The Wayback Machine - https://web.archive.org/web/20201002184119/https://github.com/d-li14/octconv.pytorch
Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
fig
 
 
 
 
 
 
 
 
 
 

README.md

octconv.pytorch

PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ResNet-50/101 on ImageNet

Architecture LR decay strategy Parameters GFLOPs Top-1 / Top-5 Accuracy (%)
ResNet-50 step (90 epochs) 25.557M 4.089 76.010 / 92.834
ResNet-50 cosine (120 epochs) 25.557M 4.089 77.150 / 93.468
Oct-ResNet-50 (alpha=0.5) cosine (120 epochs) 25.557M 2.367 77.640 / 93.662
ResNet-101 cosine (120 epochs) 44.549M 7.801 78.898 / 94.304
Oct-ResNet-101 (alpha=0.5) cosine (120 epochs) 44.549M 3.991 78.794 / 94.330
ResNet-152 cosine (120 epochs) 60.193M 11.514 79.234 / 94.556
Oct-ResNet-152 (alpha=0.5) cosine (120 epochs) 60.193M 5.615 79.258 / 94.480

MobileNet V1 on ImageNet

Architecture LR decay strategy Parameters FLOPs Top-1 / Top-5 Accuracy (%)
MobileNetV1 cosine (150 epochs) 4.232M 568.7M 72.238 / 90.536
Oct-MobileNetV1 cosine (150 epochs) 4.232M 318.2M 71.254 / 89.728

Acknowledgement

Official MXNet implmentation by @cypw

Citation

@InProceedings{Chen_2019_ICCV,
author = {Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
title = {Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

About

PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.