Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces
- PMID: 29077427
- DOI: 10.1103/PhysRevLett.119.150601
Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces
Abstract
The generation of free energy landscapes corresponding to conformational equilibria in complex molecular systems remains a significant computational challenge. Adding to this challenge is the need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sampling approaches employed to compute them. In this Letter, we propose the use of artificial neural networks as a solution to these issues. Using specific examples, we discuss network training using enhanced-sampling methods and the use of the networks in the calculation of ensemble averages.
Similar articles
-
Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables.J Phys Chem B. 2020 May 7;124(18):3647-3660. doi: 10.1021/acs.jpcb.0c01218. Epub 2020 Apr 27. J Phys Chem B. 2020. PMID: 32275148
-
Learning free energy landscapes using artificial neural networks.J Chem Phys. 2018 Mar 14;148(10):104111. doi: 10.1063/1.5018708. J Chem Phys. 2018. PMID: 29544298
-
Unbiasing Enhanced Sampling on a High-Dimensional Free Energy Surface with a Deep Generative Model.J Phys Chem Lett. 2024 Apr 11;15(14):3938-3945. doi: 10.1021/acs.jpclett.3c03515. Epub 2024 Apr 3. J Phys Chem Lett. 2024. PMID: 38568182
-
Comparison of free energy methods for molecular systems.J Chem Phys. 2006 Nov 14;125(18):184114. doi: 10.1063/1.2378907. J Chem Phys. 2006. PMID: 17115745 Review.
-
Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.Acc Chem Res. 2015 Feb 17;48(2):277-85. doi: 10.1021/ar500356n. Epub 2014 Dec 12. Acc Chem Res. 2015. PMID: 25496113 Review.
Cited by
-
Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease.J Chem Theory Comput. 2020 Feb 11;16(2):1284-1299. doi: 10.1021/acs.jctc.9b00781. Epub 2020 Jan 16. J Chem Theory Comput. 2020. PMID: 31877249 Free PMC article.
-
Computational methods and theory for ion channel research.Adv Phys X. 2022;7(1):2080587. doi: 10.1080/23746149.2022.2080587. Adv Phys X. 2022. PMID: 35874965 Free PMC article.
-
Surface-Accelerated String Method for Locating Minimum Free Energy Paths.J Chem Theory Comput. 2024 Mar 12;20(5):2058-2073. doi: 10.1021/acs.jctc.3c01401. Epub 2024 Feb 17. J Chem Theory Comput. 2024. PMID: 38367218 Free PMC article.
-
Bottom-up Coarse-Graining: Principles and Perspectives.J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7. J Chem Theory Comput. 2022. PMID: 36070494 Free PMC article. Review.
-
Sampling rare conformational transitions with a quantum computer.Sci Rep. 2022 Sep 29;12(1):16336. doi: 10.1038/s41598-022-20032-x. Sci Rep. 2022. PMID: 36175529 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources