Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 14;15(7):817-26.
doi: 10.1038/sj.onc.1201242.

Ligand-independent activation of fibroblast growth factor receptor-2 by carboxyl terminal alterations

Affiliations

Ligand-independent activation of fibroblast growth factor receptor-2 by carboxyl terminal alterations

M V Lorenzi et al. Oncogene. .

Abstract

To assess the effect(s) of the C-terminal domain on FGFR2 function, we engineered a series of mutant FGFR2 cDNAs encoding deletions in the C-terminus of the receptor and compared their growth properties in NIH3T3 fibroblasts. In contrast to FGFR2-WT, receptors with C-terminal truncations induced ligand-independent transformation of NIH3T3 cells and transfectants expressing these mutant receptors efficiently formed colonies in semisolid medium. Introduction of point mutations (Y to F) into the C-terminus of FGFR2 at positions 813, 784 or 780 revealed that these mutant receptors also displayed activities similar to that of C-terminally truncated receptors. C-terminally altered FGF receptors did not show an increase in the basal level of receptor phosphorylation compared to that of FGFR2-WT suggesting that elevated receptor phosphorylation does not underlie the transforming activity of these receptors. Interestingly, expression of transforming FGFR2 derivatives, unlike H-Ras transformed cells, did not result in the activation of the mitogen-activated protein kinases (MAPKs), p42/ERK2 and p44/ERK1, indicating that this pathway is not constitutively active in FGFR2-transformed cells. Finally, we report the overexpression of FGFR2 mRNA and protein in several human tumor cell lines suggesting activation of the receptor in these tumors.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources