10.1080/003655202320378293. - DOI - PubMed
    1. Takada Y, Ishiguro S, Fukunaga K, Gu M, Taniguchi H, Seino KI, Yuzawa K, Otsuka M, Todoroki T, Fukao K. Increased intracranial pressure in a porcine model of fulminant hepatic failure using amatoxin and endotoxin. J Hepatol. 2001;34:825–831. doi: 10.1016/S0168-8278(01)00003-4. - DOI - PubMed
    1. Soejima Y, Yanaga K, Wakiyama S, Nishizaki T, Yoshizumi T, Sugimachi K. Serum hyaluronic acid as a reliable parameter of allograft viability in porcine liver transplantation. Hepatogastroenterology. 1996;43:590–595. - PubMed
    1. Hui T, Rozga J, Demetriou AA. Bioartificial liver support. J Hepatobiliary Pancreat Surg. 2001;8:1–15. doi: 10.1007/s005340170045. - DOI - PubMed
    1. Nedredal GI, Elvevold KH, Ytrebo LM, Olsen R, Revhaug A, Smedsrod B. Liver sinusoidal endothelial cells represents an important blood clearance system in pigs. Comp Hepatol. 2003;2:1. doi: 10.1186/1476-5926-2-1. - DOI - PMC - PubMed

LinkOut - more resources