Constraining the contribution of the Antarctic Ice Sheet to Last Interglacial sea level
- PMID: 37406130
- PMCID: PMC10321746
- DOI: 10.1126/sciadv.adf0198
Constraining the contribution of the Antarctic Ice Sheet to Last Interglacial sea level
Abstract
Polar temperatures during the Last Interglacial [LIG; ~129 to 116 thousand years (ka)] were warmer than today, making this time period an important testing ground to better understand how ice sheets respond to warming. However, it remains debated how much and when the Antarctic and Greenland ice sheets changed during this period. Here, we present a combination of new and existing absolutely dated LIG sea-level observations from Britain, France, and Denmark. Because of glacial isostatic adjustment (GIA), the LIG Greenland ice melt contribution to sea-level change in this region is small, which allows us to constrain Antarctic ice change. We find that the Antarctic contribution to LIG global mean sea level peaked early in the interglacial (before 126 ka), with a maximum contribution of 5.7 m (50th percentile, 3.6 to 8.7 m central 68% probability) before declining. Our results support an asynchronous melt history over the LIG, with an early Antarctic contribution followed by later Greenland Ice Sheet mass loss.
Figures



Similar articles
-
Sea-level trends across The Bahamas constrain peak last interglacial ice melt.Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):e2026839118. doi: 10.1073/pnas.2026839118. Proc Natl Acad Sci U S A. 2021. PMID: 34373328 Free PMC article.
-
Oceanic forcing of penultimate deglacial and last interglacial sea-level rise.Nature. 2020 Jan;577(7792):660-664. doi: 10.1038/s41586-020-1931-7. Epub 2020 Jan 29. Nature. 2020. PMID: 31996820
-
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica.Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3996-4006. doi: 10.1073/pnas.1902469117. Epub 2020 Feb 11. Proc Natl Acad Sci U S A. 2020. PMID: 32047039 Free PMC article.
-
Response of the East Antarctic Ice Sheet to past and future climate change.Nature. 2022 Aug;608(7922):275-286. doi: 10.1038/s41586-022-04946-0. Epub 2022 Aug 10. Nature. 2022. PMID: 35948707 Review.
-
Ice-sheet response to oceanic forcing.Science. 2012 Nov 30;338(6111):1172-6. doi: 10.1126/science.1226481. Science. 2012. PMID: 23197526 Review.
Cited by
-
Genomic Introgression and Adaptation of Southern Seabird Species Facilitate Recent Polar Colonization.Mol Biol Evol. 2025 Mar 5;42(3):msaf053. doi: 10.1093/molbev/msaf053. Mol Biol Evol. 2025. PMID: 40111469 Free PMC article.
-
The Ronne Ice Shelf survived the last interglacial.Nature. 2025 Feb;638(8049):133-137. doi: 10.1038/s41586-024-08394-w. Epub 2025 Jan 29. Nature. 2025. PMID: 39880946 Free PMC article.
-
Warming of +1.5 °C is too high for polar ice sheets.Commun Earth Environ. 2025;6(1):351. doi: 10.1038/s43247-025-02299-w. Epub 2025 May 20. Commun Earth Environ. 2025. PMID: 40406387 Free PMC article. Review.
-
East Antarctic warming forced by ice loss during the Last Interglacial.Nat Commun. 2024 Feb 3;15(1):1026. doi: 10.1038/s41467-024-45501-x. Nat Commun. 2024. PMID: 38310088 Free PMC article.
References
-
- D. P. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. J. Smith, S. K. Rose, The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).
-
- K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, K. C. Samir, M. Leimbach, L. W. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenoder, L. A. da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni, The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).
-
- B. Fox-Kemper, H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T. L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, Y. Yu, Ocean, cryosphere and sea level change, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021), pp. 1211–1362.
-
- R. E. Kopp, R. M. DeConto, D. A. Bader, C. C. Hay, R. M. Horton, S. Kulp, M. Oppenheimer, D. Pollard, B. H. Strauss, Evolving understanding of antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth's Future 5, 1217–1233 (2017).
LinkOut - more resources
Full Text Sources