Python

Python is a dynamically typed programming language designed by Guido van Rossum. Much like the programming language Ruby, Python was designed to be easily read by programmers. Because of its large following and many libraries, Python can be implemented and used to do anything from webpages to scientific research.
Here are 124,090 public repositories matching this topic...
Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.
-
Updated
Dec 3, 2019 - Python
A curated list of awesome Python frameworks, libraries, software and resources
-
Updated
Dec 3, 2019 - Python
All Algorithms implemented in Python
-
Updated
Dec 3, 2019 - Python
Ansible is a radically simple IT automation platform that makes your applications and systems easier to deploy. Avoid writing scripts or custom code to deploy and update your applications — automate in a language that approaches plain English, using SSH, with no agents to install on remote systems. https://docs.ansible.com/ansible/
-
Updated
Dec 3, 2019 - Python
scikit-learn: machine learning in Python
-
Updated
Dec 3, 2019 - Python
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)
-
Updated
Dec 3, 2019 - Jupyter Notebook
Repro:
@torch.jit.script
class Timebase:
def __init__(
self,
numerator, # type: int
denominator, # type: int
):
# type: (...) -> None
self.numerator = numerator # type: int
self.denominator = denominator # type: int
Produces the error:
RuntimeError: Return type line '# type: (...) -> ...' not found on multiline
The world's simplest facial recognition api for Python and the command line
-
Updated
Dec 3, 2019 - Python
:house_with_garden: Open source home automation that puts local control and privacy first
-
Updated
Dec 3, 2019 - Python
100 Days of ML Coding
-
Updated
Dec 3, 2019 - Python
Certbot is EFF's tool to obtain certs from Let's Encrypt and (optionally) auto-enable HTTPS on your server. It can also act as a client for any other CA that uses the ACME protocol.
-
Updated
Dec 3, 2019 - Python
数轴上放置了一些筹码,每个筹码的位置存在数组 chips 当中。
你可以对 任何筹码 执行下面两种操作之一(不限操作次数,0 次也可以):
将第 i 个筹码向左或者右移动 2 个单位,代价为 0。
将第 i 个筹码向左或者右移动 1 个单位,代价为 1。
最开始的时候,同一位置上也可能放着两个或者更多的筹码。
返回将所有筹码移动到同一位置(任意位置)上所需要的最小代价。
示例 1:
输入:chips = [1,2,3]
输出:1
解释:第二个筹码移动到位置三的代价是 1,第一个筹码移动到位置三的代价是 0,总代价为 1。
示例 2:
输入:chips = [2,2,2,3,3]
输出:2
解释:第四和第五个筹码移动到位置二的代价都是 1,所以最小总代价为 2。
提示:
1 <= chips.length <= 1
A collection of design patterns/idioms in Python
-
Updated
Dec 3, 2019 - Python
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
-
Updated
Dec 3, 2019 - Python
AiLearning: 机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NLP
-
Updated
Dec 3, 2019 - Python
Python Data Science Handbook: full text in Jupyter Notebooks
-
Updated
Dec 3, 2019 - Jupyter Notebook
Thank you for submitting a TensorFlow documentation issue. Per our GitHub
policy, we only address code/doc bugs, performance issues, feature requests, and
build/installation issues on GitHub.
The TensorFlow docs are open source! To get involved, read the documentation
contributor guide: https://www.tensorflow.org/community/contribute/docs
URL(s) with the issue:
https://www.tensorflow.