0% found this document useful (0 votes)
134 views

Spark DataFrames Project Exercise - Jupyter Notebook

The document provides instructions for analyzing stock market data from Walmart from 2012-2017 using Spark DataFrames. It asks the user to load the data, examine the schema and columns, calculate summary statistics, and answer questions about the data such as the peak high price, mean close price, and correlation between high prices and volume.

Uploaded by

ROHAN CHOPDE
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
134 views

Spark DataFrames Project Exercise - Jupyter Notebook

The document provides instructions for analyzing stock market data from Walmart from 2012-2017 using Spark DataFrames. It asks the user to load the data, examine the schema and columns, calculate summary statistics, and answer questions about the data such as the peak high price, mean close price, and correlation between high prices and volume.

Uploaded by

ROHAN CHOPDE
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

Spark DataFrames Project Exercise


Let's get some quick practice with your new Spark DataFrame skills, you will be asked some basic questions
about some stock market data, in this case Walmart Stock from the years 2012-2017. This exercise will just ask
a bunch of questions, unlike the future machine learning exercises, which will be a little looser and be in the
form of "Consulting Projects", but more on that later!

For now, just answer the questions and complete the tasks below.

Use the walmart_stock.csv file to Answer and complete the tasks below!

Start a simple Spark Session

In [1]:

from pyspark.sql import SparkSession


spark = SparkSession.builder.appName('walmart').getOrCreate()

Load the Walmart Stock CSV File, have Spark infer the data types.

In [2]:

df = spark.read.csv('walmart_stock.csv', inferSchema=True, header=True)

What are the column names?

In [3]:

df.columns

Out[3]:

['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close']

What does the Schema look like?

In [5]:

df.printSchema()

root

|-- Date: string (nullable = true)

|-- Open: double (nullable = true)

|-- High: double (nullable = true)

|-- Low: double (nullable = true)

|-- Close: double (nullable = true)

|-- Volume: integer (nullable = true)

|-- Adj Close: double (nullable = true)

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 1/7


12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

Print out the first 5 columns.

In [8]:

for line in df.head(5):


print(line,'\n')

Row(Date='2012-01-03', Open=59.970001, High=61.060001, Low=59.869999, Close=


60.330002, Volume=12668800, Adj Close=52.619234999999996)

Row(Date='2012-01-04', Open=60.209998999999996, High=60.349998, Low=59.47000


1, Close=59.709998999999996, Volume=9593300, Adj Close=52.078475)

Row(Date='2012-01-05', Open=59.349998, High=59.619999, Low=58.369999, Close=


59.419998, Volume=12768200, Adj Close=51.825539)

Row(Date='2012-01-06', Open=59.419998, High=59.450001, Low=58.869999, Close=


59.0, Volume=8069400, Adj Close=51.45922)

Row(Date='2012-01-09', Open=59.029999, High=59.549999, Low=58.919998, Close=


59.18, Volume=6679300, Adj Close=51.616215000000004)

Use describe() to learn about the DataFrame.

In [10]:

df.describe().show()

+-------+----------+------------------+-----------------+-----------------+-
----------------+-----------------+-----------------+

|summary| Date| Open| High| Low|


Close| Volume| Adj Close|

+-------+----------+------------------+-----------------+-----------------+-
----------------+-----------------+-----------------+

| count| 1258| 1258| 1258| 1258|


1258| 1258| 1258|

| mean| null| 72.35785375357709|72.83938807631165| 71.9186009594594|7


2.38844998012726|8222093.481717011|67.23883848728146|

| stddev| null| 6.76809024470826|6.768186808159218|6.744075756255496|


6.756859163732991| 4519780.8431556|6.722609449996857|

| min|2012-01-03|56.389998999999996| 57.060001| 56.299999|


56.419998| 2094900| 50.363689|

| max|2016-12-30| 90.800003| 90.970001| 89.25|


90.470001| 80898100|84.91421600000001|

+-------+----------+------------------+-----------------+-----------------+-
----------------+-----------------+-----------------+

Bonus Question!

There are too many decimal places for mean and stddev in the describe() dataframe. Format the
numbers to just show up to two decimal places. Pay careful attention to the datatypes that .describe()
returns, we didn't cover how to do this exact formatting, but we covered something very similar. Check
this link for a hint
(http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column.cast)

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 2/7


12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

If you get stuck on this, don't worry, just view the solutions.

In [18]:

from pyspark.sql.types import (StructField, StringType,


IntegerType, StructType)
data_schema = [StructField('summary', StringType(), True),
StructField('Open', StringType(), True),
StructField('High', StringType(), True),
StructField('Low', StringType(), True),
StructField('Close', StringType(), True),
StructField('Volume', StringType(), True),
StructField('Adj Close', StringType(), True)
]
final_struc = StructType(fields=data_schema)

df = spark.read.csv('walmart_stock.csv', inferSchema=True, header=True)

In [19]:

df.printSchema()

root

|-- Date: string (nullable = true)

|-- Open: double (nullable = true)

|-- High: double (nullable = true)

|-- Low: double (nullable = true)

|-- Close: double (nullable = true)

|-- Volume: integer (nullable = true)

|-- Adj Close: double (nullable = true)

In [22]:

from pyspark.sql.functions import format_number


summary = df.describe()
summary.select(summary['summary'],
format_number(summary['Open'].cast('float'), 2).alias('Ope
format_number(summary['High'].cast('float'), 2).alias('Hig
format_number(summary['Low'].cast('float'), 2).alias('Low'
format_number(summary['Close'].cast('float'), 2).alias('Cl
format_number(summary['Volume'].cast('int'),0).alias('Volu
).show()

+-------+--------+--------+--------+--------+----------+

|summary| Open| High| Low| Close| Volume|

+-------+--------+--------+--------+--------+----------+

| count|1,258.00|1,258.00|1,258.00|1,258.00| 1,258|

| mean| 72.36| 72.84| 71.92| 72.39| 8,222,093|

| stddev| 6.77| 6.77| 6.74| 6.76| 4,519,780|

| min| 56.39| 57.06| 56.30| 56.42| 2,094,900|

| max| 90.80| 90.97| 89.25| 90.47|80,898,100|

+-------+--------+--------+--------+--------+----------+

Create a new dataframe with a column called HV Ratio that is the ratio of the High Price versus volume
of stock traded for a day.

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 3/7


12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

In [23]:

df_hv = df.withColumn('HV Ratio', df['High']/df['Volume']).select(['HV Ratio'])


df_hv.show()

+--------------------+

| HV Ratio|

+--------------------+

|4.819714653321546E-6|

|6.290848613094555E-6|

|4.669412994783916E-6|

|7.367338463826307E-6|

|8.915604778943901E-6|

|8.644477436914568E-6|

|9.351828421515645E-6|

| 8.29141562102703E-6|

|7.712212102001476E-6|

|7.071764823529412E-6|

|1.015495466386981E-5|

|6.576354146362592...|

| 5.90145296180676E-6|

|8.547679455011844E-6|

|8.420709512685392E-6|

|1.041448341728929...|

|8.316075414862431E-6|

|9.721183814992126E-6|

|8.029436027707578E-6|

|6.307432259386365E-6|

+--------------------+

only showing top 20 rows

What day had the Peak High in Price?

In [25]:

df.orderBy(df['High'].desc()).select(['Date']).head(1)[0]['Date']

Out[25]:

'2015-01-13'

What is the mean of the Close column?

In [26]:

from pyspark.sql.functions import mean


df.select(mean('Close')).show()

+-----------------+

| avg(Close)|

+-----------------+

|72.38844998012726|

+-----------------+

What is the max and min of the Volume column?


localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 4/7
12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

In [27]:

from pyspark.sql.functions import min, max

In [28]:

df.select(max('Volume'),min('Volume')).show()

+-----------+-----------+

|max(Volume)|min(Volume)|

+-----------+-----------+

| 80898100| 2094900|

+-----------+-----------+

How many days was the Close lower than 60 dollars?

In [29]:

df.filter(df['Close'] < 60).count()

Out[29]:

81

What percentage of the time was the High greater than 80 dollars ?

In other words, (Number of Days High>80)/(Total Days in the dataset)

In [107]:

df.filter('High > 80').count() * 100/df.count()

Out[107]:

9.141494435612083

What is the Pearson correlation between High and Volume?

Hint
(http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameStatFunctions.co

In [31]:

df.corr('High', 'Volume')

+-------------------+

| corr(High, Volume)|

+-------------------+

|-0.3384326061737161|

+-------------------+

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 5/7


12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

What is the max High per year?

In [32]:

from pyspark.sql.functions import (dayofmonth, hour,


dayofyear, month,
year, weekofyear,
format_number, date_format)
year_df = df.withColumn('Year', year(df['Date']))
year_df.groupBy('Year').max()['Year', 'max(High)'].show()

+----+---------+

|Year|max(High)|

+----+---------+

|2015|90.970001|

|2013|81.370003|

|2014|88.089996|

|2012|77.599998|

|2016|75.190002|

+----+---------+

What is the average Close for each Calendar Month?

In other words, across all the years, what is the average Close price for Jan,Feb, Mar, etc... Your result
will have a value for each of these months.

In [33]:

month_df = df.withColumn('Month', month(df['Date']))

month_df = month_df.groupBy('Month').mean()

month_df = month_df.orderBy('Month')

month_df['Month', 'avg(Close)'].show()

+-----+-----------------+

|Month| avg(Close)|

+-----+-----------------+

| 1|71.44801958415842|

| 2| 71.306804443299|

| 3|71.77794377570092|

| 4|72.97361900952382|

| 5|72.30971688679247|

| 6| 72.4953774245283|

| 7|74.43971943925233|

| 8|73.02981855454546|

| 9|72.18411785294116|

| 10|71.57854545454543|

| 11| 72.1110893069307|

| 12|72.84792478301885|

+-----+-----------------+

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 6/7


12/24/21, 1:52 PM Spark DataFrames Project Exercise - Jupyter Notebook

Great Job!

localhost:8888/notebooks/Downloads/Spark DataFrames Project Exercise.ipynb 7/7

You might also like