Quantum memristors
- PMID: 27381511
- PMCID: PMC4933948
- DOI: 10.1038/srep29507
Quantum memristors
Abstract
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Conflict of interest statement
The authors declare no competing financial interests.
Figures






Similar articles
-
Quantum Memristors in Frequency-Entangled Optical Fields.Materials (Basel). 2020 Feb 14;13(4):864. doi: 10.3390/ma13040864. Materials (Basel). 2020. PMID: 32074986 Free PMC article.
-
Perceptrons from memristors.Neural Netw. 2020 Feb;122:273-278. doi: 10.1016/j.neunet.2019.10.013. Epub 2019 Nov 2. Neural Netw. 2020. PMID: 31731044
-
Electric currents in networks of interconnected memristors.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031105. doi: 10.1103/PhysRevE.83.031105. Epub 2011 Mar 7. Phys Rev E Stat Nonlin Soft Matter Phys. 2011. PMID: 21517452
-
Perspective on Nanofluidic Memristors: From Mechanism to Application.Chem Asian J. 2022 Nov 2;17(21):e202200682. doi: 10.1002/asia.202200682. Epub 2022 Sep 5. Chem Asian J. 2022. PMID: 35994236 Review.
-
Quantum control of bosonic modes with superconducting circuits.Sci Bull (Beijing). 2021 Sep 15;66(17):1789-1805. doi: 10.1016/j.scib.2021.05.024. Epub 2021 May 31. Sci Bull (Beijing). 2021. PMID: 36654386 Review.
Cited by
-
Quantum Memristors with Superconducting Circuits.Sci Rep. 2017 Feb 14;7:42044. doi: 10.1038/srep42044. Sci Rep. 2017. PMID: 28195193 Free PMC article.
-
Tunable Non-Markovianity for Bosonic Quantum Memristors.Entropy (Basel). 2023 May 6;25(5):756. doi: 10.3390/e25050756. Entropy (Basel). 2023. PMID: 37238511 Free PMC article.
-
Quantum Memristors in Frequency-Entangled Optical Fields.Materials (Basel). 2020 Feb 14;13(4):864. doi: 10.3390/ma13040864. Materials (Basel). 2020. PMID: 32074986 Free PMC article.
-
Quantum chemistry and charge transport in biomolecules with superconducting circuits.Sci Rep. 2016 Jun 21;6:27836. doi: 10.1038/srep27836. Sci Rep. 2016. PMID: 27324814 Free PMC article.
-
Analog simulator of integro-differential equations with classical memristors.Sci Rep. 2019 Sep 10;9(1):12928. doi: 10.1038/s41598-019-49204-y. Sci Rep. 2019. PMID: 31506446 Free PMC article.
References
-
- Breuer H.-P. & Petruccione F. The Theory of Open Quantum Systems (Oxford University Press, 2007).
-
- Gardiner C. Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer: Berlin Heidelberg, , 2010).
-
- Chua L. Memristor - The missing circuit element. IEEE Transactions on Circuit Theory 18, 507–519 (1971).
-
- Strukov D. B., Snider G. S., Stewart D.R. & Williams R. S. The missing memristor found. Nature 453, 7191 (2008). - PubMed
-
- Traversa F. L. & di Ventra M. Universal memcomputing machines. IEEE Trans. Neur. Networks and Learn. Sys. 26, 2702 (2015). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources