Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus
- PMID: 17306256
- DOI: 10.1016/j.exppara.2006.12.014
Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus
Abstract
Trypanosoma cruzi epimastigotes adhere in vivo to the luminal surface of their triatomid vector digestive tract by molecular mechanisms, as yet, unknown. Here, we show that the administration of 0.5 microM epimastigote major surface glycoinositolphospholipids (GIPLs) to the infected bloodmeal inhibits up to 90% parasite infection in Rhodnius prolixus. The parasite behavior was investigated in vitro using fragments of the insect midgut. The addition of GIPLs in concentration as low as 50-100 nM impaired 95% the attachment of epimastigotes. Previous treatment of GIPLs with trifluoroacetic acid to remove the terminal beta-galactofuranosyl residues reversed 50% the epimastigote in vitro attachment. The binding sites of purified GIPLs on the luminal surface of the posterior midgut were exposed by immunofluorescence microscopy. These observations indicate that GIPLs are one of the components involved in the adhesion of T. cruzi to the luminal insect midgut surface and possibly one of the determinants of parasite infection in the insect vector.
Similar articles
-
Involvement of sulfated glycosaminoglycans on the development and attachment of Trypanosoma cruzi to the luminal midgut surface in the vector, Rhodnius prolixus.Parasitology. 2011 Dec;138(14):1870-7. doi: 10.1017/S0031182011001521. Epub 2011 Sep 9. Parasitology. 2011. PMID: 21902871
-
Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus.Exp Parasitol. 2007 May;116(1):44-52. doi: 10.1016/j.exppara.2006.11.012. Epub 2007 Jan 23. Exp Parasitol. 2007. PMID: 17250827
-
Trypanosoma cruzi TcSMUG L-surface mucins promote development and infectivity in the triatomine vector Rhodnius prolixus.PLoS Negl Trop Dis. 2013 Nov 14;7(11):e2552. doi: 10.1371/journal.pntd.0002552. eCollection 2013 Nov. PLoS Negl Trop Dis. 2013. PMID: 24244781 Free PMC article.
-
Lignoids in insects: chemical probes for the study of ecdysis, excretion and Trypanosoma cruzi-triatomine interactions.Toxicon. 2004 Sep 15;44(4):431-40. doi: 10.1016/j.toxicon.2004.05.007. Toxicon. 2004. PMID: 15302525 Review.
-
Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus.An Acad Bras Cienc. 2005 Sep;77(3):397-404. doi: 10.1590/s0001-37652005000300004. Epub 2005 Aug 24. An Acad Bras Cienc. 2005. PMID: 16127548 Review.
Cited by
-
An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease.Res Rep Trop Med. 2021 May 28;12:63-76. doi: 10.2147/RRTM.S274681. eCollection 2021. Res Rep Trop Med. 2021. PMID: 34093053 Free PMC article. Review.
-
Nano-Medicines a Hope for Chagas Disease!Front Mol Biosci. 2021 Jun 1;8:655435. doi: 10.3389/fmolb.2021.655435. eCollection 2021. Front Mol Biosci. 2021. PMID: 34141721 Free PMC article. Review.
-
Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus.Parasitology. 2019 Jul;146(8):1075-1082. doi: 10.1017/S0031182019000441. Epub 2019 May 6. Parasitology. 2019. PMID: 31057143 Free PMC article.
-
Influence of CK2 protein kinase activity on the interaction between Trypanosoma cruzi and its vertebrate and invertebrate hosts.Parasitol Res. 2024 Jan 2;123(1):80. doi: 10.1007/s00436-023-08085-x. Parasitol Res. 2024. PMID: 38163833
-
Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains.Am J Trop Med Hyg. 2015 Sep;93(3):564-72. doi: 10.4269/ajtmh.15-0218. Epub 2015 Jun 15. Am J Trop Med Hyg. 2015. PMID: 26078316 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources