Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug 1;450(3):1142-8.
doi: 10.1016/j.bbrc.2014.05.099. Epub 2014 May 27.

Self/non-self recognition mechanisms in sexual reproduction: new insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals

Affiliations
Review

Self/non-self recognition mechanisms in sexual reproduction: new insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals

Hitoshi Sawada et al. Biochem Biophys Res Commun. .

Abstract

Sexual reproduction is an essential process for generating a genetic variety in the next generation. However, most flowering plants and hermaphroditic animals potentially allow self-fertilization. Approximately 60% of angiosperms possess a self-incompatibility (SI) system to avoid inbreeding. The SI system functions at a process of interaction between pollen (or pollen tube) and the pistil. These SI-responsible factors (S-determinants) in pollen and the pistil are encoded by highly polymorphic multiallelic genes in the S-locus, which are tightly linked making a single haplotype. Different taxonomic families utilize different types of S-determinant proteins. In contrast to the plant system, the mechanisms of SI in simultaneously hermaphroditic animals are largely unknown. Among them, promising candidates for SI in ascidians (primitive chordates) were recently identified. The SI system in the ascidian Cionaintestinalis was found to be very similar to those in flowering plants: The products of sperm- and egg-side multiallelic SI genes, which are tight linked and highly polymorphic, appear to be responsible for the SI system as revealed by genetic analysis. These findings led us to speculate that the SI systems in plants and animals evolved in a manner of convergent evolution. Here, we review the current understanding of the molecular mechanisms of the SI system in flowering plants, particularly Brassicacea, and in ascidians from the viewpoint of common mechanisms shared by plants and animals.

Keywords: Animal; Fertilization; Plant; Self-incompatibility; Self/non-self recognition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources