Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;57(5):1262-8.
doi: 10.2337/db07-1186. Epub 2008 Feb 14.

The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids

Affiliations

The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids

Tara M D'Eon et al. Diabetes. 2008 May.

Abstract

Objective: Obesity is associated with an overactive endocannabinoid (EC) system. The mechanisms responsible for increased ECs in obese individuals are poorly understood. Therefore, we examined the role of adipocyte insulin resistance in intracellular EC metabolism.

Methods: We used 3T3-L1 adipocytes and diet-induced obese (DIO) mice to examine the role of obesity and insulin resistance in the regulation and/or dysregulation of intracellular ECs.

Results: For the first time, we provide evidence that insulin is a major regulator of EC metabolism. Insulin treatment reduced intracellular ECs (2-arachidonylglycerol [2-AG] and anandamide [AEA]) in 3T3-L1 adipocytes. This corresponded with insulin-sensitive expression changes in enzymes of EC metabolism. In insulin-resistant adipocytes, patterns of insulin-induced enzyme expression were disturbed in a manner consistent with elevated EC synthesis and reduced EC degradation. Expression profiling of adipocytes from DIO mice largely recapitulated in vitro changes, suggesting that insulin resistance affects the EC system in vivo. In mice, expression changes of EC synthesis and degradation enzymes were accompanied by increased plasma EC concentrations (2-AG and AEA) and elevated adipose tissue 2-AG.

Conclusions: Our findings suggest that insulin-resistant adipocytes fail to regulate EC metabolism and decrease intracellular EC levels in response to insulin stimulation. These novel observations offer a mechanism whereby obese insulin-resistant individuals exhibit increased concentrations of ECs.

PubMed Disclaimer

Similar articles

Cited by