Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension
- PMID: 27775624
- PMCID: PMC5087532
- DOI: 10.3390/s16101747
Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension
Abstract
A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by a torque-rebalance loop. In this paper, a decoupling compensation method is proposed and investigated experimentally based on an electrostatically suspended micromachined gyroscope. In order to eliminate the negative spring effect inherent in the gyroscope dynamics, a stiffness compensation scheme was utilized in design of the decoupled rebalance loop to ensure loop stability and increase suspension stiffness. The experimental results show an overall stiffness increase of 30.3% after compensation. A decoupling method comprised of inner- and outer-loop decoupling compensators is proposed to minimize the cross-axis coupling error. The inner-loop decoupling compensator aims to attenuate the angular position coupling. The experimental frequency response shows a position coupling attenuation by 14.36 dB at 1 Hz. Moreover, the cross-axis coupling between the two angular rate output signals can be attenuated theoretically from -56.2 dB down to -102 dB by further appending the outer-loop decoupling compensator. The proposed dual-loop decoupling compensation algorithm could be applied to other dual-axis spinning-rotor gyroscopes with various suspension solutions.
Keywords: decoupling control; electrostatic suspension; gyroscope rebalance loop; inner-loop decoupling compensator; micromachined spinning-rotor gyroscope; outer-loop decoupling compensator; stiffness compensation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures












Similar articles
-
Spin Rate Effects in a Micromachined Electrostatically Suspended Gyroscope.Sensors (Basel). 2018 Nov 12;18(11):3901. doi: 10.3390/s18113901. Sensors (Basel). 2018. PMID: 30424573 Free PMC article.
-
Analysis and Compensation of Bias Drift for a Micromachined Spinning-rotor Gyroscope with Electrostatic Suspension.Sensors (Basel). 2020 Mar 24;20(6):1799. doi: 10.3390/s20061799. Sensors (Basel). 2020. PMID: 32213988 Free PMC article.
-
Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.Sensors (Basel). 2016 May 18;16(5):711. doi: 10.3390/s16050711. Sensors (Basel). 2016. PMID: 27213376 Free PMC article.
-
Micromachined Fluid Inertial Sensors.Sensors (Basel). 2017 Feb 14;17(2):367. doi: 10.3390/s17020367. Sensors (Basel). 2017. PMID: 28216569 Free PMC article. Review.
-
A Review of Symmetric Silicon MEMS Gyroscope Mode-Matching Technologies.Micromachines (Basel). 2022 Aug 4;13(8):1255. doi: 10.3390/mi13081255. Micromachines (Basel). 2022. PMID: 36014175 Free PMC article. Review.
Cited by
-
Method for Translation and Rotation Decoupling of Test Mass in Full-Maglev Vertical Superconducting Gravity Instruments.Sensors (Basel). 2020 Sep 27;20(19):5527. doi: 10.3390/s20195527. Sensors (Basel). 2020. PMID: 32992482 Free PMC article.
-
Spin Rate Effects in a Micromachined Electrostatically Suspended Gyroscope.Sensors (Basel). 2018 Nov 12;18(11):3901. doi: 10.3390/s18113901. Sensors (Basel). 2018. PMID: 30424573 Free PMC article.
-
A Decoupling Design with T-Shape Structure for the Aluminum Nitride Gyroscope.Micromachines (Basel). 2019 Apr 12;10(4):244. doi: 10.3390/mi10040244. Micromachines (Basel). 2019. PMID: 31013854 Free PMC article.
-
Research on the Strategy of Motion Constraint-Aided ZUPT for the SINS Positioning System of a Shearer.Micromachines (Basel). 2017 Nov 22;8(11):340. doi: 10.3390/mi8110340. Micromachines (Basel). 2017. PMID: 30400529 Free PMC article.
-
Interference Torque of a Gas-Dynamic Bearing Gyroscope Subject to a Uniform Change of the Specific Force and the Carrier Angular Velocity.Sensors (Basel). 2020 Nov 30;20(23):6852. doi: 10.3390/s20236852. Sensors (Basel). 2020. PMID: 33266103 Free PMC article.
References
-
- Liu K., Zhang W., Chen W., Li K., Dai F., Cui F., Wu X., Ma G., Xiao Q. The development of micro-gyroscope technology. J. Micromech. Microeng. 2009;19:113001. doi: 10.1088/0960-1317/19/11/113001. - DOI
-
- Robert J., Craig G. Theory of operation of a two-axis-rate gyro. IEEE Trans. Aerosp. Electron. Syst. 1990;26:722–731.
-
- Bencze W.J., Eglington M.E., Brumley R.W., Buchman S. Precision electrostatic suspension system for the Gravity Probe B relativity mission’s science gyroscopes. Adv. Space Res. 2007;39:224–229. doi: 10.1016/j.asr.2006.09.020. - DOI
-
- Han F., Gao Z., Li D., Wang Y. Nonlinear compensation of active electrostatic bearings supporting a spherical rotor. Sens. Actuators A Phys. 2005;119:177–186. doi: 10.1016/j.sna.2004.08.030. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous