Constructing exact representations of quantum many-body systems with deep neural networks
- PMID: 30552316
- PMCID: PMC6294148
- DOI: 10.1038/s41467-018-07520-3
Constructing exact representations of quantum many-body systems with deep neural networks
Abstract
Obtaining accurate properties of many-body interacting quantum matter is a long-standing challenge in theoretical physics and chemistry, rooting into the complexity of the many-body wave-function. Classical representations of many-body states constitute a key tool for both analytical and numerical approaches to interacting quantum problems. Here, we introduce a technique to construct classical representations of many-body quantum systems based on artificial neural networks. Our constructions are based on the deep Boltzmann machine architecture, in which two layers of hidden neurons mediate quantum correlations. The approach reproduces the exact imaginary-time evolution for many-body lattice Hamiltonians, is completely deterministic, and yields networks with a polynomially-scaling number of neurons. We provide examples where physical properties of spin Hamiltonians can be efficiently obtained. Also, we show how systematic improvements upon existing restricted Boltzmann machines ansatze can be obtained. Our method is an alternative to the standard path integral and opens new routes in representing quantum many-body states.
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Efficient representation of quantum many-body states with deep neural networks.Nat Commun. 2017 Sep 22;8(1):662. doi: 10.1038/s41467-017-00705-2. Nat Commun. 2017. PMID: 28939812 Free PMC article.
-
Purifying Deep Boltzmann Machines for Thermal Quantum States.Phys Rev Lett. 2021 Aug 6;127(6):060601. doi: 10.1103/PhysRevLett.127.060601. Phys Rev Lett. 2021. PMID: 34420335
-
Solving the quantum many-body problem with artificial neural networks.Science. 2017 Feb 10;355(6325):602-606. doi: 10.1126/science.aag2302. Science. 2017. PMID: 28183973
-
Boltzmann machines and quantum many-body problems.J Phys Condens Matter. 2023 Nov 10;36(7). doi: 10.1088/1361-648X/ad0916. J Phys Condens Matter. 2023. PMID: 37918107 Review.
-
Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.Acc Chem Res. 2012 Sep 18;45(9):1480-90. doi: 10.1021/ar200340j. Epub 2012 Jun 11. Acc Chem Res. 2012. PMID: 22686372 Review.
Cited by
-
Bayesian Optimization of Bose-Einstein Condensates.Sci Rep. 2021 Mar 3;11(1):5054. doi: 10.1038/s41598-021-84336-0. Sci Rep. 2021. PMID: 33658559 Free PMC article.
-
Recipes for when physics fails: recovering robust learning of physics informed neural networks.Mach Learn Sci Technol. 2023 Mar 1;4(1):015013. doi: 10.1088/2632-2153/acb416. Epub 2023 Feb 6. Mach Learn Sci Technol. 2023. PMID: 37680302 Free PMC article.
-
Quantum process tomography with unsupervised learning and tensor networks.Nat Commun. 2023 May 19;14(1):2858. doi: 10.1038/s41467-023-38332-9. Nat Commun. 2023. PMID: 37208324 Free PMC article.
-
Neural-Network Quantum States for Spin-1 Systems: Spin-Basis and Parameterization Effects on Compactness of Representations.Entropy (Basel). 2021 Jul 9;23(7):879. doi: 10.3390/e23070879. Entropy (Basel). 2021. PMID: 34356420 Free PMC article.
-
A high-bias, low-variance introduction to Machine Learning for physicists.Phys Rep. 2019 May 30;810:1-124. doi: 10.1016/j.physrep.2019.03.001. Epub 2019 Mar 14. Phys Rep. 2019. PMID: 31404441 Free PMC article.
References
-
- Feynman RP. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948;20:367–387. doi: 10.1103/RevModPhys.20.367. - DOI
-
- Dyson FJ. The S matrix in quantum electrodynamics. Phys. Rev. 1949;75:1736–1755. doi: 10.1103/PhysRev.75.1736. - DOI
-
- Hubbard J. Calculation of partition functions. Phys. Rev. Lett. 1959;3:77–78. doi: 10.1103/PhysRevLett.3.77. - DOI
-
- Stratonovich RL. On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 1957;2:416–419.
-
- Abrikosov AA. Methods of Quantum Field Theory in Statistical Physics. New York: Dover Publications; 1975.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources