Permalink
Cannot retrieve contributors at this time
8470 lines (7726 sloc)
226 KB
/********************************************************************** | |
array.c - | |
$Author$ | |
created at: Fri Aug 6 09:46:12 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
Copyright (C) 2000 Network Applied Communication Laboratory, Inc. | |
Copyright (C) 2000 Information-technology Promotion Agency, Japan | |
**********************************************************************/ | |
#include "debug_counter.h" | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/array.h" | |
#include "internal/compar.h" | |
#include "internal/enum.h" | |
#include "internal/gc.h" | |
#include "internal/hash.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/proc.h" | |
#include "internal/rational.h" | |
#include "internal/vm.h" | |
#include "probes.h" | |
#include "ruby/encoding.h" | |
#include "ruby/st.h" | |
#include "ruby/util.h" | |
#include "transient_heap.h" | |
#include "builtin.h" | |
#if !ARRAY_DEBUG | |
# undef NDEBUG | |
# define NDEBUG | |
#endif | |
#include "ruby_assert.h" | |
VALUE rb_cArray; | |
/* for OPTIMIZED_CMP: */ | |
#define id_cmp idCmp | |
#define ARY_DEFAULT_SIZE 16 | |
#define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE)) | |
#define SMALL_ARRAY_LEN 16 | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static int | |
should_be_T_ARRAY(VALUE ary) | |
{ | |
return RB_TYPE_P(ary, T_ARRAY); | |
} | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static int | |
should_not_be_shared_and_embedded(VALUE ary) | |
{ | |
return !FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG); | |
} | |
#define ARY_SHARED_P(ary) \ | |
(assert(should_be_T_ARRAY((VALUE)(ary))), \ | |
assert(should_not_be_shared_and_embedded((VALUE)ary)), \ | |
FL_TEST_RAW((ary),ELTS_SHARED)!=0) | |
#define ARY_EMBED_P(ary) \ | |
(assert(should_be_T_ARRAY((VALUE)(ary))), \ | |
assert(should_not_be_shared_and_embedded((VALUE)ary)), \ | |
FL_TEST_RAW((ary), RARRAY_EMBED_FLAG) != 0) | |
#define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr) | |
#define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len) | |
#define ARY_HEAP_CAPA(a) (assert(!ARY_EMBED_P(a)), assert(!ARY_SHARED_ROOT_P(a)), \ | |
RARRAY(a)->as.heap.aux.capa) | |
#define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary) | |
#define ARY_EMBED_LEN(a) \ | |
(assert(ARY_EMBED_P(a)), \ | |
(long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \ | |
(RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT))) | |
#define ARY_HEAP_SIZE(a) (assert(!ARY_EMBED_P(a)), assert(ARY_OWNS_HEAP_P(a)), ARY_CAPA(a) * sizeof(VALUE)) | |
#define ARY_OWNS_HEAP_P(a) (assert(should_be_T_ARRAY((VALUE)(a))), \ | |
!FL_TEST_RAW((a), ELTS_SHARED|RARRAY_EMBED_FLAG)) | |
#define FL_SET_EMBED(a) do { \ | |
assert(!ARY_SHARED_P(a)); \ | |
FL_SET((a), RARRAY_EMBED_FLAG); \ | |
RARY_TRANSIENT_UNSET(a); \ | |
ary_verify(a); \ | |
} while (0) | |
#define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK) | |
#define FL_SET_SHARED(ary) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
FL_SET((ary), ELTS_SHARED); \ | |
} while (0) | |
#define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED) | |
#define ARY_SET_PTR(ary, p) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
assert(!OBJ_FROZEN(ary)); \ | |
RARRAY(ary)->as.heap.ptr = (p); \ | |
} while (0) | |
#define ARY_SET_EMBED_LEN(ary, n) do { \ | |
long tmp_n = (n); \ | |
assert(ARY_EMBED_P(ary)); \ | |
assert(!OBJ_FROZEN(ary)); \ | |
RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \ | |
RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \ | |
} while (0) | |
#define ARY_SET_HEAP_LEN(ary, n) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
RARRAY(ary)->as.heap.len = (n); \ | |
} while (0) | |
#define ARY_SET_LEN(ary, n) do { \ | |
if (ARY_EMBED_P(ary)) { \ | |
ARY_SET_EMBED_LEN((ary), (n)); \ | |
} \ | |
else { \ | |
ARY_SET_HEAP_LEN((ary), (n)); \ | |
} \ | |
assert(RARRAY_LEN(ary) == (n)); \ | |
} while (0) | |
#define ARY_INCREASE_PTR(ary, n) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
assert(!OBJ_FROZEN(ary)); \ | |
RARRAY(ary)->as.heap.ptr += (n); \ | |
} while (0) | |
#define ARY_INCREASE_LEN(ary, n) do { \ | |
assert(!OBJ_FROZEN(ary)); \ | |
if (ARY_EMBED_P(ary)) { \ | |
ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \ | |
} \ | |
else { \ | |
RARRAY(ary)->as.heap.len += (n); \ | |
} \ | |
} while (0) | |
#define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \ | |
ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : ARY_HEAP_CAPA(ary)) | |
#define ARY_SET_CAPA(ary, n) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
assert(!ARY_SHARED_P(ary)); \ | |
assert(!OBJ_FROZEN(ary)); \ | |
RARRAY(ary)->as.heap.aux.capa = (n); \ | |
} while (0) | |
#define ARY_SHARED_ROOT(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared_root) | |
#define ARY_SET_SHARED(ary, value) do { \ | |
const VALUE _ary_ = (ary); \ | |
const VALUE _value_ = (value); \ | |
assert(!ARY_EMBED_P(_ary_)); \ | |
assert(ARY_SHARED_P(_ary_)); \ | |
assert(ARY_SHARED_ROOT_P(_value_)); \ | |
RB_OBJ_WRITE(_ary_, &RARRAY(_ary_)->as.heap.aux.shared_root, _value_); \ | |
} while (0) | |
#define RARRAY_SHARED_ROOT_FLAG FL_USER5 | |
#define ARY_SHARED_ROOT_P(ary) (assert(should_be_T_ARRAY((VALUE)(ary))), \ | |
FL_TEST_RAW((ary), RARRAY_SHARED_ROOT_FLAG)) | |
#define ARY_SHARED_ROOT_REFCNT(ary) \ | |
(assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa) | |
#define ARY_SHARED_ROOT_OCCUPIED(ary) (ARY_SHARED_ROOT_REFCNT(ary) == 1) | |
#define ARY_SET_SHARED_ROOT_REFCNT(ary, value) do { \ | |
assert(ARY_SHARED_ROOT_P(ary)); \ | |
RARRAY(ary)->as.heap.aux.capa = (value); \ | |
} while (0) | |
#define FL_SET_SHARED_ROOT(ary) do { \ | |
assert(!ARY_EMBED_P(ary)); \ | |
assert(!RARRAY_TRANSIENT_P(ary)); \ | |
FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \ | |
} while (0) | |
static inline void | |
ARY_SET(VALUE a, long i, VALUE v) | |
{ | |
assert(!ARY_SHARED_P(a)); | |
assert(!OBJ_FROZEN(a)); | |
RARRAY_ASET(a, i, v); | |
} | |
#undef RARRAY_ASET | |
#if ARRAY_DEBUG | |
#define ary_verify(ary) ary_verify_(ary, __FILE__, __LINE__) | |
static VALUE | |
ary_verify_(VALUE ary, const char *file, int line) | |
{ | |
assert(RB_TYPE_P(ary, T_ARRAY)); | |
if (FL_TEST(ary, ELTS_SHARED)) { | |
VALUE root = RARRAY(ary)->as.heap.aux.shared_root; | |
const VALUE *ptr = ARY_HEAP_PTR(ary); | |
const VALUE *root_ptr = RARRAY_CONST_PTR_TRANSIENT(root); | |
long len = ARY_HEAP_LEN(ary), root_len = RARRAY_LEN(root); | |
assert(FL_TEST(root, RARRAY_SHARED_ROOT_FLAG)); | |
assert(root_ptr <= ptr && ptr + len <= root_ptr + root_len); | |
ary_verify(root); | |
} | |
else if (ARY_EMBED_P(ary)) { | |
assert(!RARRAY_TRANSIENT_P(ary)); | |
assert(!ARY_SHARED_P(ary)); | |
assert(RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX); | |
} | |
else { | |
#if 1 | |
const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(ary); | |
long i, len = RARRAY_LEN(ary); | |
volatile VALUE v; | |
if (len > 1) len = 1; /* check only HEAD */ | |
for (i=0; i<len; i++) { | |
v = ptr[i]; /* access check */ | |
} | |
v = v; | |
#endif | |
} | |
#if USE_TRANSIENT_HEAP | |
if (RARRAY_TRANSIENT_P(ary)) { | |
assert(rb_transient_heap_managed_ptr_p(RARRAY_CONST_PTR_TRANSIENT(ary))); | |
} | |
#endif | |
rb_transient_heap_verify(); | |
return ary; | |
} | |
void | |
rb_ary_verify(VALUE ary) | |
{ | |
ary_verify(ary); | |
} | |
#else | |
#define ary_verify(ary) ((void)0) | |
#endif | |
VALUE * | |
rb_ary_ptr_use_start(VALUE ary) | |
{ | |
#if ARRAY_DEBUG | |
FL_SET_RAW(ary, RARRAY_PTR_IN_USE_FLAG); | |
#endif | |
return (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary); | |
} | |
void | |
rb_ary_ptr_use_end(VALUE ary) | |
{ | |
#if ARRAY_DEBUG | |
FL_UNSET_RAW(ary, RARRAY_PTR_IN_USE_FLAG); | |
#endif | |
} | |
void | |
rb_mem_clear(VALUE *mem, long size) | |
{ | |
while (size--) { | |
*mem++ = Qnil; | |
} | |
} | |
static void | |
ary_mem_clear(VALUE ary, long beg, long size) | |
{ | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
rb_mem_clear(ptr + beg, size); | |
}); | |
} | |
static inline void | |
memfill(register VALUE *mem, register long size, register VALUE val) | |
{ | |
while (size--) { | |
*mem++ = val; | |
} | |
} | |
static void | |
ary_memfill(VALUE ary, long beg, long size, VALUE val) | |
{ | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
memfill(ptr + beg, size, val); | |
RB_OBJ_WRITTEN(ary, Qundef, val); | |
}); | |
} | |
static void | |
ary_memcpy0(VALUE ary, long beg, long argc, const VALUE *argv, VALUE buff_owner_ary) | |
{ | |
assert(!ARY_SHARED_P(buff_owner_ary)); | |
if (argc > (int)(128/sizeof(VALUE)) /* is magic number (cache line size) */) { | |
rb_gc_writebarrier_remember(buff_owner_ary); | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMCPY(ptr+beg, argv, VALUE, argc); | |
}); | |
} | |
else { | |
int i; | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
for (i=0; i<argc; i++) { | |
RB_OBJ_WRITE(buff_owner_ary, &ptr[i+beg], argv[i]); | |
} | |
}); | |
} | |
} | |
static void | |
ary_memcpy(VALUE ary, long beg, long argc, const VALUE *argv) | |
{ | |
ary_memcpy0(ary, beg, argc, argv, ary); | |
} | |
static VALUE * | |
ary_heap_alloc(VALUE ary, size_t capa) | |
{ | |
VALUE *ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * capa); | |
if (ptr != NULL) { | |
RARY_TRANSIENT_SET(ary); | |
} | |
else { | |
RARY_TRANSIENT_UNSET(ary); | |
ptr = ALLOC_N(VALUE, capa); | |
} | |
return ptr; | |
} | |
static void | |
ary_heap_free_ptr(VALUE ary, const VALUE *ptr, long size) | |
{ | |
if (RARRAY_TRANSIENT_P(ary)) { | |
/* ignore it */ | |
} | |
else { | |
ruby_sized_xfree((void *)ptr, size); | |
} | |
} | |
static void | |
ary_heap_free(VALUE ary) | |
{ | |
if (RARRAY_TRANSIENT_P(ary)) { | |
RARY_TRANSIENT_UNSET(ary); | |
} | |
else { | |
ary_heap_free_ptr(ary, ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary)); | |
} | |
} | |
static size_t | |
ary_heap_realloc(VALUE ary, size_t new_capa) | |
{ | |
size_t alloc_capa = new_capa; | |
size_t old_capa = ARY_HEAP_CAPA(ary); | |
if (RARRAY_TRANSIENT_P(ary)) { | |
if (new_capa <= old_capa) { | |
/* do nothing */ | |
alloc_capa = old_capa; | |
} | |
else { | |
VALUE *new_ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * new_capa); | |
if (new_ptr == NULL) { | |
new_ptr = ALLOC_N(VALUE, new_capa); | |
RARY_TRANSIENT_UNSET(ary); | |
} | |
MEMCPY(new_ptr, ARY_HEAP_PTR(ary), VALUE, old_capa); | |
ARY_SET_PTR(ary, new_ptr); | |
} | |
} | |
else { | |
SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, new_capa, old_capa); | |
} | |
ary_verify(ary); | |
return alloc_capa; | |
} | |
#if USE_TRANSIENT_HEAP | |
static inline void | |
rb_ary_transient_heap_evacuate_(VALUE ary, int transient, int promote) | |
{ | |
if (transient) { | |
VALUE *new_ptr; | |
const VALUE *old_ptr = ARY_HEAP_PTR(ary); | |
long capa = ARY_HEAP_CAPA(ary); | |
long len = ARY_HEAP_LEN(ary); | |
if (ARY_SHARED_ROOT_P(ary)) { | |
capa = len; | |
} | |
assert(ARY_OWNS_HEAP_P(ary)); | |
assert(RARRAY_TRANSIENT_P(ary)); | |
assert(!ARY_PTR_USING_P(ary)); | |
if (promote) { | |
new_ptr = ALLOC_N(VALUE, capa); | |
RARY_TRANSIENT_UNSET(ary); | |
} | |
else { | |
new_ptr = ary_heap_alloc(ary, capa); | |
} | |
MEMCPY(new_ptr, old_ptr, VALUE, capa); | |
/* do not use ARY_SET_PTR() because they assert !frozen */ | |
RARRAY(ary)->as.heap.ptr = new_ptr; | |
} | |
ary_verify(ary); | |
} | |
void | |
rb_ary_transient_heap_evacuate(VALUE ary, int promote) | |
{ | |
rb_ary_transient_heap_evacuate_(ary, RARRAY_TRANSIENT_P(ary), promote); | |
} | |
void | |
rb_ary_detransient(VALUE ary) | |
{ | |
assert(RARRAY_TRANSIENT_P(ary)); | |
rb_ary_transient_heap_evacuate_(ary, TRUE, TRUE); | |
} | |
#else | |
void | |
rb_ary_detransient(VALUE ary) | |
{ | |
/* do nothing */ | |
} | |
#endif | |
static void | |
ary_resize_capa(VALUE ary, long capacity) | |
{ | |
assert(RARRAY_LEN(ary) <= capacity); | |
assert(!OBJ_FROZEN(ary)); | |
assert(!ARY_SHARED_P(ary)); | |
if (capacity > RARRAY_EMBED_LEN_MAX) { | |
size_t new_capa = capacity; | |
if (ARY_EMBED_P(ary)) { | |
long len = ARY_EMBED_LEN(ary); | |
VALUE *ptr = ary_heap_alloc(ary, capacity); | |
MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len); | |
FL_UNSET_EMBED(ary); | |
ARY_SET_PTR(ary, ptr); | |
ARY_SET_HEAP_LEN(ary, len); | |
} | |
else { | |
new_capa = ary_heap_realloc(ary, capacity); | |
} | |
ARY_SET_CAPA(ary, new_capa); | |
} | |
else { | |
if (!ARY_EMBED_P(ary)) { | |
long len = ARY_HEAP_LEN(ary); | |
long old_capa = ARY_HEAP_CAPA(ary); | |
const VALUE *ptr = ARY_HEAP_PTR(ary); | |
if (len > capacity) len = capacity; | |
MEMCPY((VALUE *)RARRAY(ary)->as.ary, ptr, VALUE, len); | |
ary_heap_free_ptr(ary, ptr, old_capa); | |
FL_SET_EMBED(ary); | |
ARY_SET_LEN(ary, len); | |
} | |
} | |
ary_verify(ary); | |
} | |
static inline void | |
ary_shrink_capa(VALUE ary) | |
{ | |
long capacity = ARY_HEAP_LEN(ary); | |
long old_capa = ARY_HEAP_CAPA(ary); | |
assert(!ARY_SHARED_P(ary)); | |
assert(old_capa >= capacity); | |
if (old_capa > capacity) ary_heap_realloc(ary, capacity); | |
ary_verify(ary); | |
} | |
static void | |
ary_double_capa(VALUE ary, long min) | |
{ | |
long new_capa = ARY_CAPA(ary) / 2; | |
if (new_capa < ARY_DEFAULT_SIZE) { | |
new_capa = ARY_DEFAULT_SIZE; | |
} | |
if (new_capa >= ARY_MAX_SIZE - min) { | |
new_capa = (ARY_MAX_SIZE - min) / 2; | |
} | |
new_capa += min; | |
ary_resize_capa(ary, new_capa); | |
ary_verify(ary); | |
} | |
static void | |
rb_ary_decrement_share(VALUE shared_root) | |
{ | |
if (shared_root) { | |
long num = ARY_SHARED_ROOT_REFCNT(shared_root) - 1; | |
if (num == 0) { | |
rb_ary_free(shared_root); | |
rb_gc_force_recycle(shared_root); | |
} | |
else if (num > 0) { | |
ARY_SET_SHARED_ROOT_REFCNT(shared_root, num); | |
} | |
} | |
} | |
static void | |
rb_ary_unshare(VALUE ary) | |
{ | |
VALUE shared_root = RARRAY(ary)->as.heap.aux.shared_root; | |
rb_ary_decrement_share(shared_root); | |
FL_UNSET_SHARED(ary); | |
} | |
static inline void | |
rb_ary_unshare_safe(VALUE ary) | |
{ | |
if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { | |
rb_ary_unshare(ary); | |
} | |
} | |
static VALUE | |
rb_ary_increment_share(VALUE shared_root) | |
{ | |
long num = ARY_SHARED_ROOT_REFCNT(shared_root); | |
if (num >= 0) { | |
ARY_SET_SHARED_ROOT_REFCNT(shared_root, num + 1); | |
} | |
return shared_root; | |
} | |
static void | |
rb_ary_set_shared(VALUE ary, VALUE shared_root) | |
{ | |
rb_ary_increment_share(shared_root); | |
FL_SET_SHARED(ary); | |
RB_DEBUG_COUNTER_INC(obj_ary_shared_create); | |
ARY_SET_SHARED(ary, shared_root); | |
} | |
static inline void | |
rb_ary_modify_check(VALUE ary) | |
{ | |
rb_check_frozen(ary); | |
ary_verify(ary); | |
} | |
void | |
rb_ary_cancel_sharing(VALUE ary) | |
{ | |
if (ARY_SHARED_P(ary)) { | |
long shared_len, len = RARRAY_LEN(ary); | |
VALUE shared_root = ARY_SHARED_ROOT(ary); | |
ary_verify(shared_root); | |
if (len <= RARRAY_EMBED_LEN_MAX) { | |
const VALUE *ptr = ARY_HEAP_PTR(ary); | |
FL_UNSET_SHARED(ary); | |
FL_SET_EMBED(ary); | |
MEMCPY((VALUE *)ARY_EMBED_PTR(ary), ptr, VALUE, len); | |
rb_ary_decrement_share(shared_root); | |
ARY_SET_EMBED_LEN(ary, len); | |
} | |
else if (ARY_SHARED_ROOT_OCCUPIED(shared_root) && len > ((shared_len = RARRAY_LEN(shared_root))>>1)) { | |
long shift = RARRAY_CONST_PTR_TRANSIENT(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root); | |
FL_UNSET_SHARED(ary); | |
ARY_SET_PTR(ary, RARRAY_CONST_PTR_TRANSIENT(shared_root)); | |
ARY_SET_CAPA(ary, shared_len); | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr, ptr+shift, VALUE, len); | |
}); | |
FL_SET_EMBED(shared_root); | |
rb_ary_decrement_share(shared_root); | |
} | |
else { | |
VALUE *ptr = ary_heap_alloc(ary, len); | |
MEMCPY(ptr, ARY_HEAP_PTR(ary), VALUE, len); | |
rb_ary_unshare(ary); | |
ARY_SET_CAPA(ary, len); | |
ARY_SET_PTR(ary, ptr); | |
} | |
rb_gc_writebarrier_remember(ary); | |
} | |
ary_verify(ary); | |
} | |
void | |
rb_ary_modify(VALUE ary) | |
{ | |
rb_ary_modify_check(ary); | |
rb_ary_cancel_sharing(ary); | |
} | |
static VALUE | |
ary_ensure_room_for_push(VALUE ary, long add_len) | |
{ | |
long old_len = RARRAY_LEN(ary); | |
long new_len = old_len + add_len; | |
long capa; | |
if (old_len > ARY_MAX_SIZE - add_len) { | |
rb_raise(rb_eIndexError, "index %ld too big", new_len); | |
} | |
if (ARY_SHARED_P(ary)) { | |
if (new_len > RARRAY_EMBED_LEN_MAX) { | |
VALUE shared_root = ARY_SHARED_ROOT(ary); | |
if (ARY_SHARED_ROOT_OCCUPIED(shared_root)) { | |
if (ARY_HEAP_PTR(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root) + new_len <= RARRAY_LEN(shared_root)) { | |
rb_ary_modify_check(ary); | |
ary_verify(ary); | |
ary_verify(shared_root); | |
return shared_root; | |
} | |
else { | |
/* if array is shared, then it is likely it participate in push/shift pattern */ | |
rb_ary_modify(ary); | |
capa = ARY_CAPA(ary); | |
if (new_len > capa - (capa >> 6)) { | |
ary_double_capa(ary, new_len); | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
} | |
} | |
ary_verify(ary); | |
rb_ary_modify(ary); | |
} | |
else { | |
rb_ary_modify_check(ary); | |
} | |
capa = ARY_CAPA(ary); | |
if (new_len > capa) { | |
ary_double_capa(ary, new_len); | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.freeze -> self | |
* | |
* Freezes +self+; returns +self+: | |
* a = [] | |
* a.frozen? # => false | |
* a.freeze | |
* a.frozen? # => true | |
* | |
* An attempt to modify a frozen \Array raises FrozenError. | |
*/ | |
VALUE | |
rb_ary_freeze(VALUE ary) | |
{ | |
return rb_obj_freeze(ary); | |
} | |
/* This can be used to take a snapshot of an array (with | |
e.g. rb_ary_replace) and check later whether the array has been | |
modified from the snapshot. The snapshot is cheap, though if | |
something does modify the array it will pay the cost of copying | |
it. If Array#pop or Array#shift has been called, the array will | |
be still shared with the snapshot, but the array length will | |
differ. */ | |
VALUE | |
rb_ary_shared_with_p(VALUE ary1, VALUE ary2) | |
{ | |
if (!ARY_EMBED_P(ary1) && ARY_SHARED_P(ary1) && | |
!ARY_EMBED_P(ary2) && ARY_SHARED_P(ary2) && | |
RARRAY(ary1)->as.heap.aux.shared_root == RARRAY(ary2)->as.heap.aux.shared_root && | |
RARRAY(ary1)->as.heap.len == RARRAY(ary2)->as.heap.len) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
static VALUE | |
ary_alloc(VALUE klass) | |
{ | |
NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0)); | |
/* Created array is: | |
* FL_SET_EMBED((VALUE)ary); | |
* ARY_SET_EMBED_LEN((VALUE)ary, 0); | |
*/ | |
return (VALUE)ary; | |
} | |
static VALUE | |
empty_ary_alloc(VALUE klass) | |
{ | |
RUBY_DTRACE_CREATE_HOOK(ARRAY, 0); | |
return ary_alloc(klass); | |
} | |
static VALUE | |
ary_new(VALUE klass, long capa) | |
{ | |
VALUE ary,*ptr; | |
if (capa < 0) { | |
rb_raise(rb_eArgError, "negative array size (or size too big)"); | |
} | |
if (capa > ARY_MAX_SIZE) { | |
rb_raise(rb_eArgError, "array size too big"); | |
} | |
RUBY_DTRACE_CREATE_HOOK(ARRAY, capa); | |
ary = ary_alloc(klass); | |
if (capa > RARRAY_EMBED_LEN_MAX) { | |
ptr = ary_heap_alloc(ary, capa); | |
FL_UNSET_EMBED(ary); | |
ARY_SET_PTR(ary, ptr); | |
ARY_SET_CAPA(ary, capa); | |
ARY_SET_HEAP_LEN(ary, 0); | |
} | |
return ary; | |
} | |
VALUE | |
rb_ary_new_capa(long capa) | |
{ | |
return ary_new(rb_cArray, capa); | |
} | |
VALUE | |
rb_ary_new(void) | |
{ | |
return rb_ary_new2(RARRAY_EMBED_LEN_MAX); | |
} | |
VALUE | |
(rb_ary_new_from_args)(long n, ...) | |
{ | |
va_list ar; | |
VALUE ary; | |
long i; | |
ary = rb_ary_new2(n); | |
va_start(ar, n); | |
for (i=0; i<n; i++) { | |
ARY_SET(ary, i, va_arg(ar, VALUE)); | |
} | |
va_end(ar); | |
ARY_SET_LEN(ary, n); | |
return ary; | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_ary_tmp_new_from_values(VALUE klass, long n, const VALUE *elts) | |
{ | |
VALUE ary; | |
ary = ary_new(klass, n); | |
if (n > 0 && elts) { | |
ary_memcpy(ary, 0, n, elts); | |
ARY_SET_LEN(ary, n); | |
} | |
return ary; | |
} | |
VALUE | |
rb_ary_new_from_values(long n, const VALUE *elts) | |
{ | |
return rb_ary_tmp_new_from_values(rb_cArray, n, elts); | |
} | |
static VALUE | |
ec_ary_alloc(rb_execution_context_t *ec, VALUE klass) | |
{ | |
RB_EC_NEWOBJ_OF(ec, ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0)); | |
/* Created array is: | |
* FL_SET_EMBED((VALUE)ary); | |
* ARY_SET_EMBED_LEN((VALUE)ary, 0); | |
*/ | |
return (VALUE)ary; | |
} | |
static VALUE | |
ec_ary_new(rb_execution_context_t *ec, VALUE klass, long capa) | |
{ | |
VALUE ary,*ptr; | |
if (capa < 0) { | |
rb_raise(rb_eArgError, "negative array size (or size too big)"); | |
} | |
if (capa > ARY_MAX_SIZE) { | |
rb_raise(rb_eArgError, "array size too big"); | |
} | |
RUBY_DTRACE_CREATE_HOOK(ARRAY, capa); | |
ary = ec_ary_alloc(ec, klass); | |
if (capa > RARRAY_EMBED_LEN_MAX) { | |
ptr = ary_heap_alloc(ary, capa); | |
FL_UNSET_EMBED(ary); | |
ARY_SET_PTR(ary, ptr); | |
ARY_SET_CAPA(ary, capa); | |
ARY_SET_HEAP_LEN(ary, 0); | |
} | |
return ary; | |
} | |
VALUE | |
rb_ec_ary_new_from_values(rb_execution_context_t *ec, long n, const VALUE *elts) | |
{ | |
VALUE ary; | |
ary = ec_ary_new(ec, rb_cArray, n); | |
if (n > 0 && elts) { | |
ary_memcpy(ary, 0, n, elts); | |
ARY_SET_LEN(ary, n); | |
} | |
return ary; | |
} | |
VALUE | |
rb_ary_tmp_new(long capa) | |
{ | |
VALUE ary = ary_new(0, capa); | |
rb_ary_transient_heap_evacuate(ary, TRUE); | |
return ary; | |
} | |
VALUE | |
rb_ary_tmp_new_fill(long capa) | |
{ | |
VALUE ary = ary_new(0, capa); | |
ary_memfill(ary, 0, capa, Qnil); | |
ARY_SET_LEN(ary, capa); | |
rb_ary_transient_heap_evacuate(ary, TRUE); | |
return ary; | |
} | |
void | |
rb_ary_free(VALUE ary) | |
{ | |
if (ARY_OWNS_HEAP_P(ary)) { | |
if (USE_DEBUG_COUNTER && | |
!ARY_SHARED_ROOT_P(ary) && | |
ARY_HEAP_CAPA(ary) > RARRAY_LEN(ary)) { | |
RB_DEBUG_COUNTER_INC(obj_ary_extracapa); | |
} | |
if (RARRAY_TRANSIENT_P(ary)) { | |
RB_DEBUG_COUNTER_INC(obj_ary_transient); | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_ary_ptr); | |
ary_heap_free(ary); | |
} | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_ary_embed); | |
} | |
if (ARY_SHARED_P(ary)) { | |
RB_DEBUG_COUNTER_INC(obj_ary_shared); | |
} | |
if (ARY_SHARED_ROOT_P(ary) && ARY_SHARED_ROOT_OCCUPIED(ary)) { | |
RB_DEBUG_COUNTER_INC(obj_ary_shared_root_occupied); | |
} | |
} | |
RUBY_FUNC_EXPORTED size_t | |
rb_ary_memsize(VALUE ary) | |
{ | |
if (ARY_OWNS_HEAP_P(ary)) { | |
return ARY_CAPA(ary) * sizeof(VALUE); | |
} | |
else { | |
return 0; | |
} | |
} | |
static inline void | |
ary_discard(VALUE ary) | |
{ | |
rb_ary_free(ary); | |
RBASIC(ary)->flags |= RARRAY_EMBED_FLAG; | |
RBASIC(ary)->flags &= ~(RARRAY_EMBED_LEN_MASK | RARRAY_TRANSIENT_FLAG); | |
} | |
static VALUE | |
ary_make_shared(VALUE ary) | |
{ | |
assert(!ARY_EMBED_P(ary)); | |
ary_verify(ary); | |
if (ARY_SHARED_P(ary)) { | |
return ARY_SHARED_ROOT(ary); | |
} | |
else if (ARY_SHARED_ROOT_P(ary)) { | |
return ary; | |
} | |
else if (OBJ_FROZEN(ary)) { | |
rb_ary_transient_heap_evacuate(ary, TRUE); | |
ary_shrink_capa(ary); | |
FL_SET_SHARED_ROOT(ary); | |
ARY_SET_SHARED_ROOT_REFCNT(ary, 1); | |
return ary; | |
} | |
else { | |
long capa = ARY_CAPA(ary), len = RARRAY_LEN(ary); | |
const VALUE *ptr; | |
NEWOBJ_OF(shared, struct RArray, 0, T_ARRAY | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0)); | |
VALUE vshared = (VALUE)shared; | |
rb_ary_transient_heap_evacuate(ary, TRUE); | |
ptr = ARY_HEAP_PTR(ary); | |
FL_UNSET_EMBED(vshared); | |
ARY_SET_LEN(vshared, capa); | |
ARY_SET_PTR(vshared, ptr); | |
ary_mem_clear(vshared, len, capa - len); | |
FL_SET_SHARED_ROOT(vshared); | |
ARY_SET_SHARED_ROOT_REFCNT(vshared, 1); | |
FL_SET_SHARED(ary); | |
RB_DEBUG_COUNTER_INC(obj_ary_shared_create); | |
ARY_SET_SHARED(ary, vshared); | |
OBJ_FREEZE(vshared); | |
ary_verify(vshared); | |
ary_verify(ary); | |
return vshared; | |
} | |
} | |
static VALUE | |
ary_make_substitution(VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
if (len <= RARRAY_EMBED_LEN_MAX) { | |
VALUE subst = rb_ary_new2(len); | |
ary_memcpy(subst, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary)); | |
ARY_SET_EMBED_LEN(subst, len); | |
return subst; | |
} | |
else { | |
return rb_ary_increment_share(ary_make_shared(ary)); | |
} | |
} | |
VALUE | |
rb_assoc_new(VALUE car, VALUE cdr) | |
{ | |
return rb_ary_new3(2, car, cdr); | |
} | |
VALUE | |
rb_to_array_type(VALUE ary) | |
{ | |
return rb_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary); | |
} | |
#define to_ary rb_to_array_type | |
VALUE | |
rb_check_array_type(VALUE ary) | |
{ | |
return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_check_to_array(VALUE ary) | |
{ | |
return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_a); | |
} | |
VALUE | |
rb_to_array(VALUE ary) | |
{ | |
return rb_convert_type_with_id(ary, T_ARRAY, "Array", idTo_a); | |
} | |
/* | |
* call-seq: | |
* Array.try_convert(object) -> object, new_array, or nil | |
* | |
* If +object+ is an \Array object, returns +object+. | |
* | |
* Otherwise if +object+ responds to <tt>:to_ary</tt>, | |
* calls <tt>object.to_ary</tt> and returns the result. | |
* | |
* Returns +nil+ if +object+ does not respond to <tt>:to_ary</tt> | |
* | |
* Raises an exception unless <tt>object.to_ary</tt> returns an \Array object. | |
*/ | |
static VALUE | |
rb_ary_s_try_convert(VALUE dummy, VALUE ary) | |
{ | |
return rb_check_array_type(ary); | |
} | |
/* | |
* call-seq: | |
* Array.new -> new_empty_array | |
* Array.new(array) -> new_array | |
* Array.new(size) -> new_array | |
* Array.new(size, default_value) -> new_array | |
* Array.new(size) {|index| ... } -> new_array | |
* | |
* Returns a new \Array. | |
* | |
* With no block and no arguments, returns a new empty \Array object. | |
* | |
* With no block and a single \Array argument +array+, | |
* returns a new \Array formed from +array+: | |
* a = Array.new([:foo, 'bar', 2]) | |
* a.class # => Array | |
* a # => [:foo, "bar", 2] | |
* | |
* With no block and a single \Integer argument +size+, | |
* returns a new \Array of the given size | |
* whose elements are all +nil+: | |
* a = Array.new(3) | |
* a # => [nil, nil, nil] | |
* | |
* With no block and arguments +size+ and +default_value+, | |
* returns an \Array of the given size; | |
* each element is that same +default_value+: | |
* a = Array.new(3, 'x') | |
* a # => ['x', 'x', 'x'] | |
* | |
* With a block and argument +size+, | |
* returns an \Array of the given size; | |
* the block is called with each successive integer +index+; | |
* the element for that +index+ is the return value from the block: | |
* a = Array.new(3) {|index| "Element #{index}" } | |
* a # => ["Element 0", "Element 1", "Element 2"] | |
* | |
* Raises ArgumentError if +size+ is negative. | |
* | |
* With a block and no argument, | |
* or a single argument +0+, | |
* ignores the block and returns a new empty \Array. | |
*/ | |
static VALUE | |
rb_ary_initialize(int argc, VALUE *argv, VALUE ary) | |
{ | |
long len; | |
VALUE size, val; | |
rb_ary_modify(ary); | |
if (argc == 0) { | |
if (ARY_OWNS_HEAP_P(ary) && ARY_HEAP_PTR(ary) != NULL) { | |
ary_heap_free(ary); | |
} | |
rb_ary_unshare_safe(ary); | |
FL_SET_EMBED(ary); | |
ARY_SET_EMBED_LEN(ary, 0); | |
if (rb_block_given_p()) { | |
rb_warning("given block not used"); | |
} | |
return ary; | |
} | |
rb_scan_args(argc, argv, "02", &size, &val); | |
if (argc == 1 && !FIXNUM_P(size)) { | |
val = rb_check_array_type(size); | |
if (!NIL_P(val)) { | |
rb_ary_replace(ary, val); | |
return ary; | |
} | |
} | |
len = NUM2LONG(size); | |
/* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */ | |
if (len < 0) { | |
rb_raise(rb_eArgError, "negative array size"); | |
} | |
if (len > ARY_MAX_SIZE) { | |
rb_raise(rb_eArgError, "array size too big"); | |
} | |
/* recheck after argument conversion */ | |
rb_ary_modify(ary); | |
ary_resize_capa(ary, len); | |
if (rb_block_given_p()) { | |
long i; | |
if (argc == 2) { | |
rb_warn("block supersedes default value argument"); | |
} | |
for (i=0; i<len; i++) { | |
rb_ary_store(ary, i, rb_yield(LONG2NUM(i))); | |
ARY_SET_LEN(ary, i + 1); | |
} | |
} | |
else { | |
ary_memfill(ary, 0, len, val); | |
ARY_SET_LEN(ary, len); | |
} | |
return ary; | |
} | |
/* | |
* Returns a new array populated with the given objects. | |
* | |
* Array.[]( 1, 'a', /^A/) # => [1, "a", /^A/] | |
* Array[ 1, 'a', /^A/ ] # => [1, "a", /^A/] | |
* [ 1, 'a', /^A/ ] # => [1, "a", /^A/] | |
*/ | |
static VALUE | |
rb_ary_s_create(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE ary = ary_new(klass, argc); | |
if (argc > 0 && argv) { | |
ary_memcpy(ary, 0, argc, argv); | |
ARY_SET_LEN(ary, argc); | |
} | |
return ary; | |
} | |
void | |
rb_ary_store(VALUE ary, long idx, VALUE val) | |
{ | |
long len = RARRAY_LEN(ary); | |
if (idx < 0) { | |
idx += len; | |
if (idx < 0) { | |
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", | |
idx - len, -len); | |
} | |
} | |
else if (idx >= ARY_MAX_SIZE) { | |
rb_raise(rb_eIndexError, "index %ld too big", idx); | |
} | |
rb_ary_modify(ary); | |
if (idx >= ARY_CAPA(ary)) { | |
ary_double_capa(ary, idx); | |
} | |
if (idx > len) { | |
ary_mem_clear(ary, len, idx - len + 1); | |
} | |
if (idx >= len) { | |
ARY_SET_LEN(ary, idx + 1); | |
} | |
ARY_SET(ary, idx, val); | |
} | |
static VALUE | |
ary_make_partial(VALUE ary, VALUE klass, long offset, long len) | |
{ | |
assert(offset >= 0); | |
assert(len >= 0); | |
assert(offset+len <= RARRAY_LEN(ary)); | |
if (len <= RARRAY_EMBED_LEN_MAX) { | |
VALUE result = ary_alloc(klass); | |
ary_memcpy(result, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary) + offset); | |
ARY_SET_EMBED_LEN(result, len); | |
return result; | |
} | |
else { | |
VALUE shared, result = ary_alloc(klass); | |
FL_UNSET_EMBED(result); | |
shared = ary_make_shared(ary); | |
ARY_SET_PTR(result, RARRAY_CONST_PTR_TRANSIENT(ary)); | |
ARY_SET_LEN(result, RARRAY_LEN(ary)); | |
rb_ary_set_shared(result, shared); | |
ARY_INCREASE_PTR(result, offset); | |
ARY_SET_LEN(result, len); | |
ary_verify(shared); | |
ary_verify(result); | |
return result; | |
} | |
} | |
static VALUE | |
ary_make_partial_step(VALUE ary, VALUE klass, long offset, long len, long step) | |
{ | |
assert(offset >= 0); | |
assert(len >= 0); | |
assert(offset+len <= RARRAY_LEN(ary)); | |
assert(step != 0); | |
const VALUE *values = RARRAY_CONST_PTR_TRANSIENT(ary); | |
const long orig_len = len; | |
if ((step > 0 && step >= len) || (step < 0 && (step < -len))) { | |
VALUE result = ary_new(klass, 1); | |
VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result); | |
RB_OBJ_WRITE(result, ptr, values[offset]); | |
ARY_SET_EMBED_LEN(result, 1); | |
return result; | |
} | |
long ustep = (step < 0) ? -step : step; | |
len = (len + ustep - 1) / ustep; | |
long i; | |
long j = offset + ((step > 0) ? 0 : (orig_len - 1)); | |
VALUE result = ary_new(klass, len); | |
if (len <= RARRAY_EMBED_LEN_MAX) { | |
VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result); | |
for (i = 0; i < len; ++i) { | |
RB_OBJ_WRITE(result, ptr+i, values[j]); | |
j += step; | |
} | |
ARY_SET_EMBED_LEN(result, len); | |
} | |
else { | |
RARRAY_PTR_USE_TRANSIENT(result, ptr, { | |
for (i = 0; i < len; ++i) { | |
RB_OBJ_WRITE(result, ptr+i, values[j]); | |
j += step; | |
} | |
}); | |
ARY_SET_LEN(result, len); | |
} | |
return result; | |
} | |
static VALUE | |
ary_make_shared_copy(VALUE ary) | |
{ | |
return ary_make_partial(ary, rb_cArray, 0, RARRAY_LEN(ary)); | |
} | |
enum ary_take_pos_flags | |
{ | |
ARY_TAKE_FIRST = 0, | |
ARY_TAKE_LAST = 1 | |
}; | |
static VALUE | |
ary_take_first_or_last(int argc, const VALUE *argv, VALUE ary, enum ary_take_pos_flags last) | |
{ | |
long n; | |
long len; | |
long offset = 0; | |
argc = rb_check_arity(argc, 0, 1); | |
/* the case optional argument is omitted should be handled in | |
* callers of this function. if another arity case is added, | |
* this arity check needs to rewrite. */ | |
RUBY_ASSERT_ALWAYS(argc == 1); | |
n = NUM2LONG(argv[0]); | |
len = RARRAY_LEN(ary); | |
if (n > len) { | |
n = len; | |
} | |
else if (n < 0) { | |
rb_raise(rb_eArgError, "negative array size"); | |
} | |
if (last) { | |
offset = len - n; | |
} | |
return ary_make_partial(ary, rb_cArray, offset, n); | |
} | |
/* | |
* call-seq: | |
* array << object -> self | |
* | |
* Appends +object+ to +self+; returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a << :baz # => [:foo, "bar", 2, :baz] | |
* | |
* Appends +object+ as one element, even if it is another \Array: | |
* a = [:foo, 'bar', 2] | |
* a1 = a << [3, 4] | |
* a1 # => [:foo, "bar", 2, [3, 4]] | |
*/ | |
VALUE | |
rb_ary_push(VALUE ary, VALUE item) | |
{ | |
long idx = RARRAY_LEN((ary_verify(ary), ary)); | |
VALUE target_ary = ary_ensure_room_for_push(ary, 1); | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
RB_OBJ_WRITE(target_ary, &ptr[idx], item); | |
}); | |
ARY_SET_LEN(ary, idx + 1); | |
ary_verify(ary); | |
return ary; | |
} | |
VALUE | |
rb_ary_cat(VALUE ary, const VALUE *argv, long len) | |
{ | |
long oldlen = RARRAY_LEN(ary); | |
VALUE target_ary = ary_ensure_room_for_push(ary, len); | |
ary_memcpy0(ary, oldlen, len, argv, target_ary); | |
ARY_SET_LEN(ary, oldlen + len); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.push(*objects) -> self | |
* | |
* Appends trailing elements. | |
* | |
* Appends each argument in +objects+ to +self+; returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.push(:baz, :bat) # => [:foo, "bar", 2, :baz, :bat] | |
* | |
* Appends each argument as one element, even if it is another \Array: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.push([:baz, :bat], [:bam, :bad]) | |
* a1 # => [:foo, "bar", 2, [:baz, :bat], [:bam, :bad]] | |
* | |
* Array#append is an alias for \Array#push. | |
* | |
* Related: #pop, #shift, #unshift. | |
*/ | |
static VALUE | |
rb_ary_push_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
return rb_ary_cat(ary, argv, argc); | |
} | |
VALUE | |
rb_ary_pop(VALUE ary) | |
{ | |
long n; | |
rb_ary_modify_check(ary); | |
n = RARRAY_LEN(ary); | |
if (n == 0) return Qnil; | |
if (ARY_OWNS_HEAP_P(ary) && | |
n * 3 < ARY_CAPA(ary) && | |
ARY_CAPA(ary) > ARY_DEFAULT_SIZE) | |
{ | |
ary_resize_capa(ary, n * 2); | |
} | |
--n; | |
ARY_SET_LEN(ary, n); | |
ary_verify(ary); | |
return RARRAY_AREF(ary, n); | |
} | |
/* | |
* call-seq: | |
* array.pop -> object or nil | |
* array.pop(n) -> new_array | |
* | |
* Removes and returns trailing elements. | |
* | |
* When no argument is given and +self+ is not empty, | |
* removes and returns the last element: | |
* a = [:foo, 'bar', 2] | |
* a.pop # => 2 | |
* a # => [:foo, "bar"] | |
* | |
* Returns +nil+ if the array is empty. | |
* | |
* When a non-negative \Integer argument +n+ is given and is in range, | |
* removes and returns the last +n+ elements in a new \Array: | |
* a = [:foo, 'bar', 2] | |
* a.pop(2) # => ["bar", 2] | |
* | |
* If +n+ is positive and out of range, | |
* removes and returns all elements: | |
* a = [:foo, 'bar', 2] | |
* a.pop(50) # => [:foo, "bar", 2] | |
* | |
* Related: #push, #shift, #unshift. | |
*/ | |
static VALUE | |
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE result; | |
if (argc == 0) { | |
return rb_ary_pop(ary); | |
} | |
rb_ary_modify_check(ary); | |
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); | |
ARY_INCREASE_LEN(ary, -RARRAY_LEN(result)); | |
ary_verify(ary); | |
return result; | |
} | |
VALUE | |
rb_ary_shift(VALUE ary) | |
{ | |
VALUE top; | |
long len = RARRAY_LEN(ary); | |
rb_ary_modify_check(ary); | |
if (len == 0) return Qnil; | |
top = RARRAY_AREF(ary, 0); | |
if (!ARY_SHARED_P(ary)) { | |
if (len < ARY_DEFAULT_SIZE) { | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr, ptr+1, VALUE, len-1); | |
}); /* WB: no new reference */ | |
ARY_INCREASE_LEN(ary, -1); | |
ary_verify(ary); | |
return top; | |
} | |
assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */ | |
ARY_SET(ary, 0, Qnil); | |
ary_make_shared(ary); | |
} | |
else if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) { | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, ptr[0] = Qnil); | |
} | |
ARY_INCREASE_PTR(ary, 1); /* shift ptr */ | |
ARY_INCREASE_LEN(ary, -1); | |
ary_verify(ary); | |
return top; | |
} | |
/* | |
* call-seq: | |
* array.shift -> object or nil | |
* array.shift(n) -> new_array | |
* | |
* Removes and returns leading elements. | |
* | |
* When no argument is given, removes and returns the first element: | |
* a = [:foo, 'bar', 2] | |
* a.shift # => :foo | |
* a # => ['bar', 2] | |
* | |
* Returns +nil+ if +self+ is empty. | |
* | |
* When positive \Integer argument +n+ is given, removes the first +n+ elements; | |
* returns those elements in a new \Array: | |
* a = [:foo, 'bar', 2] | |
* a.shift(2) # => [:foo, 'bar'] | |
* a # => [2] | |
* | |
* If +n+ is as large as or larger than <tt>self.length</tt>, | |
* removes all elements; returns those elements in a new \Array: | |
* a = [:foo, 'bar', 2] | |
* a.shift(3) # => [:foo, 'bar', 2] | |
* | |
* If +n+ is zero, returns a new empty \Array; +self+ is unmodified. | |
* | |
* Related: #push, #pop, #unshift. | |
*/ | |
static VALUE | |
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE result; | |
long n; | |
if (argc == 0) { | |
return rb_ary_shift(ary); | |
} | |
rb_ary_modify_check(ary); | |
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); | |
n = RARRAY_LEN(result); | |
rb_ary_behead(ary,n); | |
return result; | |
} | |
static VALUE | |
behead_shared(VALUE ary, long n) | |
{ | |
assert(ARY_SHARED_P(ary)); | |
rb_ary_modify_check(ary); | |
if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) { | |
ary_mem_clear(ary, 0, n); | |
} | |
ARY_INCREASE_PTR(ary, n); | |
ARY_INCREASE_LEN(ary, -n); | |
ary_verify(ary); | |
return ary; | |
} | |
static VALUE | |
behead_transient(VALUE ary, long n) | |
{ | |
rb_ary_modify_check(ary); | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr, ptr+n, VALUE, RARRAY_LEN(ary)-n); | |
}); /* WB: no new reference */ | |
ARY_INCREASE_LEN(ary, -n); | |
ary_verify(ary); | |
return ary; | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_ary_behead(VALUE ary, long n) | |
{ | |
if (n <= 0) { | |
return ary; | |
} | |
else if (ARY_SHARED_P(ary)) { | |
return behead_shared(ary, n); | |
} | |
else if (RARRAY_LEN(ary) >= ARY_DEFAULT_SIZE) { | |
ary_make_shared(ary); | |
return behead_shared(ary, n); | |
} | |
else { | |
return behead_transient(ary, n); | |
} | |
} | |
static VALUE | |
make_room_for_unshift(VALUE ary, const VALUE *head, VALUE *sharedp, int argc, long capa, long len) | |
{ | |
if (head - sharedp < argc) { | |
long room = capa - len - argc; | |
room -= room >> 4; | |
MEMMOVE((VALUE *)sharedp + argc + room, head, VALUE, len); | |
head = sharedp + argc + room; | |
} | |
ARY_SET_PTR(ary, head - argc); | |
assert(ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))); | |
ary_verify(ary); | |
return ARY_SHARED_ROOT(ary); | |
} | |
static VALUE | |
ary_modify_for_unshift(VALUE ary, int argc) | |
{ | |
long len = RARRAY_LEN(ary); | |
long new_len = len + argc; | |
long capa; | |
const VALUE *head, *sharedp; | |
rb_ary_modify(ary); | |
capa = ARY_CAPA(ary); | |
if (capa - (capa >> 6) <= new_len) { | |
ary_double_capa(ary, new_len); | |
} | |
/* use shared array for big "queues" */ | |
if (new_len > ARY_DEFAULT_SIZE * 4) { | |
ary_verify(ary); | |
/* make a room for unshifted items */ | |
capa = ARY_CAPA(ary); | |
ary_make_shared(ary); | |
head = sharedp = RARRAY_CONST_PTR_TRANSIENT(ary); | |
return make_room_for_unshift(ary, head, (void *)sharedp, argc, capa, len); | |
} | |
else { | |
/* sliding items */ | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr + argc, ptr, VALUE, len); | |
}); | |
ary_verify(ary); | |
return ary; | |
} | |
} | |
static VALUE | |
ary_ensure_room_for_unshift(VALUE ary, int argc) | |
{ | |
long len = RARRAY_LEN(ary); | |
long new_len = len + argc; | |
if (len > ARY_MAX_SIZE - argc) { | |
rb_raise(rb_eIndexError, "index %ld too big", new_len); | |
} | |
else if (! ARY_SHARED_P(ary)) { | |
return ary_modify_for_unshift(ary, argc); | |
} | |
else { | |
VALUE shared_root = ARY_SHARED_ROOT(ary); | |
long capa = RARRAY_LEN(shared_root); | |
if (! ARY_SHARED_ROOT_OCCUPIED(shared_root)) { | |
return ary_modify_for_unshift(ary, argc); | |
} | |
else if (new_len > capa) { | |
return ary_modify_for_unshift(ary, argc); | |
} | |
else { | |
const VALUE * head = RARRAY_CONST_PTR_TRANSIENT(ary); | |
void *sharedp = (void *)RARRAY_CONST_PTR_TRANSIENT(shared_root); | |
rb_ary_modify_check(ary); | |
return make_room_for_unshift(ary, head, sharedp, argc, capa, len); | |
} | |
} | |
} | |
/* | |
* call-seq: | |
* array.unshift(*objects) -> self | |
* | |
* Prepends the given +objects+ to +self+: | |
* a = [:foo, 'bar', 2] | |
* a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2] | |
* | |
* Array#prepend is an alias for Array#unshift. | |
* | |
* Related: #push, #pop, #shift. | |
*/ | |
static VALUE | |
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
VALUE target_ary; | |
if (argc == 0) { | |
rb_ary_modify_check(ary); | |
return ary; | |
} | |
target_ary = ary_ensure_room_for_unshift(ary, argc); | |
ary_memcpy0(ary, 0, argc, argv, target_ary); | |
ARY_SET_LEN(ary, len + argc); | |
return ary; | |
} | |
VALUE | |
rb_ary_unshift(VALUE ary, VALUE item) | |
{ | |
return rb_ary_unshift_m(1,&item,ary); | |
} | |
/* faster version - use this if you don't need to treat negative offset */ | |
static inline VALUE | |
rb_ary_elt(VALUE ary, long offset) | |
{ | |
long len = RARRAY_LEN(ary); | |
if (len == 0) return Qnil; | |
if (offset < 0 || len <= offset) { | |
return Qnil; | |
} | |
return RARRAY_AREF(ary, offset); | |
} | |
VALUE | |
rb_ary_entry(VALUE ary, long offset) | |
{ | |
return rb_ary_entry_internal(ary, offset); | |
} | |
VALUE | |
rb_ary_subseq_step(VALUE ary, long beg, long len, long step) | |
{ | |
VALUE klass; | |
long alen = RARRAY_LEN(ary); | |
if (beg > alen) return Qnil; | |
if (beg < 0 || len < 0) return Qnil; | |
if (alen < len || alen < beg + len) { | |
len = alen - beg; | |
} | |
klass = rb_cArray; | |
if (len == 0) return ary_new(klass, 0); | |
if (step == 0) | |
rb_raise(rb_eArgError, "slice step cannot be zero"); | |
if (step == 1) | |
return ary_make_partial(ary, klass, beg, len); | |
else | |
return ary_make_partial_step(ary, klass, beg, len, step); | |
} | |
VALUE | |
rb_ary_subseq(VALUE ary, long beg, long len) | |
{ | |
return rb_ary_subseq_step(ary, beg, len, 1); | |
} | |
static VALUE rb_ary_aref2(VALUE ary, VALUE b, VALUE e); | |
/* | |
* call-seq: | |
* array[index] -> object or nil | |
* array[start, length] -> object or nil | |
* array[range] -> object or nil | |
* array[aseq] -> object or nil | |
* array.slice(index) -> object or nil | |
* array.slice(start, length) -> object or nil | |
* array.slice(range) -> object or nil | |
* array.slice(aseq) -> object or nil | |
* | |
* Returns elements from +self+; does not modify +self+. | |
* | |
* When a single \Integer argument +index+ is given, returns the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a[0] # => :foo | |
* a[2] # => 2 | |
* a # => [:foo, "bar", 2] | |
* | |
* If +index+ is negative, counts relative to the end of +self+: | |
* a = [:foo, 'bar', 2] | |
* a[-1] # => 2 | |
* a[-2] # => "bar" | |
* | |
* If +index+ is out of range, returns +nil+. | |
* | |
* When two \Integer arguments +start+ and +length+ are given, | |
* returns a new \Array of size +length+ containing successive elements beginning at offset +start+: | |
* a = [:foo, 'bar', 2] | |
* a[0, 2] # => [:foo, "bar"] | |
* a[1, 2] # => ["bar", 2] | |
* | |
* If <tt>start + length</tt> is greater than <tt>self.length</tt>, | |
* returns all elements from offset +start+ to the end: | |
* a = [:foo, 'bar', 2] | |
* a[0, 4] # => [:foo, "bar", 2] | |
* a[1, 3] # => ["bar", 2] | |
* a[2, 2] # => [2] | |
* | |
* If <tt>start == self.size</tt> and <tt>length >= 0</tt>, | |
* returns a new empty \Array. | |
* | |
* If +length+ is negative, returns +nil+. | |
* | |
* When a single \Range argument +range+ is given, | |
* treats <tt>range.min</tt> as +start+ above | |
* and <tt>range.size</tt> as +length+ above: | |
* a = [:foo, 'bar', 2] | |
* a[0..1] # => [:foo, "bar"] | |
* a[1..2] # => ["bar", 2] | |
* | |
* Special case: If <tt>range.start == a.size</tt>, returns a new empty \Array. | |
* | |
* If <tt>range.end</tt> is negative, calculates the end index from the end: | |
* a = [:foo, 'bar', 2] | |
* a[0..-1] # => [:foo, "bar", 2] | |
* a[0..-2] # => [:foo, "bar"] | |
* a[0..-3] # => [:foo] | |
* | |
* If <tt>range.start</tt> is negative, calculates the start index from the end: | |
* a = [:foo, 'bar', 2] | |
* a[-1..2] # => [2] | |
* a[-2..2] # => ["bar", 2] | |
* a[-3..2] # => [:foo, "bar", 2] | |
* | |
* If <tt>range.start</tt> is larger than the array size, returns +nil+. | |
* a = [:foo, 'bar', 2] | |
* a[4..1] # => nil | |
* a[4..0] # => nil | |
* a[4..-1] # => nil | |
* | |
* When a single Enumerator::ArithmeticSequence argument +aseq+ is given, | |
* returns an Array of elements corresponding to the indexes produced by | |
* the sequence. | |
* a = ['--', 'data1', '--', 'data2', '--', 'data3'] | |
* a[(1..).step(2)] # => ["data1", "data2", "data3"] | |
* | |
* Unlike slicing with range, if the start or the end of the arithmetic sequence | |
* is larger than array size, throws RangeError. | |
* a = ['--', 'data1', '--', 'data2', '--', 'data3'] | |
* a[(1..11).step(2)] | |
* # RangeError (((1..11).step(2)) out of range) | |
* a[(7..).step(2)] | |
* # RangeError (((7..).step(2)) out of range) | |
* | |
* If given a single argument, and its type is not one of the listed, tries to | |
* convert it to Integer, and raises if it is impossible: | |
* a = [:foo, 'bar', 2] | |
* # Raises TypeError (no implicit conversion of Symbol into Integer): | |
* a[:foo] | |
* | |
* Array#slice is an alias for Array#[]. | |
*/ | |
VALUE | |
rb_ary_aref(int argc, const VALUE *argv, VALUE ary) | |
{ | |
rb_check_arity(argc, 1, 2); | |
if (argc == 2) { | |
return rb_ary_aref2(ary, argv[0], argv[1]); | |
} | |
return rb_ary_aref1(ary, argv[0]); | |
} | |
static VALUE | |
rb_ary_aref2(VALUE ary, VALUE b, VALUE e) | |
{ | |
long beg = NUM2LONG(b); | |
long len = NUM2LONG(e); | |
if (beg < 0) { | |
beg += RARRAY_LEN(ary); | |
} | |
return rb_ary_subseq(ary, beg, len); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_ary_aref1(VALUE ary, VALUE arg) | |
{ | |
long beg, len, step; | |
/* special case - speeding up */ | |
if (FIXNUM_P(arg)) { | |
return rb_ary_entry(ary, FIX2LONG(arg)); | |
} | |
/* check if idx is Range or ArithmeticSequence */ | |
switch (rb_arithmetic_sequence_beg_len_step(arg, &beg, &len, &step, RARRAY_LEN(ary), 0)) { | |
case Qfalse: | |
break; | |
case Qnil: | |
return Qnil; | |
default: | |
return rb_ary_subseq_step(ary, beg, len, step); | |
} | |
return rb_ary_entry(ary, NUM2LONG(arg)); | |
} | |
/* | |
* call-seq: | |
* array.at(index) -> object | |
* | |
* Returns the element at \Integer offset +index+; does not modify +self+. | |
* a = [:foo, 'bar', 2] | |
* a.at(0) # => :foo | |
* a.at(2) # => 2 | |
*/ | |
VALUE | |
rb_ary_at(VALUE ary, VALUE pos) | |
{ | |
return rb_ary_entry(ary, NUM2LONG(pos)); | |
} | |
/* | |
* call-seq: | |
* array.first -> object or nil | |
* array.first(n) -> new_array | |
* | |
* Returns elements from +self+; does not modify +self+. | |
* | |
* When no argument is given, returns the first element: | |
* a = [:foo, 'bar', 2] | |
* a.first # => :foo | |
* a # => [:foo, "bar", 2] | |
* | |
* If +self+ is empty, returns +nil+. | |
* | |
* When non-negative \Integer argument +n+ is given, | |
* returns the first +n+ elements in a new \Array: | |
* a = [:foo, 'bar', 2] | |
* a.first(2) # => [:foo, "bar"] | |
* | |
* If <tt>n >= array.size</tt>, returns all elements: | |
* a = [:foo, 'bar', 2] | |
* a.first(50) # => [:foo, "bar", 2] | |
* | |
* If <tt>n == 0</tt> returns an new empty \Array: | |
* a = [:foo, 'bar', 2] | |
* a.first(0) # [] | |
* | |
* Related: #last. | |
*/ | |
static VALUE | |
rb_ary_first(int argc, VALUE *argv, VALUE ary) | |
{ | |
if (argc == 0) { | |
if (RARRAY_LEN(ary) == 0) return Qnil; | |
return RARRAY_AREF(ary, 0); | |
} | |
else { | |
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); | |
} | |
} | |
/* | |
* call-seq: | |
* array.last -> object or nil | |
* array.last(n) -> new_array | |
* | |
* Returns elements from +self+; +self+ is not modified. | |
* | |
* When no argument is given, returns the last element: | |
* a = [:foo, 'bar', 2] | |
* a.last # => 2 | |
* a # => [:foo, "bar", 2] | |
* | |
* If +self+ is empty, returns +nil+. | |
* | |
* When non-negative \Innteger argument +n+ is given, | |
* returns the last +n+ elements in a new \Array: | |
* a = [:foo, 'bar', 2] | |
* a.last(2) # => ["bar", 2] | |
* | |
* If <tt>n >= array.size</tt>, returns all elements: | |
* a = [:foo, 'bar', 2] | |
* a.last(50) # => [:foo, "bar", 2] | |
* | |
* If <tt>n == 0</tt>, returns an new empty \Array: | |
* a = [:foo, 'bar', 2] | |
* a.last(0) # [] | |
* | |
* Related: #first. | |
*/ | |
VALUE | |
rb_ary_last(int argc, const VALUE *argv, VALUE ary) | |
{ | |
if (argc == 0) { | |
long len = RARRAY_LEN(ary); | |
if (len == 0) return Qnil; | |
return RARRAY_AREF(ary, len-1); | |
} | |
else { | |
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); | |
} | |
} | |
/* | |
* call-seq: | |
* array.fetch(index) -> element | |
* array.fetch(index, default_value) -> element | |
* array.fetch(index) {|index| ... } -> element | |
* | |
* Returns the element at offset +index+. | |
* | |
* With the single \Integer argument +index+, | |
* returns the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a.fetch(1) # => "bar" | |
* | |
* If +index+ is negative, counts from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a.fetch(-1) # => 2 | |
* a.fetch(-2) # => "bar" | |
* | |
* With arguments +index+ and +default_value+, | |
* returns the element at offset +index+ if index is in range, | |
* otherwise returns +default_value+: | |
* a = [:foo, 'bar', 2] | |
* a.fetch(1, nil) # => "bar" | |
* | |
* With argument +index+ and a block, | |
* returns the element at offset +index+ if index is in range | |
* (and the block is not called); otherwise calls the block with index and returns its return value: | |
* | |
* a = [:foo, 'bar', 2] | |
* a.fetch(1) {|index| raise 'Cannot happen' } # => "bar" | |
* a.fetch(50) {|index| "Value for #{index}" } # => "Value for 50" | |
*/ | |
static VALUE | |
rb_ary_fetch(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE pos, ifnone; | |
long block_given; | |
long idx; | |
rb_scan_args(argc, argv, "11", &pos, &ifnone); | |
block_given = rb_block_given_p(); | |
if (block_given && argc == 2) { | |
rb_warn("block supersedes default value argument"); | |
} | |
idx = NUM2LONG(pos); | |
if (idx < 0) { | |
idx += RARRAY_LEN(ary); | |
} | |
if (idx < 0 || RARRAY_LEN(ary) <= idx) { | |
if (block_given) return rb_yield(pos); | |
if (argc == 1) { | |
rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld", | |
idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary)); | |
} | |
return ifnone; | |
} | |
return RARRAY_AREF(ary, idx); | |
} | |
/* | |
* call-seq: | |
* array.index(object) -> integer or nil | |
* array.index {|element| ... } -> integer or nil | |
* array.index -> new_enumerator | |
* | |
* Returns the index of a specified element. | |
* | |
* When argument +object+ is given but no block, | |
* returns the index of the first element +element+ | |
* for which <tt>object == element</tt>: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a.index('bar') # => 1 | |
* | |
* Returns +nil+ if no such element found. | |
* | |
* When both argument +object+ and a block are given, | |
* calls the block with each successive element; | |
* returns the index of the first element for which the block returns a truthy value: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a.index {|element| element == 'bar' } # => 1 | |
* | |
* Returns +nil+ if the block never returns a truthy value. | |
* | |
* When neither an argument nor a block is given, returns a new Enumerator: | |
* a = [:foo, 'bar', 2] | |
* e = a.index | |
* e # => #<Enumerator: [:foo, "bar", 2]:index> | |
* e.each {|element| element == 'bar' } # => 1 | |
* | |
* Array#find_index is an alias for Array#index. | |
* | |
* Related: #rindex. | |
*/ | |
static VALUE | |
rb_ary_index(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE val; | |
long i; | |
if (argc == 0) { | |
RETURN_ENUMERATOR(ary, 0, 0); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) { | |
return LONG2NUM(i); | |
} | |
} | |
return Qnil; | |
} | |
rb_check_arity(argc, 0, 1); | |
val = argv[0]; | |
if (rb_block_given_p()) | |
rb_warn("given block not used"); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
VALUE e = RARRAY_AREF(ary, i); | |
if (rb_equal(e, val)) { | |
return LONG2NUM(i); | |
} | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* array.rindex(object) -> integer or nil | |
* array.rindex {|element| ... } -> integer or nil | |
* array.rindex -> new_enumerator | |
* | |
* Returns the index of the last element for which <tt>object == element</tt>. | |
* | |
* When argument +object+ is given but no block, returns the index of the last such element found: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a.rindex('bar') # => 3 | |
* | |
* Returns +nil+ if no such object found. | |
* | |
* When a block is given but no argument, calls the block with each successive element; | |
* returns the index of the last element for which the block returns a truthy value: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a.rindex {|element| element == 'bar' } # => 3 | |
* | |
* Returns +nil+ if the block never returns a truthy value. | |
* | |
* When neither an argument nor a block is given, returns a new \Enumerator: | |
* | |
* a = [:foo, 'bar', 2, 'bar'] | |
* e = a.rindex | |
* e # => #<Enumerator: [:foo, "bar", 2, "bar"]:rindex> | |
* e.each {|element| element == 'bar' } # => 3 | |
* | |
* Related: #index. | |
*/ | |
static VALUE | |
rb_ary_rindex(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE val; | |
long i = RARRAY_LEN(ary), len; | |
if (argc == 0) { | |
RETURN_ENUMERATOR(ary, 0, 0); | |
while (i--) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) | |
return LONG2NUM(i); | |
if (i > (len = RARRAY_LEN(ary))) { | |
i = len; | |
} | |
} | |
return Qnil; | |
} | |
rb_check_arity(argc, 0, 1); | |
val = argv[0]; | |
if (rb_block_given_p()) | |
rb_warn("given block not used"); | |
while (i--) { | |
VALUE e = RARRAY_AREF(ary, i); | |
if (rb_equal(e, val)) { | |
return LONG2NUM(i); | |
} | |
if (i > RARRAY_LEN(ary)) { | |
break; | |
} | |
} | |
return Qnil; | |
} | |
VALUE | |
rb_ary_to_ary(VALUE obj) | |
{ | |
VALUE tmp = rb_check_array_type(obj); | |
if (!NIL_P(tmp)) return tmp; | |
return rb_ary_new3(1, obj); | |
} | |
static void | |
rb_ary_splice(VALUE ary, long beg, long len, const VALUE *rptr, long rlen) | |
{ | |
long olen; | |
long rofs; | |
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len); | |
olen = RARRAY_LEN(ary); | |
if (beg < 0) { | |
beg += olen; | |
if (beg < 0) { | |
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", | |
beg - olen, -olen); | |
} | |
} | |
if (olen < len || olen < beg + len) { | |
len = olen - beg; | |
} | |
{ | |
const VALUE *optr = RARRAY_CONST_PTR_TRANSIENT(ary); | |
rofs = (rptr >= optr && rptr < optr + olen) ? rptr - optr : -1; | |
} | |
if (beg >= olen) { | |
VALUE target_ary; | |
if (beg > ARY_MAX_SIZE - rlen) { | |
rb_raise(rb_eIndexError, "index %ld too big", beg); | |
} | |
target_ary = ary_ensure_room_for_push(ary, rlen-len); /* len is 0 or negative */ | |
len = beg + rlen; | |
ary_mem_clear(ary, olen, beg - olen); | |
if (rlen > 0) { | |
if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs; | |
ary_memcpy0(ary, beg, rlen, rptr, target_ary); | |
} | |
ARY_SET_LEN(ary, len); | |
} | |
else { | |
long alen; | |
if (olen - len > ARY_MAX_SIZE - rlen) { | |
rb_raise(rb_eIndexError, "index %ld too big", olen + rlen - len); | |
} | |
rb_ary_modify(ary); | |
alen = olen + rlen - len; | |
if (alen >= ARY_CAPA(ary)) { | |
ary_double_capa(ary, alen); | |
} | |
if (len != rlen) { | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, | |
MEMMOVE(ptr + beg + rlen, ptr + beg + len, | |
VALUE, olen - (beg + len))); | |
ARY_SET_LEN(ary, alen); | |
} | |
if (rlen > 0) { | |
if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs; | |
/* give up wb-protected ary */ | |
RB_OBJ_WB_UNPROTECT_FOR(ARRAY, ary); | |
/* do not use RARRAY_PTR() because it can causes GC. | |
* ary can contain T_NONE object because it is not cleared. | |
*/ | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, | |
MEMMOVE(ptr + beg, rptr, VALUE, rlen)); | |
} | |
} | |
} | |
void | |
rb_ary_set_len(VALUE ary, long len) | |
{ | |
long capa; | |
rb_ary_modify_check(ary); | |
if (ARY_SHARED_P(ary)) { | |
rb_raise(rb_eRuntimeError, "can't set length of shared "); | |
} | |
if (len > (capa = (long)ARY_CAPA(ary))) { | |
rb_bug("probable buffer overflow: %ld for %ld", len, capa); | |
} | |
ARY_SET_LEN(ary, len); | |
} | |
/*! | |
* expands or shrinks \a ary to \a len elements. | |
* expanded region will be filled with Qnil. | |
* \param ary an array | |
* \param len new size | |
* \return \a ary | |
* \post the size of \a ary is \a len. | |
*/ | |
VALUE | |
rb_ary_resize(VALUE ary, long len) | |
{ | |
long olen; | |
rb_ary_modify(ary); | |
olen = RARRAY_LEN(ary); | |
if (len == olen) return ary; | |
if (len > ARY_MAX_SIZE) { | |
rb_raise(rb_eIndexError, "index %ld too big", len); | |
} | |
if (len > olen) { | |
if (len >= ARY_CAPA(ary)) { | |
ary_double_capa(ary, len); | |
} | |
ary_mem_clear(ary, olen, len - olen); | |
ARY_SET_LEN(ary, len); | |
} | |
else if (ARY_EMBED_P(ary)) { | |
ARY_SET_EMBED_LEN(ary, len); | |
} | |
else if (len <= RARRAY_EMBED_LEN_MAX) { | |
VALUE tmp[RARRAY_EMBED_LEN_MAX]; | |
MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len); | |
ary_discard(ary); | |
MEMCPY((VALUE *)ARY_EMBED_PTR(ary), tmp, VALUE, len); /* WB: no new reference */ | |
ARY_SET_EMBED_LEN(ary, len); | |
} | |
else { | |
if (olen > len + ARY_DEFAULT_SIZE) { | |
size_t new_capa = ary_heap_realloc(ary, len); | |
ARY_SET_CAPA(ary, new_capa); | |
} | |
ARY_SET_HEAP_LEN(ary, len); | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
static VALUE | |
ary_aset_by_rb_ary_store(VALUE ary, long key, VALUE val) | |
{ | |
rb_ary_store(ary, key, val); | |
return val; | |
} | |
static VALUE | |
ary_aset_by_rb_ary_splice(VALUE ary, long beg, long len, VALUE val) | |
{ | |
VALUE rpl = rb_ary_to_ary(val); | |
rb_ary_splice(ary, beg, len, RARRAY_CONST_PTR_TRANSIENT(rpl), RARRAY_LEN(rpl)); | |
RB_GC_GUARD(rpl); | |
return val; | |
} | |
/* | |
* call-seq: | |
* array[index] = object -> object | |
* array[start, length] = object -> object | |
* array[range] = object -> object | |
* | |
* Assigns elements in +self+; returns the given +object+. | |
* | |
* When \Integer argument +index+ is given, assigns +object+ to an element in +self+. | |
* | |
* If +index+ is non-negative, assigns +object+ the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a[0] = 'foo' # => "foo" | |
* a # => ["foo", "bar", 2] | |
* | |
* If +index+ is greater than <tt>self.length</tt>, extends the array: | |
* a = [:foo, 'bar', 2] | |
* a[7] = 'foo' # => "foo" | |
* a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"] | |
* | |
* If +index+ is negative, counts backwards from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a[-1] = 'two' # => "two" | |
* a # => [:foo, "bar", "two"] | |
* | |
* When \Integer arguments +start+ and +length+ are given and +object+ is not an \Array, | |
* removes <tt>length - 1</tt> elements beginning at offset +start+, | |
* and assigns +object+ at offset +start+: | |
* a = [:foo, 'bar', 2] | |
* a[0, 2] = 'foo' # => "foo" | |
* a # => ["foo", 2] | |
* | |
* If +start+ is negative, counts backwards from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a[-2, 2] = 'foo' # => "foo" | |
* a # => [:foo, "foo"] | |
* | |
* If +start+ is non-negative and outside the array (<tt> >= self.size</tt>), | |
* extends the array with +nil+, assigns +object+ at offset +start+, | |
* and ignores +length+: | |
* a = [:foo, 'bar', 2] | |
* a[6, 50] = 'foo' # => "foo" | |
* a # => [:foo, "bar", 2, nil, nil, nil, "foo"] | |
* | |
* If +length+ is zero, shifts elements at and following offset +start+ | |
* and assigns +object+ at offset +start+: | |
* a = [:foo, 'bar', 2] | |
* a[1, 0] = 'foo' # => "foo" | |
* a # => [:foo, "foo", "bar", 2] | |
* | |
* If +length+ is too large for the existing array, does not extend the array: | |
* a = [:foo, 'bar', 2] | |
* a[1, 5] = 'foo' # => "foo" | |
* a # => [:foo, "foo"] | |
* | |
* When \Range argument +range+ is given and +object+ is an \Array, | |
* removes <tt>length - 1</tt> elements beginning at offset +start+, | |
* and assigns +object+ at offset +start+: | |
* a = [:foo, 'bar', 2] | |
* a[0..1] = 'foo' # => "foo" | |
* a # => ["foo", 2] | |
* | |
* if <tt>range.begin</tt> is negative, counts backwards from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a[-2..2] = 'foo' # => "foo" | |
* a # => [:foo, "foo"] | |
* | |
* If the array length is less than <tt>range.begin</tt>, | |
* assigns +object+ at offset <tt>range.begin</tt>, and ignores +length+: | |
* a = [:foo, 'bar', 2] | |
* a[6..50] = 'foo' # => "foo" | |
* a # => [:foo, "bar", 2, nil, nil, nil, "foo"] | |
* | |
* If <tt>range.end</tt> is zero, shifts elements at and following offset +start+ | |
* and assigns +object+ at offset +start+: | |
* a = [:foo, 'bar', 2] | |
* a[1..0] = 'foo' # => "foo" | |
* a # => [:foo, "foo", "bar", 2] | |
* | |
* If <tt>range.end</tt> is negative, assigns +object+ at offset +start+, | |
* retains <tt>range.end.abs -1</tt> elements past that, and removes those beyond: | |
* a = [:foo, 'bar', 2] | |
* a[1..-1] = 'foo' # => "foo" | |
* a # => [:foo, "foo"] | |
* a = [:foo, 'bar', 2] | |
* a[1..-2] = 'foo' # => "foo" | |
* a # => [:foo, "foo", 2] | |
* a = [:foo, 'bar', 2] | |
* a[1..-3] = 'foo' # => "foo" | |
* a # => [:foo, "foo", "bar", 2] | |
* a = [:foo, 'bar', 2] | |
* | |
* If <tt>range.end</tt> is too large for the existing array, | |
* replaces array elements, but does not extend the array with +nil+ values: | |
* a = [:foo, 'bar', 2] | |
* a[1..5] = 'foo' # => "foo" | |
* a # => [:foo, "foo"] | |
*/ | |
static VALUE | |
rb_ary_aset(int argc, VALUE *argv, VALUE ary) | |
{ | |
long offset, beg, len; | |
rb_check_arity(argc, 2, 3); | |
rb_ary_modify_check(ary); | |
if (argc == 3) { | |
beg = NUM2LONG(argv[0]); | |
len = NUM2LONG(argv[1]); | |
return ary_aset_by_rb_ary_splice(ary, beg, len, argv[2]); | |
} | |
if (FIXNUM_P(argv[0])) { | |
offset = FIX2LONG(argv[0]); | |
return ary_aset_by_rb_ary_store(ary, offset, argv[1]); | |
} | |
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { | |
/* check if idx is Range */ | |
return ary_aset_by_rb_ary_splice(ary, beg, len, argv[1]); | |
} | |
offset = NUM2LONG(argv[0]); | |
return ary_aset_by_rb_ary_store(ary, offset, argv[1]); | |
} | |
/* | |
* call-seq: | |
* array.insert(index, *objects) -> self | |
* | |
* Inserts given +objects+ before or after the element at \Integer index +offset+; | |
* returns +self+. | |
* | |
* When +index+ is non-negative, inserts all given +objects+ | |
* before the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a.insert(1, :bat, :bam) # => [:foo, :bat, :bam, "bar", 2] | |
* | |
* Extends the array if +index+ is beyond the array (<tt>index >= self.size</tt>): | |
* a = [:foo, 'bar', 2] | |
* a.insert(5, :bat, :bam) | |
* a # => [:foo, "bar", 2, nil, nil, :bat, :bam] | |
* | |
* Does nothing if no objects given: | |
* a = [:foo, 'bar', 2] | |
* a.insert(1) | |
* a.insert(50) | |
* a.insert(-50) | |
* a # => [:foo, "bar", 2] | |
* | |
* When +index+ is negative, inserts all given +objects+ | |
* _after_ the element at offset <tt>index+self.size</tt>: | |
* a = [:foo, 'bar', 2] | |
* a.insert(-2, :bat, :bam) | |
* a # => [:foo, "bar", :bat, :bam, 2] | |
*/ | |
static VALUE | |
rb_ary_insert(int argc, VALUE *argv, VALUE ary) | |
{ | |
long pos; | |
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); | |
rb_ary_modify_check(ary); | |
pos = NUM2LONG(argv[0]); | |
if (argc == 1) return ary; | |
if (pos == -1) { | |
pos = RARRAY_LEN(ary); | |
} | |
else if (pos < 0) { | |
long minpos = -RARRAY_LEN(ary) - 1; | |
if (pos < minpos) { | |
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", | |
pos, minpos); | |
} | |
pos++; | |
} | |
rb_ary_splice(ary, pos, 0, argv + 1, argc - 1); | |
return ary; | |
} | |
static VALUE | |
rb_ary_length(VALUE ary); | |
static VALUE | |
ary_enum_length(VALUE ary, VALUE args, VALUE eobj) | |
{ | |
return rb_ary_length(ary); | |
} | |
/* | |
* call-seq: | |
* array.each {|element| ... } -> self | |
* array.each -> Enumerator | |
* | |
* Iterates over array elements. | |
* | |
* When a block given, passes each successive array element to the block; | |
* returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.each {|element| puts "#{element.class} #{element}" } | |
* | |
* Output: | |
* Symbol foo | |
* String bar | |
* Integer 2 | |
* | |
* Allows the array to be modified during iteration: | |
* a = [:foo, 'bar', 2] | |
* a.each {|element| puts element; a.clear if element.to_s.start_with?('b') } | |
* | |
* Output: | |
* foo | |
* bar | |
* | |
* When no block given, returns a new \Enumerator: | |
* a = [:foo, 'bar', 2] | |
* e = a.each | |
* e # => #<Enumerator: [:foo, "bar", 2]:each> | |
* a1 = e.each {|element| puts "#{element.class} #{element}" } | |
* | |
* Output: | |
* Symbol foo | |
* String bar | |
* Integer 2 | |
* | |
* Related: #each_index, #reverse_each. | |
*/ | |
VALUE | |
rb_ary_each(VALUE ary) | |
{ | |
long i; | |
ary_verify(ary); | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
rb_yield(RARRAY_AREF(ary, i)); | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.each_index {|index| ... } -> self | |
* array.each_index -> Enumerator | |
* | |
* Iterates over array indexes. | |
* | |
* When a block given, passes each successive array index to the block; | |
* returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.each_index {|index| puts "#{index} #{a[index]}" } | |
* | |
* Output: | |
* 0 foo | |
* 1 bar | |
* 2 2 | |
* | |
* Allows the array to be modified during iteration: | |
* a = [:foo, 'bar', 2] | |
* a.each_index {|index| puts index; a.clear if index > 0 } | |
* | |
* Output: | |
* 0 | |
* 1 | |
* | |
* When no block given, returns a new \Enumerator: | |
* a = [:foo, 'bar', 2] | |
* e = a.each_index | |
* e # => #<Enumerator: [:foo, "bar", 2]:each_index> | |
* a1 = e.each {|index| puts "#{index} #{a[index]}"} | |
* | |
* Output: | |
* 0 foo | |
* 1 bar | |
* 2 2 | |
* | |
* Related: #each, #reverse_each. | |
*/ | |
static VALUE | |
rb_ary_each_index(VALUE ary) | |
{ | |
long i; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
rb_yield(LONG2NUM(i)); | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.reverse_each {|element| ... } -> self | |
* array.reverse_each -> Enumerator | |
* | |
* Iterates backwards over array elements. | |
* | |
* When a block given, passes, in reverse order, each element to the block; | |
* returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.reverse_each {|element| puts "#{element.class} #{element}" } | |
* | |
* Output: | |
* Integer 2 | |
* String bar | |
* Symbol foo | |
* | |
* Allows the array to be modified during iteration: | |
* a = [:foo, 'bar', 2] | |
* a.reverse_each {|element| puts element; a.clear if element.to_s.start_with?('b') } | |
* | |
* Output: | |
* 2 | |
* bar | |
* | |
* When no block given, returns a new \Enumerator: | |
* a = [:foo, 'bar', 2] | |
* e = a.reverse_each | |
* e # => #<Enumerator: [:foo, "bar", 2]:reverse_each> | |
* a1 = e.each {|element| puts "#{element.class} #{element}" } | |
* Output: | |
* Integer 2 | |
* String bar | |
* Symbol foo | |
* | |
* Related: #each, #each_index. | |
*/ | |
static VALUE | |
rb_ary_reverse_each(VALUE ary) | |
{ | |
long len; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
len = RARRAY_LEN(ary); | |
while (len--) { | |
long nlen; | |
rb_yield(RARRAY_AREF(ary, len)); | |
nlen = RARRAY_LEN(ary); | |
if (nlen < len) { | |
len = nlen; | |
} | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.length -> an_integer | |
* | |
* Returns the count of elements in +self+. | |
*/ | |
static VALUE | |
rb_ary_length(VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
return LONG2NUM(len); | |
} | |
/* | |
* call-seq: | |
* array.empty? -> true or false | |
* | |
* Returns +true+ if the count of elements in +self+ is zero, | |
* +false+ otherwise. | |
*/ | |
static VALUE | |
rb_ary_empty_p(VALUE ary) | |
{ | |
if (RARRAY_LEN(ary) == 0) | |
return Qtrue; | |
return Qfalse; | |
} | |
VALUE | |
rb_ary_dup(VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
VALUE dup = rb_ary_new2(len); | |
ary_memcpy(dup, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary)); | |
ARY_SET_LEN(dup, len); | |
ary_verify(ary); | |
ary_verify(dup); | |
return dup; | |
} | |
VALUE | |
rb_ary_resurrect(VALUE ary) | |
{ | |
return ary_make_partial(ary, rb_cArray, 0, RARRAY_LEN(ary)); | |
} | |
extern VALUE rb_output_fs; | |
static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first); | |
static VALUE | |
recursive_join(VALUE obj, VALUE argp, int recur) | |
{ | |
VALUE *arg = (VALUE *)argp; | |
VALUE ary = arg[0]; | |
VALUE sep = arg[1]; | |
VALUE result = arg[2]; | |
int *first = (int *)arg[3]; | |
if (recur) { | |
rb_raise(rb_eArgError, "recursive array join"); | |
} | |
else { | |
ary_join_1(obj, ary, sep, 0, result, first); | |
} | |
return Qnil; | |
} | |
static long | |
ary_join_0(VALUE ary, VALUE sep, long max, VALUE result) | |
{ | |
long i; | |
VALUE val; | |
if (max > 0) rb_enc_copy(result, RARRAY_AREF(ary, 0)); | |
for (i=0; i<max; i++) { | |
val = RARRAY_AREF(ary, i); | |
if (!RB_TYPE_P(val, T_STRING)) break; | |
if (i > 0 && !NIL_P(sep)) | |
rb_str_buf_append(result, sep); | |
rb_str_buf_append(result, val); | |
} | |
return i; | |
} | |
static void | |
ary_join_1_str(VALUE dst, VALUE src, int *first) | |
{ | |
rb_str_buf_append(dst, src); | |
if (*first) { | |
rb_enc_copy(dst, src); | |
*first = FALSE; | |
} | |
} | |
static void | |
ary_join_1_ary(VALUE obj, VALUE ary, VALUE sep, VALUE result, VALUE val, int *first) | |
{ | |
if (val == ary) { | |
rb_raise(rb_eArgError, "recursive array join"); | |
} | |
else { | |
VALUE args[4]; | |
*first = FALSE; | |
args[0] = val; | |
args[1] = sep; | |
args[2] = result; | |
args[3] = (VALUE)first; | |
rb_exec_recursive(recursive_join, obj, (VALUE)args); | |
} | |
} | |
static void | |
ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first) | |
{ | |
VALUE val, tmp; | |
for (; i<RARRAY_LEN(ary); i++) { | |
if (i > 0 && !NIL_P(sep)) | |
rb_str_buf_append(result, sep); | |
val = RARRAY_AREF(ary, i); | |
if (RB_TYPE_P(val, T_STRING)) { | |
ary_join_1_str(result, val, first); | |
} | |
else if (RB_TYPE_P(val, T_ARRAY)) { | |
ary_join_1_ary(val, ary, sep, result, val, first); | |
} | |
else if (!NIL_P(tmp = rb_check_string_type(val))) { | |
ary_join_1_str(result, tmp, first); | |
} | |
else if (!NIL_P(tmp = rb_check_array_type(val))) { | |
ary_join_1_ary(val, ary, sep, result, tmp, first); | |
} | |
else { | |
ary_join_1_str(result, rb_obj_as_string(val), first); | |
} | |
} | |
} | |
VALUE | |
rb_ary_join(VALUE ary, VALUE sep) | |
{ | |
long len = 1, i; | |
VALUE val, tmp, result; | |
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0); | |
if (!NIL_P(sep)) { | |
StringValue(sep); | |
len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1); | |
} | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
val = RARRAY_AREF(ary, i); | |
tmp = rb_check_string_type(val); | |
if (NIL_P(tmp) || tmp != val) { | |
int first; | |
long n = RARRAY_LEN(ary); | |
if (i > n) i = n; | |
result = rb_str_buf_new(len + (n-i)*10); | |
rb_enc_associate(result, rb_usascii_encoding()); | |
i = ary_join_0(ary, sep, i, result); | |
first = i == 0; | |
ary_join_1(ary, ary, sep, i, result, &first); | |
return result; | |
} | |
len += RSTRING_LEN(tmp); | |
} | |
result = rb_str_new(0, len); | |
rb_str_set_len(result, 0); | |
ary_join_0(ary, sep, RARRAY_LEN(ary), result); | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.join ->new_string | |
* array.join(separator = $,) -> new_string | |
* | |
* Returns the new \String formed by joining the array elements after conversion. | |
* For each element +element+ | |
* - Uses <tt>element.to_s</tt> if +element+ is not a <tt>kind_of?(Array)</tt>. | |
* - Uses recursive <tt>element.join(separator)</tt> if +element+ is a <tt>kind_of?(Array)</tt>. | |
* | |
* With no argument, joins using the output field separator, <tt>$,</tt>: | |
* a = [:foo, 'bar', 2] | |
* $, # => nil | |
* a.join # => "foobar2" | |
* | |
* With \string argument +separator+, joins using that separator: | |
* a = [:foo, 'bar', 2] | |
* a.join("\n") # => "foo\nbar\n2" | |
* | |
* Joins recursively for nested Arrays: | |
* a = [:foo, [:bar, [:baz, :bat]]] | |
* a.join # => "foobarbazbat" | |
*/ | |
static VALUE | |
rb_ary_join_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE sep; | |
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(sep = argv[0])) { | |
sep = rb_output_fs; | |
if (!NIL_P(sep)) { | |
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value"); | |
} | |
} | |
return rb_ary_join(ary, sep); | |
} | |
static VALUE | |
inspect_ary(VALUE ary, VALUE dummy, int recur) | |
{ | |
long i; | |
VALUE s, str; | |
if (recur) return rb_usascii_str_new_cstr("[...]"); | |
str = rb_str_buf_new2("["); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
s = rb_inspect(RARRAY_AREF(ary, i)); | |
if (i > 0) rb_str_buf_cat2(str, ", "); | |
else rb_enc_copy(str, s); | |
rb_str_buf_append(str, s); | |
} | |
rb_str_buf_cat2(str, "]"); | |
return str; | |
} | |
/* | |
* call-seq: | |
* array.inspect -> new_string | |
* | |
* Returns the new \String formed by calling method <tt>#inspect</tt> | |
* on each array element: | |
* a = [:foo, 'bar', 2] | |
* a.inspect # => "[:foo, \"bar\", 2]" | |
* | |
* Array#to_s is an alias for Array#inspect. | |
*/ | |
static VALUE | |
rb_ary_inspect(VALUE ary) | |
{ | |
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]"); | |
return rb_exec_recursive(inspect_ary, ary, 0); | |
} | |
VALUE | |
rb_ary_to_s(VALUE ary) | |
{ | |
return rb_ary_inspect(ary); | |
} | |
/* | |
* call-seq: | |
* to_a -> self or new_array | |
* | |
* When +self+ is an instance of \Array, returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.to_a # => [:foo, "bar", 2] | |
* | |
* Otherwise, returns a new \Array containing the elements of +self+: | |
* class MyArray < Array; end | |
* a = MyArray.new(['foo', 'bar', 'two']) | |
* a.instance_of?(Array) # => false | |
* a.kind_of?(Array) # => true | |
* a1 = a.to_a | |
* a1 # => ["foo", "bar", "two"] | |
* a1.class # => Array # Not MyArray | |
*/ | |
static VALUE | |
rb_ary_to_a(VALUE ary) | |
{ | |
if (rb_obj_class(ary) != rb_cArray) { | |
VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); | |
rb_ary_replace(dup, ary); | |
return dup; | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.to_h -> new_hash | |
* array.to_h {|item| ... } -> new_hash | |
* | |
* Returns a new \Hash formed from +self+. | |
* | |
* When a block is given, calls the block with each array element; | |
* the block must return a 2-element \Array whose two elements | |
* form a key-value pair in the returned \Hash: | |
* a = ['foo', :bar, 1, [2, 3], {baz: 4}] | |
* h = a.to_h {|item| [item, item] } | |
* h # => {"foo"=>"foo", :bar=>:bar, 1=>1, [2, 3]=>[2, 3], {:baz=>4}=>{:baz=>4}} | |
* | |
* When no block is given, +self+ must be an \Array of 2-element sub-arrays, | |
* each sub-array is formed into a key-value pair in the new \Hash: | |
* [].to_h # => {} | |
* a = [['foo', 'zero'], ['bar', 'one'], ['baz', 'two']] | |
* h = a.to_h | |
* h # => {"foo"=>"zero", "bar"=>"one", "baz"=>"two"} | |
*/ | |
static VALUE | |
rb_ary_to_h(VALUE ary) | |
{ | |
long i; | |
VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary)); | |
int block_given = rb_block_given_p(); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
const VALUE e = rb_ary_elt(ary, i); | |
const VALUE elt = block_given ? rb_yield_force_blockarg(e) : e; | |
const VALUE key_value_pair = rb_check_array_type(elt); | |
if (NIL_P(key_value_pair)) { | |
rb_raise(rb_eTypeError, "wrong element type %"PRIsVALUE" at %ld (expected array)", | |
rb_obj_class(elt), i); | |
} | |
if (RARRAY_LEN(key_value_pair) != 2) { | |
rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)", | |
i, RARRAY_LEN(key_value_pair)); | |
} | |
rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1)); | |
} | |
return hash; | |
} | |
/* | |
* call-seq: | |
* array.to_ary -> self | |
* | |
* Returns +self+. | |
*/ | |
static VALUE | |
rb_ary_to_ary_m(VALUE ary) | |
{ | |
return ary; | |
} | |
static void | |
ary_reverse(VALUE *p1, VALUE *p2) | |
{ | |
while (p1 < p2) { | |
VALUE tmp = *p1; | |
*p1++ = *p2; | |
*p2-- = tmp; | |
} | |
} | |
VALUE | |
rb_ary_reverse(VALUE ary) | |
{ | |
VALUE *p2; | |
long len = RARRAY_LEN(ary); | |
rb_ary_modify(ary); | |
if (len > 1) { | |
RARRAY_PTR_USE_TRANSIENT(ary, p1, { | |
p2 = p1 + len - 1; /* points last item */ | |
ary_reverse(p1, p2); | |
}); /* WB: no new reference */ | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.reverse! -> self | |
* | |
* Reverses +self+ in place: | |
* a = ['foo', 'bar', 'two'] | |
* a.reverse! # => ["two", "bar", "foo"] | |
*/ | |
static VALUE | |
rb_ary_reverse_bang(VALUE ary) | |
{ | |
return rb_ary_reverse(ary); | |
} | |
/* | |
* call-seq: | |
* array.reverse -> new_array | |
* | |
* Returns a new \Array with the elements of +self+ in reverse order. | |
* a = ['foo', 'bar', 'two'] | |
* a1 = a.reverse | |
* a1 # => ["two", "bar", "foo"] | |
*/ | |
static VALUE | |
rb_ary_reverse_m(VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
VALUE dup = rb_ary_new2(len); | |
if (len > 0) { | |
const VALUE *p1 = RARRAY_CONST_PTR_TRANSIENT(ary); | |
VALUE *p2 = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(dup) + len - 1; | |
do *p2-- = *p1++; while (--len > 0); | |
} | |
ARY_SET_LEN(dup, RARRAY_LEN(ary)); | |
return dup; | |
} | |
static inline long | |
rotate_count(long cnt, long len) | |
{ | |
return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len); | |
} | |
static void | |
ary_rotate_ptr(VALUE *ptr, long len, long cnt) | |
{ | |
if (cnt == 1) { | |
VALUE tmp = *ptr; | |
memmove(ptr, ptr + 1, sizeof(VALUE)*(len - 1)); | |
*(ptr + len - 1) = tmp; | |
} | |
else if (cnt == len - 1) { | |
VALUE tmp = *(ptr + len - 1); | |
memmove(ptr + 1, ptr, sizeof(VALUE)*(len - 1)); | |
*ptr = tmp; | |
} | |
else { | |
--len; | |
if (cnt < len) ary_reverse(ptr + cnt, ptr + len); | |
if (--cnt > 0) ary_reverse(ptr, ptr + cnt); | |
if (len > 0) ary_reverse(ptr, ptr + len); | |
} | |
} | |
VALUE | |
rb_ary_rotate(VALUE ary, long cnt) | |
{ | |
rb_ary_modify(ary); | |
if (cnt != 0) { | |
long len = RARRAY_LEN(ary); | |
if (len > 1 && (cnt = rotate_count(cnt, len)) > 0) { | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, ary_rotate_ptr(ptr, len, cnt)); | |
return ary; | |
} | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* array.rotate! -> self | |
* array.rotate!(count) -> self | |
* | |
* Rotates +self+ in place by moving elements from one end to the other; returns +self+. | |
* | |
* When no argument given, rotates the first element to the last position: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a.rotate! # => ["bar", 2, "bar", :foo] | |
* | |
* When given a non-negative \Integer +count+, | |
* rotates +count+ elements from the beginning to the end: | |
* a = [:foo, 'bar', 2] | |
* a.rotate!(2) | |
* a # => [2, :foo, "bar"] | |
* | |
* If +count+ is large, uses <tt>count % array.size</tt> as the count: | |
* a = [:foo, 'bar', 2] | |
* a.rotate!(20) | |
* a # => [2, :foo, "bar"] | |
* | |
* If +count+ is zero, returns +self+ unmodified: | |
* a = [:foo, 'bar', 2] | |
* a.rotate!(0) | |
* a # => [:foo, "bar", 2] | |
* | |
* When given a negative Integer +count+, rotates in the opposite direction, | |
* from end to beginning: | |
* a = [:foo, 'bar', 2] | |
* a.rotate!(-2) | |
* a # => ["bar", 2, :foo] | |
* | |
* If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count: | |
* a = [:foo, 'bar', 2] | |
* a.rotate!(-5) | |
* a # => ["bar", 2, :foo] | |
*/ | |
static VALUE | |
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary) | |
{ | |
long n = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1); | |
rb_ary_rotate(ary, n); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.rotate -> new_array | |
* array.rotate(count) -> new_array | |
* | |
* Returns a new \Array formed from +self+ with elements | |
* rotated from one end to the other. | |
* | |
* When no argument given, returns a new \Array that is like +self+, | |
* except that the first element has been rotated to the last position: | |
* a = [:foo, 'bar', 2, 'bar'] | |
* a1 = a.rotate | |
* a1 # => ["bar", 2, "bar", :foo] | |
* | |
* When given a non-negative \Integer +count+, | |
* returns a new \Array with +count+ elements rotated from the beginning to the end: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.rotate(2) | |
* a1 # => [2, :foo, "bar"] | |
* | |
* If +count+ is large, uses <tt>count % array.size</tt> as the count: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.rotate(20) | |
* a1 # => [2, :foo, "bar"] | |
* | |
* If +count+ is zero, returns a copy of +self+, unmodified: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.rotate(0) | |
* a1 # => [:foo, "bar", 2] | |
* | |
* When given a negative \Integer +count+, rotates in the opposite direction, | |
* from end to beginning: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.rotate(-2) | |
* a1 # => ["bar", 2, :foo] | |
* | |
* If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.rotate(-5) | |
* a1 # => ["bar", 2, :foo] | |
*/ | |
static VALUE | |
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE rotated; | |
const VALUE *ptr; | |
long len; | |
long cnt = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1); | |
len = RARRAY_LEN(ary); | |
rotated = rb_ary_new2(len); | |
if (len > 0) { | |
cnt = rotate_count(cnt, len); | |
ptr = RARRAY_CONST_PTR_TRANSIENT(ary); | |
len -= cnt; | |
ary_memcpy(rotated, 0, len, ptr + cnt); | |
ary_memcpy(rotated, len, cnt, ptr); | |
} | |
ARY_SET_LEN(rotated, RARRAY_LEN(ary)); | |
return rotated; | |
} | |
struct ary_sort_data { | |
VALUE ary; | |
VALUE receiver; | |
struct cmp_opt_data cmp_opt; | |
}; | |
static VALUE | |
sort_reentered(VALUE ary) | |
{ | |
if (RBASIC(ary)->klass) { | |
rb_raise(rb_eRuntimeError, "sort reentered"); | |
} | |
return Qnil; | |
} | |
static void | |
sort_returned(struct ary_sort_data *data) | |
{ | |
if (rb_obj_frozen_p(data->receiver)) { | |
rb_raise(rb_eFrozenError, "array frozen during sort"); | |
} | |
sort_reentered(data->ary); | |
} | |
static int | |
sort_1(const void *ap, const void *bp, void *dummy) | |
{ | |
struct ary_sort_data *data = dummy; | |
VALUE retval = sort_reentered(data->ary); | |
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; | |
VALUE args[2]; | |
int n; | |
args[0] = a; | |
args[1] = b; | |
retval = rb_yield_values2(2, args); | |
n = rb_cmpint(retval, a, b); | |
sort_returned(data); | |
return n; | |
} | |
static int | |
sort_2(const void *ap, const void *bp, void *dummy) | |
{ | |
struct ary_sort_data *data = dummy; | |
VALUE retval = sort_reentered(data->ary); | |
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; | |
int n; | |
if (FIXNUM_P(a) && FIXNUM_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, Integer)) { | |
if ((long)a > (long)b) return 1; | |
if ((long)a < (long)b) return -1; | |
return 0; | |
} | |
if (STRING_P(a) && STRING_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, String)) { | |
return rb_str_cmp(a, b); | |
} | |
if (RB_FLOAT_TYPE_P(a) && CMP_OPTIMIZABLE(data->cmp_opt, Float)) { | |
return rb_float_cmp(a, b); | |
} | |
retval = rb_funcallv(a, id_cmp, 1, &b); | |
n = rb_cmpint(retval, a, b); | |
sort_returned(data); | |
return n; | |
} | |
/* | |
* call-seq: | |
* array.sort! -> self | |
* array.sort! {|a, b| ... } -> self | |
* | |
* Returns +self+ with its elements sorted in place. | |
* | |
* With no block, compares elements using operator <tt><=></tt> | |
* (see Comparable): | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a.sort! | |
* a # => ["a", "b", "c", "d", "e"] | |
* | |
* With a block, calls the block with each element pair; | |
* for each element pair +a+ and +b+, the block should return an integer: | |
* - Negative when +b+ is to follow +a+. | |
* - Zero when +a+ and +b+ are equivalent. | |
* - Positive when +a+ is to follow +b+. | |
* | |
* Example: | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a.sort! {|a, b| a <=> b } | |
* a # => ["a", "b", "c", "d", "e"] | |
* a.sort! {|a, b| b <=> a } | |
* a # => ["e", "d", "c", "b", "a"] | |
* | |
* When the block returns zero, the order for +a+ and +b+ is indeterminate, | |
* and may be unstable: | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a.sort! {|a, b| 0 } | |
* a # => ["d", "e", "c", "a", "b"] | |
*/ | |
VALUE | |
rb_ary_sort_bang(VALUE ary) | |
{ | |
rb_ary_modify(ary); | |
assert(!ARY_SHARED_P(ary)); | |
if (RARRAY_LEN(ary) > 1) { | |
VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */ | |
struct ary_sort_data data; | |
long len = RARRAY_LEN(ary); | |
RBASIC_CLEAR_CLASS(tmp); | |
data.ary = tmp; | |
data.receiver = ary; | |
data.cmp_opt.opt_methods = 0; | |
data.cmp_opt.opt_inited = 0; | |
RARRAY_PTR_USE(tmp, ptr, { | |
ruby_qsort(ptr, len, sizeof(VALUE), | |
rb_block_given_p()?sort_1:sort_2, &data); | |
}); /* WB: no new reference */ | |
rb_ary_modify(ary); | |
if (ARY_EMBED_P(tmp)) { | |
if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ | |
rb_ary_unshare(ary); | |
FL_SET_EMBED(ary); | |
} | |
ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp)); | |
ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp)); | |
} | |
else { | |
if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) { | |
FL_UNSET_SHARED(ary); | |
ARY_SET_CAPA(ary, RARRAY_LEN(tmp)); | |
} | |
else { | |
assert(!ARY_SHARED_P(tmp)); | |
if (ARY_EMBED_P(ary)) { | |
FL_UNSET_EMBED(ary); | |
} | |
else if (ARY_SHARED_P(ary)) { | |
/* ary might be destructively operated in the given block */ | |
rb_ary_unshare(ary); | |
} | |
else { | |
ary_heap_free(ary); | |
} | |
ARY_SET_PTR(ary, ARY_HEAP_PTR(tmp)); | |
ARY_SET_HEAP_LEN(ary, len); | |
ARY_SET_CAPA(ary, ARY_HEAP_LEN(tmp)); | |
} | |
/* tmp was lost ownership for the ptr */ | |
FL_UNSET(tmp, FL_FREEZE); | |
FL_SET_EMBED(tmp); | |
ARY_SET_EMBED_LEN(tmp, 0); | |
FL_SET(tmp, FL_FREEZE); | |
} | |
/* tmp will be GC'ed. */ | |
RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */ | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.sort -> new_array | |
* array.sort {|a, b| ... } -> new_array | |
* | |
* Returns a new \Array whose elements are those from +self+, sorted. | |
* | |
* With no block, compares elements using operator <tt><=></tt> | |
* (see Comparable): | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a1 = a.sort | |
* a1 # => ["a", "b", "c", "d", "e"] | |
* | |
* With a block, calls the block with each element pair; | |
* for each element pair +a+ and +b+, the block should return an integer: | |
* - Negative when +b+ is to follow +a+. | |
* - Zero when +a+ and +b+ are equivalent. | |
* - Positive when +a+ is to follow +b+. | |
* | |
* Example: | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a1 = a.sort {|a, b| a <=> b } | |
* a1 # => ["a", "b", "c", "d", "e"] | |
* a2 = a.sort {|a, b| b <=> a } | |
* a2 # => ["e", "d", "c", "b", "a"] | |
* | |
* When the block returns zero, the order for +a+ and +b+ is indeterminate, | |
* and may be unstable: | |
* a = 'abcde'.split('').shuffle | |
* a # => ["e", "b", "d", "a", "c"] | |
* a1 = a.sort {|a, b| 0 } | |
* a1 # => ["c", "e", "b", "d", "a"] | |
* | |
* Related: Enumerable#sort_by. | |
*/ | |
VALUE | |
rb_ary_sort(VALUE ary) | |
{ | |
ary = rb_ary_dup(ary); | |
rb_ary_sort_bang(ary); | |
return ary; | |
} | |
static VALUE rb_ary_bsearch_index(VALUE ary); | |
/* | |
* call-seq: | |
* array.bsearch {|element| ... } -> object | |
* array.bsearch -> new_enumerator | |
* | |
* Returns an element from +self+ selected by a binary search. | |
* +self+ should be sorted, but this is not checked. | |
* | |
* By using binary search, finds a value from this array which meets | |
* the given condition in <tt>O(log n)</tt> where +n+ is the size of the array. | |
* | |
* There are two search modes: | |
* - <b>Find-minimum mode</b>: the block should return +true+ or +false+. | |
* - <b>Find-any mode</b>: the block should return a numeric value. | |
* | |
* The block should not mix the modes by and sometimes returning +true+ or +false+ | |
* and sometimes returning a numeric value, but this is not checked. | |
* | |
* <b>Find-Minimum Mode</b> | |
* | |
* In find-minimum mode, the block always returns +true+ or +false+. | |
* The further requirement (though not checked) is that | |
* there are no indexes +i+ and +j+ such that: | |
* - <tt>0 <= i < j <= self.size</tt>. | |
* - The block returns +true+ for <tt>self[i]</tt> and +false+ for <tt>self[j]</tt>. | |
* | |
* In find-minimum mode, method bsearch returns the first element for which the block returns true. | |
* | |
* Examples: | |
* a = [0, 4, 7, 10, 12] | |
* a.bsearch {|x| x >= 4 } # => 4 | |
* a.bsearch {|x| x >= 6 } # => 7 | |
* a.bsearch {|x| x >= -1 } # => 0 | |
* a.bsearch {|x| x >= 100 } # => nil | |
* | |
* Less formally: the block is such that all +false+-evaluating elements | |
* precede all +true+-evaluating elements. | |
* | |
* These make sense as blocks in find-minimum mode: | |
* a = [0, 4, 7, 10, 12] | |
* a.map {|x| x >= 4 } # => [false, true, true, true, true] | |
* a.map {|x| x >= 6 } # => [false, false, true, true, true] | |
* a.map {|x| x >= -1 } # => [true, true, true, true, true] | |
* a.map {|x| x >= 100 } # => [false, false, false, false, false] | |
* | |
* This would not make sense: | |
* a = [0, 4, 7, 10, 12] | |
* a.map {|x| x == 7 } # => [false, false, true, false, false] | |
* | |
* <b>Find-Any Mode</b> | |
* | |
* In find-any mode, the block always returns a numeric value. | |
* The further requirement (though not checked) is that | |
* there are no indexes +i+ and +j+ such that: | |
* - <tt>0 <= i < j <= self.size</tt>. | |
* - The block returns a negative value for <tt>self[i]</tt> | |
* and a positive value for <tt>self[j]</tt>. | |
* - The block returns a negative value for <tt>self[i]</tt> and zero <tt>self[j]</tt>. | |
* - The block returns zero for <tt>self[i]</tt> and a positive value for <tt>self[j]</tt>. | |
* | |
* In find-any mode, method bsearch returns some element | |
* for which the block returns zero, or +nil+ if no such element is found. | |
* | |
* Examples: | |
* a = [0, 4, 7, 10, 12] | |
* a.bsearch {|element| 7 <=> element } # => 7 | |
* a.bsearch {|element| -1 <=> element } # => nil | |
* a.bsearch {|element| 5 <=> element } # => nil | |
* a.bsearch {|element| 15 <=> element } # => nil | |
* | |
* Less formally: the block is such that: | |
* - All positive-evaluating elements precede all zero-evaluating elements. | |
* - All positive-evaluating elements precede all negative-evaluating elements. | |
* - All zero-evaluating elements precede all negative-evaluating elements. | |
* | |
* These make sense as blocks in find-any mode: | |
* a = [0, 4, 7, 10, 12] | |
* a.map {|element| 7 <=> element } # => [1, 1, 0, -1, -1] | |
* a.map {|element| -1 <=> element } # => [-1, -1, -1, -1, -1] | |
* a.map {|element| 5 <=> element } # => [1, 1, -1, -1, -1] | |
* a.map {|element| 15 <=> element } # => [1, 1, 1, 1, 1] | |
* | |
* This would not make sense: | |
* a = [0, 4, 7, 10, 12] | |
* a.map {|element| element <=> 7 } # => [-1, -1, 0, 1, 1] | |
* | |
* Returns an enumerator if no block given: | |
* a = [0, 4, 7, 10, 12] | |
* a.bsearch # => #<Enumerator: [0, 4, 7, 10, 12]:bsearch> | |
*/ | |
static VALUE | |
rb_ary_bsearch(VALUE ary) | |
{ | |
VALUE index_result = rb_ary_bsearch_index(ary); | |
if (FIXNUM_P(index_result)) { | |
return rb_ary_entry(ary, FIX2LONG(index_result)); | |
} | |
return index_result; | |
} | |
/* | |
* call-seq: | |
* array.bsearch_index {|element| ... } -> integer or nil | |
* array.bsearch_index -> new_enumerator | |
* | |
* Searches +self+ as described at method #bsearch, | |
* but returns the _index_ of the found element instead of the element itself. | |
*/ | |
static VALUE | |
rb_ary_bsearch_index(VALUE ary) | |
{ | |
long low = 0, high = RARRAY_LEN(ary), mid; | |
int smaller = 0, satisfied = 0; | |
VALUE v, val; | |
RETURN_ENUMERATOR(ary, 0, 0); | |
while (low < high) { | |
mid = low + ((high - low) / 2); | |
val = rb_ary_entry(ary, mid); | |
v = rb_yield(val); | |
if (FIXNUM_P(v)) { | |
if (v == INT2FIX(0)) return INT2FIX(mid); | |
smaller = (SIGNED_VALUE)v < 0; /* Fixnum preserves its sign-bit */ | |
} | |
else if (v == Qtrue) { | |
satisfied = 1; | |
smaller = 1; | |
} | |
else if (v == Qfalse || v == Qnil) { | |
smaller = 0; | |
} | |
else if (rb_obj_is_kind_of(v, rb_cNumeric)) { | |
const VALUE zero = INT2FIX(0); | |
switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, zero)) { | |
case 0: return INT2FIX(mid); | |
case 1: smaller = 1; break; | |
case -1: smaller = 0; | |
} | |
} | |
else { | |
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE | |
" (must be numeric, true, false or nil)", | |
rb_obj_class(v)); | |
} | |
if (smaller) { | |
high = mid; | |
} | |
else { | |
low = mid + 1; | |
} | |
} | |
if (!satisfied) return Qnil; | |
return INT2FIX(low); | |
} | |
static VALUE | |
sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, dummy)) | |
{ | |
return rb_yield(i); | |
} | |
/* | |
* call-seq: | |
* array.sort_by! {|element| ... } -> self | |
* array.sort_by! -> new_enumerator | |
* | |
* Sorts the elements of +self+ in place, | |
* using an ordering determined by the block; returns self. | |
* | |
* Calls the block with each successive element; | |
* sorts elements based on the values returned from the block. | |
* | |
* For duplicates returned by the block, the ordering is indeterminate, and may be unstable. | |
* | |
* This example sorts strings based on their sizes: | |
* a = ['aaaa', 'bbb', 'cc', 'd'] | |
* a.sort_by! {|element| element.size } | |
* a # => ["d", "cc", "bbb", "aaaa"] | |
* | |
* Returns a new \Enumerator if no block given: | |
* | |
* a = ['aaaa', 'bbb', 'cc', 'd'] | |
* a.sort_by! # => #<Enumerator: ["aaaa", "bbb", "cc", "d"]:sort_by!> | |
*/ | |
static VALUE | |
rb_ary_sort_by_bang(VALUE ary) | |
{ | |
VALUE sorted; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rb_ary_modify(ary); | |
sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0); | |
rb_ary_replace(ary, sorted); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.map {|element| ... } -> new_array | |
* array.map -> new_enumerator | |
* | |
* Calls the block, if given, with each element of +self+; | |
* returns a new \Array whose elements are the return values from the block: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.map {|element| element.class } | |
* a1 # => [Symbol, String, Integer] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.map | |
* a1 # => #<Enumerator: [:foo, "bar", 2]:map> | |
* | |
* Array#collect is an alias for Array#map. | |
*/ | |
static VALUE | |
rb_ary_collect(VALUE ary) | |
{ | |
long i; | |
VALUE collect; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
collect = rb_ary_new2(RARRAY_LEN(ary)); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i))); | |
} | |
return collect; | |
} | |
/* | |
* call-seq: | |
* array.map! {|element| ... } -> self | |
* array.map! -> new_enumerator | |
* | |
* Calls the block, if given, with each element; | |
* replaces the element with the block's return value: | |
* a = [:foo, 'bar', 2] | |
* a.map! { |element| element.class } # => [Symbol, String, Integer] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2] | |
* a1 = a.map! | |
* a1 # => #<Enumerator: [:foo, "bar", 2]:map!> | |
* | |
* Array#collect! is an alias for Array#map!. | |
*/ | |
static VALUE | |
rb_ary_collect_bang(VALUE ary) | |
{ | |
long i; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rb_ary_modify(ary); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i))); | |
} | |
return ary; | |
} | |
VALUE | |
rb_get_values_at(VALUE obj, long olen, int argc, const VALUE *argv, VALUE (*func) (VALUE, long)) | |
{ | |
VALUE result = rb_ary_new2(argc); | |
long beg, len, i, j; | |
for (i=0; i<argc; i++) { | |
if (FIXNUM_P(argv[i])) { | |
rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i]))); | |
continue; | |
} | |
/* check if idx is Range */ | |
if (rb_range_beg_len(argv[i], &beg, &len, olen, 1)) { | |
long end = olen < beg+len ? olen : beg+len; | |
for (j = beg; j < end; j++) { | |
rb_ary_push(result, (*func)(obj, j)); | |
} | |
if (beg + len > j) | |
rb_ary_resize(result, RARRAY_LEN(result) + (beg + len) - j); | |
continue; | |
} | |
rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i]))); | |
} | |
return result; | |
} | |
static VALUE | |
append_values_at_single(VALUE result, VALUE ary, long olen, VALUE idx) | |
{ | |
long beg, len; | |
if (FIXNUM_P(idx)) { | |
beg = FIX2LONG(idx); | |
} | |
/* check if idx is Range */ | |
else if (rb_range_beg_len(idx, &beg, &len, olen, 1)) { | |
if (len > 0) { | |
const VALUE *const src = RARRAY_CONST_PTR_TRANSIENT(ary); | |
const long end = beg + len; | |
const long prevlen = RARRAY_LEN(result); | |
if (beg < olen) { | |
rb_ary_cat(result, src + beg, end > olen ? olen-beg : len); | |
} | |
if (end > olen) { | |
rb_ary_store(result, prevlen + len - 1, Qnil); | |
} | |
} | |
return result; | |
} | |
else { | |
beg = NUM2LONG(idx); | |
} | |
return rb_ary_push(result, rb_ary_entry(ary, beg)); | |
} | |
/* | |
* call-seq: | |
* array.values_at(*indexes) -> new_array | |
* | |
* Returns a new \Array whose elements are the elements | |
* of +self+ at the given \Integer or \Range +indexes+. | |
* | |
* For each positive +index+, returns the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(0, 2) # => [:foo, 2] | |
* a.values_at(0..1) # => [:foo, "bar"] | |
* | |
* The given +indexes+ may be in any order, and may repeat: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2] | |
* a.values_at(1, 0..2) # => ["bar", :foo, "bar", 2] | |
* | |
* Assigns +nil+ for an +index+ that is too large: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil] | |
* | |
* Returns a new empty \Array if no arguments given. | |
* | |
* For each negative +index+, counts backward from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(-1, -3) # => [2, :foo] | |
* | |
* Assigns +nil+ for an +index+ that is too small: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2] | |
* | |
* The given +indexes+ may have a mixture of signs: | |
* a = [:foo, 'bar', 2] | |
* a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2] | |
*/ | |
static VALUE | |
rb_ary_values_at(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, olen = RARRAY_LEN(ary); | |
VALUE result = rb_ary_new_capa(argc); | |
for (i = 0; i < argc; ++i) { | |
append_values_at_single(result, ary, olen, argv[i]); | |
} | |
RB_GC_GUARD(ary); | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.select {|element| ... } -> new_array | |
* array.select -> new_enumerator | |
* | |
* Calls the block, if given, with each element of +self+; | |
* returns a new \Array containing those elements of +self+ | |
* for which the block returns a truthy value: | |
* a = [:foo, 'bar', 2, :bam] | |
* a1 = a.select {|element| element.to_s.start_with?('b') } | |
* a1 # => ["bar", :bam] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2, :bam] | |
* a.select # => #<Enumerator: [:foo, "bar", 2, :bam]:select> | |
* | |
* Array#filter is an alias for Array#select. | |
*/ | |
static VALUE | |
rb_ary_select(VALUE ary) | |
{ | |
VALUE result; | |
long i; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
result = rb_ary_new2(RARRAY_LEN(ary)); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) { | |
rb_ary_push(result, rb_ary_elt(ary, i)); | |
} | |
} | |
return result; | |
} | |
struct select_bang_arg { | |
VALUE ary; | |
long len[2]; | |
}; | |
static VALUE | |
select_bang_i(VALUE a) | |
{ | |
volatile struct select_bang_arg *arg = (void *)a; | |
VALUE ary = arg->ary; | |
long i1, i2; | |
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) { | |
VALUE v = RARRAY_AREF(ary, i1); | |
if (!RTEST(rb_yield(v))) continue; | |
if (i1 != i2) { | |
rb_ary_store(ary, i2, v); | |
} | |
arg->len[1] = ++i2; | |
} | |
return (i1 == i2) ? Qnil : ary; | |
} | |
static VALUE | |
select_bang_ensure(VALUE a) | |
{ | |
volatile struct select_bang_arg *arg = (void *)a; | |
VALUE ary = arg->ary; | |
long len = RARRAY_LEN(ary); | |
long i1 = arg->len[0], i2 = arg->len[1]; | |
if (i2 < len && i2 < i1) { | |
long tail = 0; | |
rb_ary_modify(ary); | |
if (i1 < len) { | |
tail = len - i1; | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr + i2, ptr + i1, VALUE, tail); | |
}); | |
} | |
ARY_SET_LEN(ary, i2 + tail); | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.select! {|element| ... } -> self or nil | |
* array.select! -> new_enumerator | |
* | |
* Calls the block, if given with each element of +self+; | |
* removes from +self+ those elements for which the block returns +false+ or +nil+. | |
* | |
* Returns +self+ if any elements were removed: | |
* a = [:foo, 'bar', 2, :bam] | |
* a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam] | |
* | |
* Returns +nil+ if no elements were removed. | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2, :bam] | |
* a.select! # => #<Enumerator: [:foo, "bar", 2, :bam]:select!> | |
* | |
* Array#filter! is an alias for Array#select!. | |
*/ | |
static VALUE | |
rb_ary_select_bang(VALUE ary) | |
{ | |
struct select_bang_arg args; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rb_ary_modify(ary); | |
args.ary = ary; | |
args.len[0] = args.len[1] = 0; | |
return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args); | |
} | |
/* | |
* call-seq: | |
* array.keep_if {|element| ... } -> self | |
* array.keep_if -> new_enumeration | |
* | |
* Retains those elements for which the block returns a truthy value; | |
* deletes all other elements; returns +self+: | |
* a = [:foo, 'bar', 2, :bam] | |
* a.keep_if {|element| element.to_s.start_with?('b') } # => ["bar", :bam] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2, :bam] | |
* a.keep_if # => #<Enumerator: [:foo, "bar", 2, :bam]:keep_if> | |
*/ | |
static VALUE | |
rb_ary_keep_if(VALUE ary) | |
{ | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rb_ary_select_bang(ary); | |
return ary; | |
} | |
static void | |
ary_resize_smaller(VALUE ary, long len) | |
{ | |
rb_ary_modify(ary); | |
if (RARRAY_LEN(ary) > len) { | |
ARY_SET_LEN(ary, len); | |
if (len * 2 < ARY_CAPA(ary) && | |
ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { | |
ary_resize_capa(ary, len * 2); | |
} | |
} | |
} | |
/* | |
* call-seq: | |
* array.delete(obj) -> deleted_object | |
* array.delete(obj) {|nosuch| ... } -> deleted_object or block_return | |
* | |
* Removes zero or more elements from +self+; returns +self+. | |
* | |
* When no block is given, | |
* removes from +self+ each element +ele+ such that <tt>ele == obj</tt>; | |
* returns the last deleted element: | |
* s1 = 'bar'; s2 = 'bar' | |
* a = [:foo, s1, 2, s2] | |
* a.delete('bar') # => "bar" | |
* a # => [:foo, 2] | |
* | |
* Returns +nil+ if no elements removed. | |
* | |
* When a block is given, | |
* removes from +self+ each element +ele+ such that <tt>ele == obj</tt>. | |
* | |
* If any such elements are found, ignores the block | |
* and returns the last deleted element: | |
* s1 = 'bar'; s2 = 'bar' | |
* a = [:foo, s1, 2, s2] | |
* deleted_obj = a.delete('bar') {|obj| fail 'Cannot happen' } | |
* a # => [:foo, 2] | |
* | |
* If no such elements are found, returns the block's return value: | |
* a = [:foo, 'bar', 2] | |
* a.delete(:nosuch) {|obj| "#{obj} not found" } # => "nosuch not found" | |
*/ | |
VALUE | |
rb_ary_delete(VALUE ary, VALUE item) | |
{ | |
VALUE v = item; | |
long i1, i2; | |
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { | |
VALUE e = RARRAY_AREF(ary, i1); | |
if (rb_equal(e, item)) { | |
v = e; | |
continue; | |
} | |
if (i1 != i2) { | |
rb_ary_store(ary, i2, e); | |
} | |
i2++; | |
} | |
if (RARRAY_LEN(ary) == i2) { | |
if (rb_block_given_p()) { | |
return rb_yield(item); | |
} | |
return Qnil; | |
} | |
ary_resize_smaller(ary, i2); | |
ary_verify(ary); | |
return v; | |
} | |
void | |
rb_ary_delete_same(VALUE ary, VALUE item) | |
{ | |
long i1, i2; | |
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { | |
VALUE e = RARRAY_AREF(ary, i1); | |
if (e == item) { | |
continue; | |
} | |
if (i1 != i2) { | |
rb_ary_store(ary, i2, e); | |
} | |
i2++; | |
} | |
if (RARRAY_LEN(ary) == i2) { | |
return; | |
} | |
ary_resize_smaller(ary, i2); | |
} | |
VALUE | |
rb_ary_delete_at(VALUE ary, long pos) | |
{ | |
long len = RARRAY_LEN(ary); | |
VALUE del; | |
if (pos >= len) return Qnil; | |
if (pos < 0) { | |
pos += len; | |
if (pos < 0) return Qnil; | |
} | |
rb_ary_modify(ary); | |
del = RARRAY_AREF(ary, pos); | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr, { | |
MEMMOVE(ptr+pos, ptr+pos+1, VALUE, len-pos-1); | |
}); | |
ARY_INCREASE_LEN(ary, -1); | |
ary_verify(ary); | |
return del; | |
} | |
/* | |
* call-seq: | |
* array.delete_at(index) -> deleted_object or nil | |
* | |
* Deletes an element from +self+, per the given \Integer +index+. | |
* | |
* When +index+ is non-negative, deletes the element at offset +index+: | |
* a = [:foo, 'bar', 2] | |
* a.delete_at(1) # => "bar" | |
* a # => [:foo, 2] | |
* | |
* If index is too large, returns +nil+. | |
* | |
* When +index+ is negative, counts backward from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a.delete_at(-2) # => "bar" | |
* a # => [:foo, 2] | |
* | |
* If +index+ is too small (far from zero), returns nil. | |
*/ | |
static VALUE | |
rb_ary_delete_at_m(VALUE ary, VALUE pos) | |
{ | |
return rb_ary_delete_at(ary, NUM2LONG(pos)); | |
} | |
static VALUE | |
ary_slice_bang_by_rb_ary_splice(VALUE ary, long pos, long len) | |
{ | |
const long orig_len = RARRAY_LEN(ary); | |
if (len < 0) { | |
return Qnil; | |
} | |
else if (pos < -orig_len) { | |
return Qnil; | |
} | |
else if (pos < 0) { | |
pos += orig_len; | |
} | |
else if (orig_len < pos) { | |
return Qnil; | |
} | |
else if (orig_len < pos + len) { | |
len = orig_len - pos; | |
} | |
if (len == 0) { | |
return rb_ary_new2(0); | |
} | |
else { | |
VALUE arg2 = rb_ary_new4(len, RARRAY_CONST_PTR_TRANSIENT(ary)+pos); | |
rb_ary_splice(ary, pos, len, 0, 0); | |
return arg2; | |
} | |
} | |
/* | |
* call-seq: | |
* array.slice!(n) -> object or nil | |
* array.slice!(start, length) -> new_array or nil | |
* array.slice!(range) -> new_array or nil | |
* | |
* Removes and returns elements from +self+. | |
* | |
* When the only argument is an \Integer +n+, | |
* removes and returns the _nth_ element in +self+: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(1) # => "bar" | |
* a # => [:foo, 2] | |
* | |
* If +n+ is negative, counts backwards from the end of +self+: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(-1) # => 2 | |
* a # => [:foo, "bar"] | |
* | |
* If +n+ is out of range, returns +nil+. | |
* | |
* When the only arguments are Integers +start+ and +length+, | |
* removes +length+ elements from +self+ beginning at offset +start+; | |
* returns the deleted objects in a new Array: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(0, 2) # => [:foo, "bar"] | |
* a # => [2] | |
* | |
* If <tt>start + length</tt> exceeds the array size, | |
* removes and returns all elements from offset +start+ to the end: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(1, 50) # => ["bar", 2] | |
* a # => [:foo] | |
* | |
* If <tt>start == a.size</tt> and +length+ is non-negative, | |
* returns a new empty \Array. | |
* | |
* If +length+ is negative, returns +nil+. | |
* | |
* When the only argument is a \Range object +range+, | |
* treats <tt>range.min</tt> as +start+ above and <tt>range.size</tt> as +length+ above: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(1..2) # => ["bar", 2] | |
* a # => [:foo] | |
* | |
* If <tt>range.start == a.size</tt>, returns a new empty \Array. | |
* | |
* If <tt>range.start</tt> is larger than the array size, returns +nil+. | |
* | |
* If <tt>range.end</tt> is negative, counts backwards from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(0..-2) # => [:foo, "bar"] | |
* a # => [2] | |
* | |
* If <tt>range.start</tt> is negative, | |
* calculates the start index backwards from the end of the array: | |
* a = [:foo, 'bar', 2] | |
* a.slice!(-2..2) # => ["bar", 2] | |
* a # => [:foo] | |
*/ | |
static VALUE | |
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE arg1; | |
long pos, len; | |
rb_ary_modify_check(ary); | |
rb_check_arity(argc, 1, 2); | |
arg1 = argv[0]; | |
if (argc == 2) { | |
pos = NUM2LONG(argv[0]); | |
len = NUM2LONG(argv[1]); | |
return ary_slice_bang_by_rb_ary_splice(ary, pos, len); | |
} | |
if (!FIXNUM_P(arg1)) { | |
switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) { | |
case Qtrue: | |
/* valid range */ | |
return ary_slice_bang_by_rb_ary_splice(ary, pos, len); | |
case Qnil: | |
/* invalid range */ | |
return Qnil; | |
default: | |
/* not a range */ | |
break; | |
} | |
} | |
return rb_ary_delete_at(ary, NUM2LONG(arg1)); | |
} | |
static VALUE | |
ary_reject(VALUE orig, VALUE result) | |
{ | |
long i; | |
for (i = 0; i < RARRAY_LEN(orig); i++) { | |
VALUE v = RARRAY_AREF(orig, i); | |
if (!RTEST(rb_yield(v))) { | |
rb_ary_push(result, v); | |
} | |
} | |
return result; | |
} | |
static VALUE | |
reject_bang_i(VALUE a) | |
{ | |
volatile struct select_bang_arg *arg = (void *)a; | |
VALUE ary = arg->ary; | |
long i1, i2; | |
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) { | |
VALUE v = RARRAY_AREF(ary, i1); | |
if (RTEST(rb_yield(v))) continue; | |
if (i1 != i2) { | |
rb_ary_store(ary, i2, v); | |
} | |
arg->len[1] = ++i2; | |
} | |
return (i1 == i2) ? Qnil : ary; | |
} | |
static VALUE | |
ary_reject_bang(VALUE ary) | |
{ | |
struct select_bang_arg args; | |
rb_ary_modify_check(ary); | |
args.ary = ary; | |
args.len[0] = args.len[1] = 0; | |
return rb_ensure(reject_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args); | |
} | |
/* | |
* call-seq: | |
* array.reject! {|element| ... } -> self or nil | |
* array.reject! -> new_enumerator | |
* | |
* Removes each element for which the block returns a truthy value. | |
* | |
* Returns +self+ if any elements removed: | |
* a = [:foo, 'bar', 2, 'bat'] | |
* a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2] | |
* | |
* Returns +nil+ if no elements removed. | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2] | |
* a.reject! # => #<Enumerator: [:foo, "bar", 2]:reject!> | |
*/ | |
static VALUE | |
rb_ary_reject_bang(VALUE ary) | |
{ | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rb_ary_modify(ary); | |
return ary_reject_bang(ary); | |
} | |
/* | |
* call-seq: | |
* array.reject {|element| ... } -> new_array | |
* array.reject -> new_enumerator | |
* | |
* Returns a new \Array whose elements are all those from +self+ | |
* for which the block returns +false+ or +nil+: | |
* a = [:foo, 'bar', 2, 'bat'] | |
* a1 = a.reject {|element| element.to_s.start_with?('b') } | |
* a1 # => [:foo, 2] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2] | |
* a.reject # => #<Enumerator: [:foo, "bar", 2]:reject> | |
*/ | |
static VALUE | |
rb_ary_reject(VALUE ary) | |
{ | |
VALUE rejected_ary; | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
rejected_ary = rb_ary_new(); | |
ary_reject(ary, rejected_ary); | |
return rejected_ary; | |
} | |
/* | |
* call-seq: | |
* array.delete_if {|element| ... } -> self | |
* array.delete_if -> Enumerator | |
* | |
* Removes each element in +self+ for which the block returns a truthy value; | |
* returns +self+: | |
* a = [:foo, 'bar', 2, 'bat'] | |
* a.delete_if {|element| element.to_s.start_with?('b') } # => [:foo, 2] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [:foo, 'bar', 2] | |
* a.delete_if # => #<Enumerator: [:foo, "bar", 2]:delete_if> | |
*/ | |
static VALUE | |
rb_ary_delete_if(VALUE ary) | |
{ | |
ary_verify(ary); | |
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); | |
ary_reject_bang(ary); | |
return ary; | |
} | |
static VALUE | |
take_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, cbarg)) | |
{ | |
VALUE *args = (VALUE *)cbarg; | |
if (argc > 1) val = rb_ary_new4(argc, argv); | |
rb_ary_push(args[0], val); | |
if (--args[1] == 0) rb_iter_break(); | |
return Qnil; | |
} | |
static VALUE | |
take_items(VALUE obj, long n) | |
{ | |
VALUE result = rb_check_array_type(obj); | |
VALUE args[2]; | |
if (n == 0) return result; | |
if (!NIL_P(result)) return rb_ary_subseq(result, 0, n); | |
result = rb_ary_new2(n); | |
args[0] = result; args[1] = (VALUE)n; | |
if (rb_check_block_call(obj, idEach, 0, 0, take_i, (VALUE)args) == Qundef) | |
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", | |
rb_obj_class(obj)); | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.zip(*other_arrays) -> new_array | |
* array.zip(*other_arrays) {|other_array| ... } -> nil | |
* | |
* When no block given, returns a new \Array +new_array+ of size <tt>self.size</tt> | |
* whose elements are Arrays. | |
* | |
* Each nested array <tt>new_array[n]</tt> is of size <tt>other_arrays.size+1</tt>, | |
* and contains: | |
* - The _nth_ element of +self+. | |
* - The _nth_ element of each of the +other_arrays+. | |
* | |
* If all +other_arrays+ and +self+ are the same size: | |
* a = [:a0, :a1, :a2, :a3] | |
* b = [:b0, :b1, :b2, :b3] | |
* c = [:c0, :c1, :c2, :c3] | |
* d = a.zip(b, c) | |
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]] | |
* | |
* If any array in +other_arrays+ is smaller than +self+, | |
* fills to <tt>self.size</tt> with +nil+: | |
* a = [:a0, :a1, :a2, :a3] | |
* b = [:b0, :b1, :b2] | |
* c = [:c0, :c1] | |
* d = a.zip(b, c) | |
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]] | |
* | |
* If any array in +other_arrays+ is larger than +self+, | |
* its trailing elements are ignored: | |
* a = [:a0, :a1, :a2, :a3] | |
* b = [:b0, :b1, :b2, :b3, :b4] | |
* c = [:c0, :c1, :c2, :c3, :c4, :c5] | |
* d = a.zip(b, c) | |
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]] | |
* | |
* When a block is given, calls the block with each of the sub-arrays (formed as above); returns nil | |
* a = [:a0, :a1, :a2, :a3] | |
* b = [:b0, :b1, :b2, :b3] | |
* c = [:c0, :c1, :c2, :c3] | |
* a.zip(b, c) {|sub_array| p sub_array} # => nil | |
* | |
* Output: | |
* [:a0, :b0, :c0] | |
* [:a1, :b1, :c1] | |
* [:a2, :b2, :c2] | |
* [:a3, :b3, :c3] | |
*/ | |
static VALUE | |
rb_ary_zip(int argc, VALUE *argv, VALUE ary) | |
{ | |
int i, j; | |
long len = RARRAY_LEN(ary); | |
VALUE result = Qnil; | |
for (i=0; i<argc; i++) { | |
argv[i] = take_items(argv[i], len); | |
} | |
if (rb_block_given_p()) { | |
int arity = rb_block_arity(); | |
if (arity > 1) { | |
VALUE work, *tmp; | |
tmp = ALLOCV_N(VALUE, work, argc+1); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
tmp[0] = RARRAY_AREF(ary, i); | |
for (j=0; j<argc; j++) { | |
tmp[j+1] = rb_ary_elt(argv[j], i); | |
} | |
rb_yield_values2(argc+1, tmp); | |
} | |
if (work) ALLOCV_END(work); | |
} | |
else { | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
VALUE tmp = rb_ary_new2(argc+1); | |
rb_ary_push(tmp, RARRAY_AREF(ary, i)); | |
for (j=0; j<argc; j++) { | |
rb_ary_push(tmp, rb_ary_elt(argv[j], i)); | |
} | |
rb_yield(tmp); | |
} | |
} | |
} | |
else { | |
result = rb_ary_new_capa(len); | |
for (i=0; i<len; i++) { | |
VALUE tmp = rb_ary_new_capa(argc+1); | |
rb_ary_push(tmp, RARRAY_AREF(ary, i)); | |
for (j=0; j<argc; j++) { | |
rb_ary_push(tmp, rb_ary_elt(argv[j], i)); | |
} | |
rb_ary_push(result, tmp); | |
} | |
} | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.transpose -> new_array | |
* | |
* Transposes the rows and columns in an \Array of Arrays; | |
* the nested Arrays must all be the same size: | |
* a = [[:a0, :a1], [:b0, :b1], [:c0, :c1]] | |
* a.transpose # => [[:a0, :b0, :c0], [:a1, :b1, :c1]] | |
*/ | |
static VALUE | |
rb_ary_transpose(VALUE ary) | |
{ | |
long elen = -1, alen, i, j; | |
VALUE tmp, result = 0; | |
alen = RARRAY_LEN(ary); | |
if (alen == 0) return rb_ary_dup(ary); | |
for (i=0; i<alen; i++) { | |
tmp = to_ary(rb_ary_elt(ary, i)); | |
if (elen < 0) { /* first element */ | |
elen = RARRAY_LEN(tmp); | |
result = rb_ary_new2(elen); | |
for (j=0; j<elen; j++) { | |
rb_ary_store(result, j, rb_ary_new2(alen)); | |
} | |
} | |
else if (elen != RARRAY_LEN(tmp)) { | |
rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)", | |
RARRAY_LEN(tmp), elen); | |
} | |
for (j=0; j<elen; j++) { | |
rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j)); | |
} | |
} | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.replace(other_array) -> self | |
* | |
* Replaces the content of +self+ with the content of +other_array+; returns +self+: | |
* a = [:foo, 'bar', 2] | |
* a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3] | |
*/ | |
VALUE | |
rb_ary_replace(VALUE copy, VALUE orig) | |
{ | |
rb_ary_modify_check(copy); | |
orig = to_ary(orig); | |
if (copy == orig) return copy; | |
if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { | |
VALUE shared_root = 0; | |
if (ARY_OWNS_HEAP_P(copy)) { | |
ary_heap_free(copy); | |
} | |
else if (ARY_SHARED_P(copy)) { | |
shared_root = ARY_SHARED_ROOT(copy); | |
FL_UNSET_SHARED(copy); | |
} | |
FL_SET_EMBED(copy); | |
ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR_TRANSIENT(orig)); | |
if (shared_root) { | |
rb_ary_decrement_share(shared_root); | |
} | |
ARY_SET_LEN(copy, RARRAY_LEN(orig)); | |
} | |
else { | |
VALUE shared_root = ary_make_shared(orig); | |
if (ARY_OWNS_HEAP_P(copy)) { | |
ary_heap_free(copy); | |
} | |
else { | |
rb_ary_unshare_safe(copy); | |
} | |
FL_UNSET_EMBED(copy); | |
ARY_SET_PTR(copy, ARY_HEAP_PTR(orig)); | |
ARY_SET_LEN(copy, ARY_HEAP_LEN(orig)); | |
rb_ary_set_shared(copy, shared_root); | |
} | |
ary_verify(copy); | |
return copy; | |
} | |
/* | |
* call-seq: | |
* array.clear -> self | |
* | |
* Removes all elements from +self+: | |
* a = [:foo, 'bar', 2] | |
* a.clear # => [] | |
*/ | |
VALUE | |
rb_ary_clear(VALUE ary) | |
{ | |
rb_ary_modify_check(ary); | |
if (ARY_SHARED_P(ary)) { | |
if (!ARY_EMBED_P(ary)) { | |
rb_ary_unshare(ary); | |
FL_SET_EMBED(ary); | |
ARY_SET_EMBED_LEN(ary, 0); | |
} | |
} | |
else { | |
ARY_SET_LEN(ary, 0); | |
if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { | |
ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2); | |
} | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.fill(obj) -> self | |
* array.fill(obj, start) -> self | |
* array.fill(obj, start, length) -> self | |
* array.fill(obj, range) -> self | |
* array.fill {|index| ... } -> self | |
* array.fill(start) {|index| ... } -> self | |
* array.fill(start, length) {|index| ... } -> self | |
* array.fill(range) {|index| ... } -> self | |
* | |
* Replaces specified elements in +self+ with specified objects; returns +self+. | |
* | |
* With argument +obj+ and no block given, replaces all elements with that one object: | |
* a = ['a', 'b', 'c', 'd'] | |
* a # => ["a", "b", "c", "d"] | |
* a.fill(:X) # => [:X, :X, :X, :X] | |
* | |
* With arguments +obj+ and \Integer +start+, and no block given, | |
* replaces elements based on the given start. | |
* | |
* If +start+ is in range (<tt>0 <= start < array.size</tt>), | |
* replaces all elements from offset +start+ through the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 2) # => ["a", "b", :X, :X] | |
* | |
* If +start+ is too large (<tt>start >= array.size</tt>), does nothing: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 4) # => ["a", "b", "c", "d"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 5) # => ["a", "b", "c", "d"] | |
* | |
* If +start+ is negative, counts from the end (starting index is <tt>start + array.size</tt>): | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, -2) # => ["a", "b", :X, :X] | |
* | |
* If +start+ is too small (less than and far from zero), replaces all elements: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, -6) # => [:X, :X, :X, :X] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, -50) # => [:X, :X, :X, :X] | |
* | |
* With arguments +obj+, \Integer +start+, and \Integer +length+, and no block given, | |
* replaces elements based on the given +start+ and +length+. | |
* | |
* If +start+ is in range, replaces +length+ elements beginning at offset +start+: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 1, 1) # => ["a", :X, "c", "d"] | |
* | |
* If +start+ is negative, counts from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, -2, 1) # => ["a", "b", :X, "d"] | |
* | |
* If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 5, 0) # => ["a", "b", "c", "d", nil] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 5, 2) # => ["a", "b", "c", "d", nil, :X, :X] | |
* | |
* If +length+ is zero or negative, replaces no elements: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, 1, 0) # => ["a", "b", "c", "d"] | |
* a.fill(:X, 1, -1) # => ["a", "b", "c", "d"] | |
* | |
* With arguments +obj+ and \Range +range+, and no block given, | |
* replaces elements based on the given range. | |
* | |
* If the range is positive and ascending (<tt>0 < range.begin <= range.end</tt>), | |
* replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (1..1)) # => ["a", :X, "c", "d"] | |
* | |
* If <tt>range.first</tt> is negative, replaces no elements: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (-1..1)) # => ["a", "b", "c", "d"] | |
* | |
* If <tt>range.last</tt> is negative, counts from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (0..-2)) # => [:X, :X, :X, "d"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (1..-2)) # => ["a", :X, :X, "d"] | |
* | |
* If <tt>range.last</tt> and <tt>range.last</tt> are both negative, | |
* both count from the end of the array: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (-1..-1)) # => ["a", "b", "c", :X] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(:X, (-2..-2)) # => ["a", "b", :X, "d"] | |
* | |
* With no arguments and a block given, calls the block with each index; | |
* replaces the corresponding element with the block's return value: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"] | |
* | |
* With argument +start+ and a block given, calls the block with each index | |
* from offset +start+ to the end; replaces the corresponding element | |
* with the block's return value: | |
* | |
* If start is in range (<tt>0 <= start < array.size</tt>), | |
* replaces from offset +start+ to the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(1) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "new_3"] | |
* | |
* If +start+ is too large(<tt>start >= array.size</tt>), does nothing: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"] | |
* | |
* If +start+ is negative, counts from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "new_3"] | |
* | |
* If start is too small (<tt>start <= -array.size</tt>, replaces all elements: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-6) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-50) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"] | |
* | |
* With arguments +start+ and +length+, and a block given, | |
* calls the block for each index specified by start length; | |
* replaces the corresponding element with the block's return value. | |
* | |
* If +start+ is in range, replaces +length+ elements beginning at offset +start+: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(1, 1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"] | |
* | |
* If start is negative, counts from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-2, 1) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"] | |
* | |
* If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(5, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(5, 2) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil, "new_5", "new_6"] | |
* | |
* If +length+ is zero or less, replaces no elements: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(1, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d"] | |
* a.fill(1, -1) { |index| "new_#{index}" } # => ["a", "b", "c", "d"] | |
* | |
* With arguments +obj+ and +range+, and a block given, | |
* calls the block with each index in the given range; | |
* replaces the corresponding element with the block's return value. | |
* | |
* If the range is positive and ascending (<tt>range 0 < range.begin <= range.end</tt>, | |
* replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(1..1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"] | |
* | |
* If +range.first+ is negative, does nothing: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-1..1) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"] | |
* | |
* If <tt>range.last</tt> is negative, counts from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(0..-2) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "d"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(1..-2) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "d"] | |
* | |
* If <tt>range.first</tt> and <tt>range.last</tt> are both negative, | |
* both count from the end: | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-1..-1) { |index| "new_#{index}" } # => ["a", "b", "c", "new_3"] | |
* a = ['a', 'b', 'c', 'd'] | |
* a.fill(-2..-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"] | |
*/ | |
static VALUE | |
rb_ary_fill(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE item = Qundef, arg1, arg2; | |
long beg = 0, end = 0, len = 0; | |
if (rb_block_given_p()) { | |
rb_scan_args(argc, argv, "02", &arg1, &arg2); | |
argc += 1; /* hackish */ | |
} | |
else { | |
rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); | |
} | |
switch (argc) { | |
case 1: | |
beg = 0; | |
len = RARRAY_LEN(ary); | |
break; | |
case 2: | |
if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { | |
break; | |
} | |
/* fall through */ | |
case 3: | |
beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); | |
if (beg < 0) { | |
beg = RARRAY_LEN(ary) + beg; | |
if (beg < 0) beg = 0; | |
} | |
len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); | |
break; | |
} | |
rb_ary_modify(ary); | |
if (len < 0) { | |
return ary; | |
} | |
if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { | |
rb_raise(rb_eArgError, "argument too big"); | |
} | |
end = beg + len; | |
if (RARRAY_LEN(ary) < end) { | |
if (end >= ARY_CAPA(ary)) { | |
ary_resize_capa(ary, end); | |
} | |
ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary)); | |
ARY_SET_LEN(ary, end); | |
} | |
if (item == Qundef) { | |
VALUE v; | |
long i; | |
for (i=beg; i<end; i++) { | |
v = rb_yield(LONG2NUM(i)); | |
if (i>=RARRAY_LEN(ary)) break; | |
ARY_SET(ary, i, v); | |
} | |
} | |
else { | |
ary_memfill(ary, beg, len, item); | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array + other_array -> new_array | |
* | |
* Returns a new \Array containing all elements of +array+ | |
* followed by all elements of +other_array+: | |
* a = [0, 1] + [2, 3] | |
* a # => [0, 1, 2, 3] | |
* | |
* Related: #concat. | |
*/ | |
VALUE | |
rb_ary_plus(VALUE x, VALUE y) | |
{ | |
VALUE z; | |
long len, xlen, ylen; | |
y = to_ary(y); | |
xlen = RARRAY_LEN(x); | |
ylen = RARRAY_LEN(y); | |
len = xlen + ylen; | |
z = rb_ary_new2(len); | |
ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR_TRANSIENT(x)); | |
ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR_TRANSIENT(y)); | |
ARY_SET_LEN(z, len); | |
return z; | |
} | |
static VALUE | |
ary_append(VALUE x, VALUE y) | |
{ | |
long n = RARRAY_LEN(y); | |
if (n > 0) { | |
rb_ary_splice(x, RARRAY_LEN(x), 0, RARRAY_CONST_PTR_TRANSIENT(y), n); | |
} | |
return x; | |
} | |
/* | |
* call-seq: | |
* array.concat(*other_arrays) -> self | |
* | |
* Adds to +array+ all elements from each \Array in +other_arrays+; returns +self+: | |
* a = [0, 1] | |
* a.concat([2, 3], [4, 5]) # => [0, 1, 2, 3, 4, 5] | |
*/ | |
static VALUE | |
rb_ary_concat_multi(int argc, VALUE *argv, VALUE ary) | |
{ | |
rb_ary_modify_check(ary); | |
if (argc == 1) { | |
rb_ary_concat(ary, argv[0]); | |
} | |
else if (argc > 1) { | |
int i; | |
VALUE args = rb_ary_tmp_new(argc); | |
for (i = 0; i < argc; i++) { | |
rb_ary_concat(args, argv[i]); | |
} | |
ary_append(ary, args); | |
} | |
ary_verify(ary); | |
return ary; | |
} | |
VALUE | |
rb_ary_concat(VALUE x, VALUE y) | |
{ | |
return ary_append(x, to_ary(y)); | |
} | |
/* | |
* call-seq: | |
* array * n -> new_array | |
* array * string_separator -> new_string | |
* | |
* When non-negative argument \Integer +n+ is given, | |
* returns a new \Array built by concatenating the +n+ copies of +self+: | |
* a = ['x', 'y'] | |
* a * 3 # => ["x", "y", "x", "y", "x", "y"] | |
* | |
* When \String argument +string_separator+ is given, | |
* equivalent to <tt>array.join(string_separator)</tt>: | |
* [0, [0, 1], {foo: 0}] * ', ' # => "0, 0, 1, {:foo=>0}" | |
*/ | |
static VALUE | |
rb_ary_times(VALUE ary, VALUE times) | |
{ | |
VALUE ary2, tmp; | |
const VALUE *ptr; | |
long t, len; | |
tmp = rb_check_string_type(times); | |
if (!NIL_P(tmp)) { | |
return rb_ary_join(ary, tmp); | |
} | |
len = NUM2LONG(times); | |
if (len == 0) { | |
ary2 = ary_new(rb_cArray, 0); | |
goto out; | |
} | |
if (len < 0) { | |
rb_raise(rb_eArgError, "negative argument"); | |
} | |
if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) { | |
rb_raise(rb_eArgError, "argument too big"); | |
} | |
len *= RARRAY_LEN(ary); | |
ary2 = ary_new(rb_cArray, len); | |
ARY_SET_LEN(ary2, len); | |
ptr = RARRAY_CONST_PTR_TRANSIENT(ary); | |
t = RARRAY_LEN(ary); | |
if (0 < t) { | |
ary_memcpy(ary2, 0, t, ptr); | |
while (t <= len/2) { | |
ary_memcpy(ary2, t, t, RARRAY_CONST_PTR_TRANSIENT(ary2)); | |
t *= 2; | |
} | |
if (t < len) { | |
ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR_TRANSIENT(ary2)); | |
} | |
} | |
out: | |
return ary2; | |
} | |
/* | |
* call-seq: | |
* array.assoc(obj) -> found_array or nil | |
* | |
* Returns the first element in +self+ that is an \Array | |
* whose first element <tt>==</tt> +obj+: | |
* a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]] | |
* a.assoc(4) # => [4, 5, 6] | |
* | |
* Returns +nil+ if no such element is found. | |
* | |
* Related: #rassoc. | |
*/ | |
VALUE | |
rb_ary_assoc(VALUE ary, VALUE key) | |
{ | |
long i; | |
VALUE v; | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
v = rb_check_array_type(RARRAY_AREF(ary, i)); | |
if (!NIL_P(v) && RARRAY_LEN(v) > 0 && | |
rb_equal(RARRAY_AREF(v, 0), key)) | |
return v; | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* array.rassoc(obj) -> found_array or nil | |
* | |
* Returns the first element in +self+ that is an \Array | |
* whose second element <tt>==</tt> +obj+: | |
* a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]] | |
* a.rassoc(4) # => [2, 4] | |
* | |
* Returns +nil+ if no such element is found. | |
* | |
* Related: #assoc. | |
*/ | |
VALUE | |
rb_ary_rassoc(VALUE ary, VALUE value) | |
{ | |
long i; | |
VALUE v; | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (RB_TYPE_P(v, T_ARRAY) && | |
RARRAY_LEN(v) > 1 && | |
rb_equal(RARRAY_AREF(v, 1), value)) | |
return v; | |
} | |
return Qnil; | |
} | |
static VALUE | |
recursive_equal(VALUE ary1, VALUE ary2, int recur) | |
{ | |
long i, len1; | |
const VALUE *p1, *p2; | |
if (recur) return Qtrue; /* Subtle! */ | |
/* rb_equal() can evacuate ptrs */ | |
p1 = RARRAY_CONST_PTR(ary1); | |
p2 = RARRAY_CONST_PTR(ary2); | |
len1 = RARRAY_LEN(ary1); | |
for (i = 0; i < len1; i++) { | |
if (*p1 != *p2) { | |
if (rb_equal(*p1, *p2)) { | |
len1 = RARRAY_LEN(ary1); | |
if (len1 != RARRAY_LEN(ary2)) | |
return Qfalse; | |
if (len1 < i) | |
return Qtrue; | |
p1 = RARRAY_CONST_PTR(ary1) + i; | |
p2 = RARRAY_CONST_PTR(ary2) + i; | |
} | |
else { | |
return Qfalse; | |
} | |
} | |
p1++; | |
p2++; | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* array == other_array -> true or false | |
* | |
* Returns +true+ if both <tt>array.size == other_array.size</tt> | |
* and for each index +i+ in +array+, <tt>array[i] == other_array[i]</tt>: | |
* a0 = [:foo, 'bar', 2] | |
* a1 = [:foo, 'bar', 2.0] | |
* a1 == a0 # => true | |
* [] == [] # => true | |
* | |
* Otherwise, returns +false+. | |
* | |
* This method is different from method Array#eql?, | |
* which compares elements using <tt>Object#eql?</tt>. | |
*/ | |
static VALUE | |
rb_ary_equal(VALUE ary1, VALUE ary2) | |
{ | |
if (ary1 == ary2) return Qtrue; | |
if (!RB_TYPE_P(ary2, T_ARRAY)) { | |
if (!rb_respond_to(ary2, idTo_ary)) { | |
return Qfalse; | |
} | |
return rb_equal(ary2, ary1); | |
} | |
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; | |
if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue; | |
return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2); | |
} | |
static VALUE | |
recursive_eql(VALUE ary1, VALUE ary2, int recur) | |
{ | |
long i; | |
if (recur) return Qtrue; /* Subtle! */ | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i))) | |
return Qfalse; | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* array.eql? other_array -> true or false | |
* | |
* Returns +true+ if +self+ and +other_array+ are the same size, | |
* and if, for each index +i+ in +self+, <tt>self[i].eql? other_array[i]</tt>: | |
* a0 = [:foo, 'bar', 2] | |
* a1 = [:foo, 'bar', 2] | |
* a1.eql?(a0) # => true | |
* | |
* Otherwise, returns +false+. | |
* | |
* This method is different from method {Array#==}[#method-i-3D-3D], | |
* which compares using method <tt>Object#==</tt>. | |
*/ | |
static VALUE | |
rb_ary_eql(VALUE ary1, VALUE ary2) | |
{ | |
if (ary1 == ary2) return Qtrue; | |
if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse; | |
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; | |
if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue; | |
return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2); | |
} | |
/* | |
* call-seq: | |
* array.hash -> integer | |
* | |
* Returns the integer hash value for +self+. | |
* | |
* Two arrays with the same content will have the same hash code (and will compare using eql?): | |
* [0, 1, 2].hash == [0, 1, 2].hash # => true | |
* [0, 1, 2].hash == [0, 1, 3].hash # => false | |
*/ | |
static VALUE | |
rb_ary_hash(VALUE ary) | |
{ | |
long i; | |
st_index_t h; | |
VALUE n; | |
h = rb_hash_start(RARRAY_LEN(ary)); | |
h = rb_hash_uint(h, (st_index_t)rb_ary_hash); | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
n = rb_hash(RARRAY_AREF(ary, i)); | |
h = rb_hash_uint(h, NUM2LONG(n)); | |
} | |
h = rb_hash_end(h); | |
return ST2FIX(h); | |
} | |
/* | |
* call-seq: | |
* array.include?(obj) -> true or false | |
* | |
* Returns +true+ if for some index +i+ in +self+, <tt>obj == self[i]</tt>; | |
* otherwise +false+: | |
* [0, 1, 2].include?(2) # => true | |
* [0, 1, 2].include?(3) # => false | |
*/ | |
VALUE | |
rb_ary_includes(VALUE ary, VALUE item) | |
{ | |
long i; | |
VALUE e; | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (rb_equal(e, item)) { | |
return Qtrue; | |
} | |
} | |
return Qfalse; | |
} | |
static VALUE | |
rb_ary_includes_by_eql(VALUE ary, VALUE item) | |
{ | |
long i; | |
VALUE e; | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (rb_eql(item, e)) { | |
return Qtrue; | |
} | |
} | |
return Qfalse; | |
} | |
static VALUE | |
recursive_cmp(VALUE ary1, VALUE ary2, int recur) | |
{ | |
long i, len; | |
if (recur) return Qundef; /* Subtle! */ | |
len = RARRAY_LEN(ary1); | |
if (len > RARRAY_LEN(ary2)) { | |
len = RARRAY_LEN(ary2); | |
} | |
for (i=0; i<len; i++) { | |
VALUE e1 = rb_ary_elt(ary1, i), e2 = rb_ary_elt(ary2, i); | |
VALUE v = rb_funcallv(e1, id_cmp, 1, &e2); | |
if (v != INT2FIX(0)) { | |
return v; | |
} | |
} | |
return Qundef; | |
} | |
/* | |
* call-seq: | |
* array <=> other_array -> -1, 0, or 1 | |
* | |
* Returns -1, 0, or 1 as +self+ is less than, equal to, or greater than +other_array+. | |
* For each index +i+ in +self+, evaluates <tt>result = self[i] <=> other_array[i]</tt>. | |
* | |
* Returns -1 if any result is -1: | |
* [0, 1, 2] <=> [0, 1, 3] # => -1 | |
* | |
* Returns 1 if any result is 1: | |
* [0, 1, 2] <=> [0, 1, 1] # => 1 | |
* | |
* When all results are zero: | |
* - Returns -1 if +array+ is smaller than +other_array+: | |
* [0, 1, 2] <=> [0, 1, 2, 3] # => -1 | |
* - Returns 1 if +array+ is larger than +other_array+: | |
* [0, 1, 2] <=> [0, 1] # => 1 | |
* - Returns 0 if +array+ and +other_array+ are the same size: | |
* [0, 1, 2] <=> [0, 1, 2] # => 0 | |
*/ | |
VALUE | |
rb_ary_cmp(VALUE ary1, VALUE ary2) | |
{ | |
long len; | |
VALUE v; | |
ary2 = rb_check_array_type(ary2); | |
if (NIL_P(ary2)) return Qnil; | |
if (ary1 == ary2) return INT2FIX(0); | |
v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2); | |
if (v != Qundef) return v; | |
len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2); | |
if (len == 0) return INT2FIX(0); | |
if (len > 0) return INT2FIX(1); | |
return INT2FIX(-1); | |
} | |
static VALUE | |
ary_add_hash(VALUE hash, VALUE ary) | |
{ | |
long i; | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
rb_hash_add_new_element(hash, elt, elt); | |
} | |
return hash; | |
} | |
static inline VALUE | |
ary_tmp_hash_new(VALUE ary) | |
{ | |
long size = RARRAY_LEN(ary); | |
VALUE hash = rb_hash_new_with_size(size); | |
RBASIC_CLEAR_CLASS(hash); | |
return hash; | |
} | |
static VALUE | |
ary_make_hash(VALUE ary) | |
{ | |
VALUE hash = ary_tmp_hash_new(ary); | |
return ary_add_hash(hash, ary); | |
} | |
static VALUE | |
ary_add_hash_by(VALUE hash, VALUE ary) | |
{ | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
VALUE v = rb_ary_elt(ary, i), k = rb_yield(v); | |
rb_hash_add_new_element(hash, k, v); | |
} | |
return hash; | |
} | |
static VALUE | |
ary_make_hash_by(VALUE ary) | |
{ | |
VALUE hash = ary_tmp_hash_new(ary); | |
return ary_add_hash_by(hash, ary); | |
} | |
static inline void | |
ary_recycle_hash(VALUE hash) | |
{ | |
assert(RBASIC_CLASS(hash) == 0); | |
if (RHASH_ST_TABLE_P(hash)) { | |
st_table *tbl = RHASH_ST_TABLE(hash); | |
st_free_table(tbl); | |
RHASH_ST_CLEAR(hash); | |
} | |
} | |
/* | |
* call-seq: | |
* array - other_array -> new_array | |
* | |
* Returns a new \Array containing only those elements from +array+ | |
* that are not found in \Array +other_array+; | |
* items are compared using <tt>eql?</tt>; | |
* the order from +array+ is preserved: | |
* [0, 1, 1, 2, 1, 1, 3, 1, 1] - [1] # => [0, 2, 3] | |
* [0, 1, 2, 3] - [3, 0] # => [1, 2] | |
* [0, 1, 2] - [4] # => [0, 1, 2] | |
* | |
* Related: Array#difference. | |
*/ | |
static VALUE | |
rb_ary_diff(VALUE ary1, VALUE ary2) | |
{ | |
VALUE ary3; | |
VALUE hash; | |
long i; | |
ary2 = to_ary(ary2); | |
if (RARRAY_LEN(ary2) == 0) { return ary_make_shared_copy(ary1); } | |
ary3 = rb_ary_new(); | |
if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN || RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) { | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
VALUE elt = rb_ary_elt(ary1, i); | |
if (rb_ary_includes_by_eql(ary2, elt)) continue; | |
rb_ary_push(ary3, elt); | |
} | |
return ary3; | |
} | |
hash = ary_make_hash(ary2); | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
if (rb_hash_stlike_lookup(hash, RARRAY_AREF(ary1, i), NULL)) continue; | |
rb_ary_push(ary3, rb_ary_elt(ary1, i)); | |
} | |
ary_recycle_hash(hash); | |
return ary3; | |
} | |
/* | |
* call-seq: | |
* array.difference(*other_arrays) -> new_array | |
* | |
* Returns a new \Array containing only those elements from +self+ | |
* that are not found in any of the Arrays +other_arrays+; | |
* items are compared using <tt>eql?</tt>; order from +self+ is preserved: | |
* [0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3] | |
* [0, 1, 2, 3].difference([3, 0], [1, 3]) # => [2] | |
* [0, 1, 2].difference([4]) # => [0, 1, 2] | |
* | |
* Returns a copy of +self+ if no arguments given. | |
* | |
* Related: Array#-. | |
*/ | |
static VALUE | |
rb_ary_difference_multi(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE ary_diff; | |
long i, length; | |
volatile VALUE t0; | |
bool *is_hash = ALLOCV_N(bool, t0, argc); | |
ary_diff = rb_ary_new(); | |
length = RARRAY_LEN(ary); | |
for (i = 0; i < argc; i++) { | |
argv[i] = to_ary(argv[i]); | |
is_hash[i] = (length > SMALL_ARRAY_LEN && RARRAY_LEN(argv[i]) > SMALL_ARRAY_LEN); | |
if (is_hash[i]) argv[i] = ary_make_hash(argv[i]); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
int j; | |
VALUE elt = rb_ary_elt(ary, i); | |
for (j = 0; j < argc; j++) { | |
if (is_hash[j]) { | |
if (rb_hash_stlike_lookup(argv[j], RARRAY_AREF(ary, i), NULL)) | |
break; | |
} | |
else { | |
if (rb_ary_includes_by_eql(argv[j], elt)) break; | |
} | |
} | |
if (j == argc) rb_ary_push(ary_diff, elt); | |
} | |
ALLOCV_END(t0); | |
return ary_diff; | |
} | |
/* | |
* call-seq: | |
* array & other_array -> new_array | |
* | |
* Returns a new \Array containing each element found in both +array+ and \Array +other_array+; | |
* duplicates are omitted; items are compared using <tt>eql?</tt>: | |
* [0, 1, 2, 3] & [1, 2] # => [1, 2] | |
* [0, 1, 0, 1] & [0, 1] # => [0, 1] | |
* | |
* Preserves order from +array+: | |
* [0, 1, 2] & [3, 2, 1, 0] # => [0, 1, 2] | |
* | |
* Related: Array#intersection. | |
*/ | |
static VALUE | |
rb_ary_and(VALUE ary1, VALUE ary2) | |
{ | |
VALUE hash, ary3, v; | |
st_data_t vv; | |
long i; | |
ary2 = to_ary(ary2); | |
ary3 = rb_ary_new(); | |
if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return ary3; | |
if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) { | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
v = RARRAY_AREF(ary1, i); | |
if (!rb_ary_includes_by_eql(ary2, v)) continue; | |
if (rb_ary_includes_by_eql(ary3, v)) continue; | |
rb_ary_push(ary3, v); | |
} | |
return ary3; | |
} | |
hash = ary_make_hash(ary2); | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
v = RARRAY_AREF(ary1, i); | |
vv = (st_data_t)v; | |
if (rb_hash_stlike_delete(hash, &vv, 0)) { | |
rb_ary_push(ary3, v); | |
} | |
} | |
ary_recycle_hash(hash); | |
return ary3; | |
} | |
/* | |
* call-seq: | |
* array.intersection(*other_arrays) -> new_array | |
* | |
* Returns a new \Array containing each element found both in +self+ | |
* and in all of the given Arrays +other_arrays+; | |
* duplicates are omitted; items are compared using <tt>eql?</tt>: | |
* [0, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1] | |
* [0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1] | |
* | |
* Preserves order from +self+: | |
* [0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2] | |
* | |
* Returns a copy of +self+ if no arguments given. | |
* | |
* Related: Array#&. | |
*/ | |
static VALUE | |
rb_ary_intersection_multi(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE result = rb_ary_dup(ary); | |
int i; | |
for (i = 0; i < argc; i++) { | |
result = rb_ary_and(result, argv[i]); | |
} | |
return result; | |
} | |
static int | |
ary_hash_orset(st_data_t *key, st_data_t *value, st_data_t arg, int existing) | |
{ | |
if (existing) return ST_STOP; | |
*key = *value = (VALUE)arg; | |
return ST_CONTINUE; | |
} | |
static void | |
rb_ary_union(VALUE ary_union, VALUE ary) | |
{ | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = rb_ary_elt(ary, i); | |
if (rb_ary_includes_by_eql(ary_union, elt)) continue; | |
rb_ary_push(ary_union, elt); | |
} | |
} | |
static void | |
rb_ary_union_hash(VALUE hash, VALUE ary2) | |
{ | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary2); i++) { | |
VALUE elt = RARRAY_AREF(ary2, i); | |
if (!rb_hash_stlike_update(hash, (st_data_t)elt, ary_hash_orset, (st_data_t)elt)) { | |
RB_OBJ_WRITTEN(hash, Qundef, elt); | |
} | |
} | |
} | |
/* | |
* call-seq: | |
* array | other_array -> new_array | |
* | |
* Returns the union of +array+ and \Array +other_array+; | |
* duplicates are removed; order is preserved; | |
* items are compared using <tt>eql?</tt>: | |
* [0, 1] | [2, 3] # => [0, 1, 2, 3] | |
* [0, 1, 1] | [2, 2, 3] # => [0, 1, 2, 3] | |
* [0, 1, 2] | [3, 2, 1, 0] # => [0, 1, 2, 3] | |
* | |
* Related: Array#union. | |
*/ | |
static VALUE | |
rb_ary_or(VALUE ary1, VALUE ary2) | |
{ | |
VALUE hash, ary3; | |
ary2 = to_ary(ary2); | |
if (RARRAY_LEN(ary1) + RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) { | |
ary3 = rb_ary_new(); | |
rb_ary_union(ary3, ary1); | |
rb_ary_union(ary3, ary2); | |
return ary3; | |
} | |
hash = ary_make_hash(ary1); | |
rb_ary_union_hash(hash, ary2); | |
ary3 = rb_hash_values(hash); | |
ary_recycle_hash(hash); | |
return ary3; | |
} | |
/* | |
* call-seq: | |
* array.union(*other_arrays) -> new_array | |
* | |
* Returns a new \Array that is the union of +self+ and all given Arrays +other_arrays+; | |
* duplicates are removed; order is preserved; items are compared using <tt>eql?</tt>: | |
* [0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7] | |
* [0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3] | |
* [0, 1, 2, 3].union([3, 2], [1, 0]) # => [0, 1, 2, 3] | |
* | |
* Returns a copy of +self+ if no arguments given. | |
* | |
* Related: Array#|. | |
*/ | |
static VALUE | |
rb_ary_union_multi(int argc, VALUE *argv, VALUE ary) | |
{ | |
int i; | |
long sum; | |
VALUE hash, ary_union; | |
sum = RARRAY_LEN(ary); | |
for (i = 0; i < argc; i++) { | |
argv[i] = to_ary(argv[i]); | |
sum += RARRAY_LEN(argv[i]); | |
} | |
if (sum <= SMALL_ARRAY_LEN) { | |
ary_union = rb_ary_new(); | |
rb_ary_union(ary_union, ary); | |
for (i = 0; i < argc; i++) rb_ary_union(ary_union, argv[i]); | |
return ary_union; | |
} | |
hash = ary_make_hash(ary); | |
for (i = 0; i < argc; i++) rb_ary_union_hash(hash, argv[i]); | |
ary_union = rb_hash_values(hash); | |
ary_recycle_hash(hash); | |
return ary_union; | |
} | |
/* | |
* call-seq: | |
* ary.intersect?(other_ary) -> true or false | |
* | |
* Returns +true+ if the array and +other_ary+ have at least one element in | |
* common, otherwise returns +false+. | |
* | |
* a = [ 1, 2, 3 ] | |
* b = [ 3, 4, 5 ] | |
* c = [ 5, 6, 7 ] | |
* a.intersect?(b) #=> true | |
* a.intersect?(c) #=> false | |
*/ | |
static VALUE | |
rb_ary_intersect_p(VALUE ary1, VALUE ary2) | |
{ | |
VALUE hash, v, result, shorter, longer; | |
st_data_t vv; | |
long i; | |
ary2 = to_ary(ary2); | |
if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return Qfalse; | |
if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) { | |
for (i=0; i<RARRAY_LEN(ary1); i++) { | |
v = RARRAY_AREF(ary1, i); | |
if (rb_ary_includes_by_eql(ary2, v)) return Qtrue; | |
} | |
return Qfalse; | |
} | |
shorter = ary1; | |
longer = ary2; | |
if (RARRAY_LEN(ary1) > RARRAY_LEN(ary2)) { | |
longer = ary1; | |
shorter = ary2; | |
} | |
hash = ary_make_hash(shorter); | |
result = Qfalse; | |
for (i=0; i<RARRAY_LEN(longer); i++) { | |
v = RARRAY_AREF(longer, i); | |
vv = (st_data_t)v; | |
if (rb_hash_stlike_lookup(hash, vv, 0)) { | |
result = Qtrue; | |
break; | |
} | |
} | |
ary_recycle_hash(hash); | |
return result; | |
} | |
static VALUE | |
ary_max_generic(VALUE ary, long i, VALUE vmax) | |
{ | |
RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary)); | |
VALUE v; | |
for (; i < RARRAY_LEN(ary); ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (rb_cmpint(rb_funcallv(vmax, id_cmp, 1, &v), vmax, v) < 0) { | |
vmax = v; | |
} | |
} | |
return vmax; | |
} | |
static VALUE | |
ary_max_opt_fixnum(VALUE ary, long i, VALUE vmax) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(FIXNUM_P(vmax)); | |
VALUE v; | |
for (; i < n; ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (FIXNUM_P(v)) { | |
if ((long)vmax < (long)v) { | |
vmax = v; | |
} | |
} | |
else { | |
return ary_max_generic(ary, i, vmax); | |
} | |
} | |
return vmax; | |
} | |
static VALUE | |
ary_max_opt_float(VALUE ary, long i, VALUE vmax) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(RB_FLOAT_TYPE_P(vmax)); | |
VALUE v; | |
for (; i < n; ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (RB_FLOAT_TYPE_P(v)) { | |
if (rb_float_cmp(vmax, v) < 0) { | |
vmax = v; | |
} | |
} | |
else { | |
return ary_max_generic(ary, i, vmax); | |
} | |
} | |
return vmax; | |
} | |
static VALUE | |
ary_max_opt_string(VALUE ary, long i, VALUE vmax) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(STRING_P(vmax)); | |
VALUE v; | |
for (; i < n; ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (STRING_P(v)) { | |
if (rb_str_cmp(vmax, v) < 0) { | |
vmax = v; | |
} | |
} | |
else { | |
return ary_max_generic(ary, i, vmax); | |
} | |
} | |
return vmax; | |
} | |
/* | |
* call-seq: | |
* array.max -> element | |
* array.max {|a, b| ... } -> element | |
* array.max(n) -> new_array | |
* array.max(n) {|a, b| ... } -> new_array | |
* | |
* Returns one of the following: | |
* - The maximum-valued element from +self+. | |
* - A new \Array of maximum-valued elements selected from +self+. | |
* | |
* When no block is given, each element in +self+ must respond to method <tt><=></tt> | |
* with an \Integer. | |
* | |
* With no argument and no block, returns the element in +self+ | |
* having the maximum value per method <tt><=></tt>: | |
* [0, 1, 2].max # => 2 | |
* | |
* With an argument \Integer +n+ and no block, returns a new \Array with at most +n+ elements, | |
* in descending order per method <tt><=></tt>: | |
* [0, 1, 2, 3].max(3) # => [3, 2, 1] | |
* [0, 1, 2, 3].max(6) # => [3, 2, 1, 0] | |
* | |
* When a block is given, the block must return an \Integer. | |
* | |
* With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements; | |
* returns the element having the maximum value per the block: | |
* ['0', '00', '000'].max {|a, b| a.size <=> b.size } # => "000" | |
* | |
* With an argument +n+ and a block, returns a new \Array with at most +n+ elements, | |
* in descending order per the block: | |
* ['0', '00', '000'].max(2) {|a, b| a.size <=> b.size } # => ["000", "00"] | |
*/ | |
static VALUE | |
rb_ary_max(int argc, VALUE *argv, VALUE ary) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
VALUE result = Qundef, v; | |
VALUE num; | |
long i; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) | |
return rb_nmin_run(ary, num, 0, 1, 1); | |
const long n = RARRAY_LEN(ary); | |
if (rb_block_given_p()) { | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
v = RARRAY_AREF(ary, i); | |
if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) > 0) { | |
result = v; | |
} | |
} | |
} | |
else if (n > 0) { | |
result = RARRAY_AREF(ary, 0); | |
if (n > 1) { | |
if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) { | |
return ary_max_opt_fixnum(ary, 1, result); | |
} | |
else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) { | |
return ary_max_opt_string(ary, 1, result); | |
} | |
else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) { | |
return ary_max_opt_float(ary, 1, result); | |
} | |
else { | |
return ary_max_generic(ary, 1, result); | |
} | |
} | |
} | |
if (result == Qundef) return Qnil; | |
return result; | |
} | |
static VALUE | |
ary_min_generic(VALUE ary, long i, VALUE vmin) | |
{ | |
RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary)); | |
VALUE v; | |
for (; i < RARRAY_LEN(ary); ++i) { | |
v = RARRAY_AREF(ary, i); | |
if (rb_cmpint(rb_funcallv(vmin, id_cmp, 1, &v), vmin, v) > 0) { | |
vmin = v; | |
} | |
} | |
return vmin; | |
} | |
static VALUE | |
ary_min_opt_fixnum(VALUE ary, long i, VALUE vmin) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(FIXNUM_P(vmin)); | |
VALUE a; | |
for (; i < n; ++i) { | |
a = RARRAY_AREF(ary, i); | |
if (FIXNUM_P(a)) { | |
if ((long)vmin > (long)a) { | |
vmin = a; | |
} | |
} | |
else { | |
return ary_min_generic(ary, i, vmin); | |
} | |
} | |
return vmin; | |
} | |
static VALUE | |
ary_min_opt_float(VALUE ary, long i, VALUE vmin) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(RB_FLOAT_TYPE_P(vmin)); | |
VALUE a; | |
for (; i < n; ++i) { | |
a = RARRAY_AREF(ary, i); | |
if (RB_FLOAT_TYPE_P(a)) { | |
if (rb_float_cmp(vmin, a) > 0) { | |
vmin = a; | |
} | |
} | |
else { | |
return ary_min_generic(ary, i, vmin); | |
} | |
} | |
return vmin; | |
} | |
static VALUE | |
ary_min_opt_string(VALUE ary, long i, VALUE vmin) | |
{ | |
const long n = RARRAY_LEN(ary); | |
RUBY_ASSERT(i > 0 && i < n); | |
RUBY_ASSERT(STRING_P(vmin)); | |
VALUE a; | |
for (; i < n; ++i) { | |
a = RARRAY_AREF(ary, i); | |
if (STRING_P(a)) { | |
if (rb_str_cmp(vmin, a) > 0) { | |
vmin = a; | |
} | |
} | |
else { | |
return ary_min_generic(ary, i, vmin); | |
} | |
} | |
return vmin; | |
} | |
/* | |
* call-seq: | |
* array.min -> element | |
* array.min { |a, b| ... } -> element | |
* array.min(n) -> new_array | |
* array.min(n) { |a, b| ... } -> new_array | |
* | |
* Returns one of the following: | |
* - The minimum-valued element from +self+. | |
* - A new \Array of minimum-valued elements selected from +self+. | |
* | |
* When no block is given, each element in +self+ must respond to method <tt><=></tt> | |
* with an \Integer. | |
* | |
* With no argument and no block, returns the element in +self+ | |
* having the minimum value per method <tt><=></tt>: | |
* [0, 1, 2].min # => 0 | |
* | |
* With \Integer argument +n+ and no block, returns a new \Array with at most +n+ elements, | |
* in ascending order per method <tt><=></tt>: | |
* [0, 1, 2, 3].min(3) # => [0, 1, 2] | |
* [0, 1, 2, 3].min(6) # => [0, 1, 2, 3] | |
* | |
* When a block is given, the block must return an Integer. | |
* | |
* With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements; | |
* returns the element having the minimum value per the block: | |
* ['0', '00', '000'].min { |a, b| a.size <=> b.size } # => "0" | |
* | |
* With an argument +n+ and a block, returns a new \Array with at most +n+ elements, | |
* in ascending order per the block: | |
* [0, 1, 2, 3].min(3) # => [0, 1, 2] | |
* [0, 1, 2, 3].min(6) # => [0, 1, 2, 3] | |
*/ | |
static VALUE | |
rb_ary_min(int argc, VALUE *argv, VALUE ary) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
VALUE result = Qundef, v; | |
VALUE num; | |
long i; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) | |
return rb_nmin_run(ary, num, 0, 0, 1); | |
const long n = RARRAY_LEN(ary); | |
if (rb_block_given_p()) { | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
v = RARRAY_AREF(ary, i); | |
if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) < 0) { | |
result = v; | |
} | |
} | |
} | |
else if (n > 0) { | |
result = RARRAY_AREF(ary, 0); | |
if (n > 1) { | |
if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) { | |
return ary_min_opt_fixnum(ary, 1, result); | |
} | |
else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) { | |
return ary_min_opt_string(ary, 1, result); | |
} | |
else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) { | |
return ary_min_opt_float(ary, 1, result); | |
} | |
else { | |
return ary_min_generic(ary, 1, result); | |
} | |
} | |
} | |
if (result == Qundef) return Qnil; | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.minmax -> [min_val, max_val] | |
* array.minmax {|a, b| ... } -> [min_val, max_val] | |
* | |
* Returns a new 2-element \Array containing the minimum and maximum values | |
* from +self+, either per method <tt><=></tt> or per a given block:. | |
* | |
* When no block is given, each element in +self+ must respond to method <tt><=></tt> | |
* with an \Integer; | |
* returns a new 2-element \Array containing the minimum and maximum values | |
* from +self+, per method <tt><=></tt>: | |
* [0, 1, 2].minmax # => [0, 2] | |
* | |
* When a block is given, the block must return an \Integer; | |
* the block is called <tt>self.size-1</tt> times to compare elements; | |
* returns a new 2-element \Array containing the minimum and maximum values | |
* from +self+, per the block: | |
* ['0', '00', '000'].minmax {|a, b| a.size <=> b.size } # => ["0", "000"] | |
*/ | |
static VALUE | |
rb_ary_minmax(VALUE ary) | |
{ | |
if (rb_block_given_p()) { | |
return rb_call_super(0, NULL); | |
} | |
return rb_assoc_new(rb_ary_min(0, 0, ary), rb_ary_max(0, 0, ary)); | |
} | |
static int | |
push_value(st_data_t key, st_data_t val, st_data_t ary) | |
{ | |
rb_ary_push((VALUE)ary, (VALUE)val); | |
return ST_CONTINUE; | |
} | |
/* | |
* call-seq: | |
* array.uniq! -> self or nil | |
* array.uniq! {|element| ... } -> self or nil | |
* | |
* Removes duplicate elements from +self+, the first occurrence always being retained; | |
* returns +self+ if any elements removed, +nil+ otherwise. | |
* | |
* With no block given, identifies and removes elements using method <tt>eql?</tt> | |
* to compare. | |
* | |
* Returns +self+ if any elements removed: | |
* a = [0, 0, 1, 1, 2, 2] | |
* a.uniq! # => [0, 1, 2] | |
* | |
* Returns +nil+ if no elements removed. | |
* | |
* With a block given, calls the block for each element; | |
* identifies (using method <tt>eql?</tt>) and removes | |
* elements for which the block returns duplicate values. | |
* | |
* Returns +self+ if any elements removed: | |
* a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb'] | |
* a.uniq! {|element| element.size } # => ['a', 'aa', 'aaa'] | |
* | |
* Returns +nil+ if no elements removed. | |
*/ | |
static VALUE | |
rb_ary_uniq_bang(VALUE ary) | |
{ | |
VALUE hash; | |
long hash_size; | |
rb_ary_modify_check(ary); | |
if (RARRAY_LEN(ary) <= 1) | |
return Qnil; | |
if (rb_block_given_p()) | |
hash = ary_make_hash_by(ary); | |
else | |
hash = ary_make_hash(ary); | |
hash_size = RHASH_SIZE(hash); | |
if (RARRAY_LEN(ary) == hash_size) { | |
return Qnil; | |
} | |
rb_ary_modify_check(ary); | |
ARY_SET_LEN(ary, 0); | |
if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { | |
rb_ary_unshare(ary); | |
FL_SET_EMBED(ary); | |
} | |
ary_resize_capa(ary, hash_size); | |
rb_hash_foreach(hash, push_value, ary); | |
ary_recycle_hash(hash); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.uniq -> new_array | |
* array.uniq {|element| ... } -> new_array | |
* | |
* Returns a new \Array containing those elements from +self+ that are not duplicates, | |
* the first occurrence always being retained. | |
* | |
* With no block given, identifies and omits duplicates using method <tt>eql?</tt> | |
* to compare. | |
* a = [0, 0, 1, 1, 2, 2] | |
* a.uniq # => [0, 1, 2] | |
* | |
* With a block given, calls the block for each element; | |
* identifies (using method <tt>eql?</tt>) and omits duplicate values, | |
* that is, those elements for which the block returns the same value: | |
* a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb'] | |
* a.uniq {|element| element.size } # => ["a", "aa", "aaa"] | |
*/ | |
static VALUE | |
rb_ary_uniq(VALUE ary) | |
{ | |
VALUE hash, uniq; | |
if (RARRAY_LEN(ary) <= 1) { | |
hash = 0; | |
uniq = rb_ary_dup(ary); | |
} | |
else if (rb_block_given_p()) { | |
hash = ary_make_hash_by(ary); | |
uniq = rb_hash_values(hash); | |
} | |
else { | |
hash = ary_make_hash(ary); | |
uniq = rb_hash_values(hash); | |
} | |
if (hash) { | |
ary_recycle_hash(hash); | |
} | |
return uniq; | |
} | |
/* | |
* call-seq: | |
* array.compact! -> self or nil | |
* | |
* Removes all +nil+ elements from +self+. | |
* | |
* Returns +self+ if any elements removed, otherwise +nil+. | |
*/ | |
static VALUE | |
rb_ary_compact_bang(VALUE ary) | |
{ | |
VALUE *p, *t, *end; | |
long n; | |
rb_ary_modify(ary); | |
p = t = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary); /* WB: no new reference */ | |
end = p + RARRAY_LEN(ary); | |
while (t < end) { | |
if (NIL_P(*t)) t++; | |
else *p++ = *t++; | |
} | |
n = p - RARRAY_CONST_PTR_TRANSIENT(ary); | |
if (RARRAY_LEN(ary) == n) { | |
return Qnil; | |
} | |
ary_resize_smaller(ary, n); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.compact -> new_array | |
* | |
* Returns a new \Array containing all non-+nil+ elements from +self+: | |
* a = [nil, 0, nil, 1, nil, 2, nil] | |
* a.compact # => [0, 1, 2] | |
*/ | |
static VALUE | |
rb_ary_compact(VALUE ary) | |
{ | |
ary = rb_ary_dup(ary); | |
rb_ary_compact_bang(ary); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.count -> an_integer | |
* array.count(obj) -> an_integer | |
* array.count {|element| ... } -> an_integer | |
* | |
* Returns a count of specified elements. | |
* | |
* With no argument and no block, returns the count of all elements: | |
* [0, 1, 2].count # => 3 | |
* [].count # => 0 | |
* | |
* With argument +obj+, returns the count of elements <tt>==</tt> to +obj+: | |
* [0, 1, 2, 0.0].count(0) # => 2 | |
* [0, 1, 2].count(3) # => 0 | |
* | |
* With no argument and a block given, calls the block with each element; | |
* returns the count of elements for which the block returns a truthy value: | |
* [0, 1, 2, 3].count {|element| element > 1} # => 2 | |
* | |
* With argument +obj+ and a block given, issues a warning, ignores the block, | |
* and returns the count of elements <tt>==</tt> to +obj+: | |
*/ | |
static VALUE | |
rb_ary_count(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, n = 0; | |
if (rb_check_arity(argc, 0, 1) == 0) { | |
VALUE v; | |
if (!rb_block_given_p()) | |
return LONG2NUM(RARRAY_LEN(ary)); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
v = RARRAY_AREF(ary, i); | |
if (RTEST(rb_yield(v))) n++; | |
} | |
} | |
else { | |
VALUE obj = argv[0]; | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
if (rb_equal(RARRAY_AREF(ary, i), obj)) n++; | |
} | |
} | |
return LONG2NUM(n); | |
} | |
static VALUE | |
flatten(VALUE ary, int level) | |
{ | |
long i; | |
VALUE stack, result, tmp = 0, elt, vmemo; | |
st_table *memo = 0; | |
st_data_t id; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
elt = RARRAY_AREF(ary, i); | |
tmp = rb_check_array_type(elt); | |
if (!NIL_P(tmp)) { | |
break; | |
} | |
} | |
if (i == RARRAY_LEN(ary)) { | |
return ary; | |
} | |
result = ary_new(0, RARRAY_LEN(ary)); | |
ary_memcpy(result, 0, i, RARRAY_CONST_PTR_TRANSIENT(ary)); | |
ARY_SET_LEN(result, i); | |
stack = ary_new(0, ARY_DEFAULT_SIZE); | |
rb_ary_push(stack, ary); | |
rb_ary_push(stack, LONG2NUM(i + 1)); | |
if (level < 0) { | |
vmemo = rb_hash_new(); | |
RBASIC_CLEAR_CLASS(vmemo); | |
memo = st_init_numtable(); | |
rb_hash_st_table_set(vmemo, memo); | |
st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue); | |
st_insert(memo, (st_data_t)tmp, (st_data_t)Qtrue); | |
} | |
ary = tmp; | |
i = 0; | |
while (1) { | |
while (i < RARRAY_LEN(ary)) { | |
elt = RARRAY_AREF(ary, i++); | |
if (level >= 0 && RARRAY_LEN(stack) / 2 >= level) { | |
rb_ary_push(result, elt); | |
continue; | |
} | |
tmp = rb_check_array_type(elt); | |
if (RBASIC(result)->klass) { | |
if (memo) { | |
RB_GC_GUARD(vmemo); | |
st_clear(memo); | |
} | |
rb_raise(rb_eRuntimeError, "flatten reentered"); | |
} | |
if (NIL_P(tmp)) { | |
rb_ary_push(result, elt); | |
} | |
else { | |
if (memo) { | |
id = (st_data_t)tmp; | |
if (st_is_member(memo, id)) { | |
st_clear(memo); | |
rb_raise(rb_eArgError, "tried to flatten recursive array"); | |
} | |
st_insert(memo, id, (st_data_t)Qtrue); | |
} | |
rb_ary_push(stack, ary); | |
rb_ary_push(stack, LONG2NUM(i)); | |
ary = tmp; | |
i = 0; | |
} | |
} | |
if (RARRAY_LEN(stack) == 0) { | |
break; | |
} | |
if (memo) { | |
id = (st_data_t)ary; | |
st_delete(memo, &id, 0); | |
} | |
tmp = rb_ary_pop(stack); | |
i = NUM2LONG(tmp); | |
ary = rb_ary_pop(stack); | |
} | |
if (memo) { | |
st_clear(memo); | |
} | |
RBASIC_SET_CLASS(result, rb_cArray); | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.flatten! -> self or nil | |
* array.flatten!(level) -> self or nil | |
* | |
* Replaces each nested \Array in +self+ with the elements from that \Array; | |
* returns +self+ if any changes, +nil+ otherwise. | |
* | |
* With non-negative \Integer argument +level+, flattens recursively through +level+ levels: | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten!(1) # => [0, 1, [2, 3], 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten!(2) # => [0, 1, 2, 3, 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten!(3) # => [0, 1, 2, 3, 4, 5] | |
* [0, 1, 2].flatten!(1) # => nil | |
* | |
* With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels: | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten! # => [0, 1, 2, 3, 4, 5] | |
* [0, 1, 2].flatten! # => nil | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten!(-1) # => [0, 1, 2, 3, 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten!(-2) # => [0, 1, 2, 3, 4, 5] | |
* [0, 1, 2].flatten!(-1) # => nil | |
*/ | |
static VALUE | |
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) | |
{ | |
int mod = 0, level = -1; | |
VALUE result, lv; | |
lv = (rb_check_arity(argc, 0, 1) ? argv[0] : Qnil); | |
rb_ary_modify_check(ary); | |
if (!NIL_P(lv)) level = NUM2INT(lv); | |
if (level == 0) return Qnil; | |
result = flatten(ary, level); | |
if (result == ary) { | |
return Qnil; | |
} | |
if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result); | |
rb_ary_replace(ary, result); | |
if (mod) ARY_SET_EMBED_LEN(result, 0); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.flatten -> new_array | |
* array.flatten(level) -> new_array | |
* | |
* Returns a new \Array that is a recursive flattening of +self+: | |
* - Each non-Array element is unchanged. | |
* - Each \Array is replaced by its individual elements. | |
* | |
* With non-negative \Integer argument +level+, flattens recursively through +level+ levels: | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(0) # => [0, [1, [2, 3], 4], 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(1) # => [0, 1, [2, 3], 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(2) # => [0, 1, 2, 3, 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(3) # => [0, 1, 2, 3, 4, 5] | |
* | |
* With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels: | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten # => [0, 1, 2, 3, 4, 5] | |
* [0, 1, 2].flatten # => [0, 1, 2] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(-1) # => [0, 1, 2, 3, 4, 5] | |
* a = [ 0, [ 1, [2, 3], 4 ], 5 ] | |
* a.flatten(-2) # => [0, 1, 2, 3, 4, 5] | |
* [0, 1, 2].flatten(-1) # => [0, 1, 2] | |
*/ | |
static VALUE | |
rb_ary_flatten(int argc, VALUE *argv, VALUE ary) | |
{ | |
int level = -1; | |
VALUE result; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) { | |
level = NUM2INT(argv[0]); | |
if (level == 0) return ary_make_shared_copy(ary); | |
} | |
result = flatten(ary, level); | |
if (result == ary) { | |
result = ary_make_shared_copy(ary); | |
} | |
return result; | |
} | |
#define RAND_UPTO(max) (long)rb_random_ulong_limited((randgen), (max)-1) | |
static VALUE | |
rb_ary_shuffle_bang(rb_execution_context_t *ec, VALUE ary, VALUE randgen) | |
{ | |
long i, len; | |
rb_ary_modify(ary); | |
i = len = RARRAY_LEN(ary); | |
RARRAY_PTR_USE(ary, ptr, { | |
while (i) { | |
long j = RAND_UPTO(i); | |
VALUE tmp; | |
if (len != RARRAY_LEN(ary) || ptr != RARRAY_CONST_PTR_TRANSIENT(ary)) { | |
rb_raise(rb_eRuntimeError, "modified during shuffle"); | |
} | |
tmp = ptr[--i]; | |
ptr[i] = ptr[j]; | |
ptr[j] = tmp; | |
} | |
}); /* WB: no new reference */ | |
return ary; | |
} | |
static VALUE | |
rb_ary_shuffle(rb_execution_context_t *ec, VALUE ary, VALUE randgen) | |
{ | |
ary = rb_ary_dup(ary); | |
rb_ary_shuffle_bang(ec, ary, randgen); | |
return ary; | |
} | |
static VALUE | |
rb_ary_sample(rb_execution_context_t *ec, VALUE ary, VALUE randgen, VALUE nv, VALUE to_array) | |
{ | |
VALUE result; | |
long n, len, i, j, k, idx[10]; | |
long rnds[numberof(idx)]; | |
long memo_threshold; | |
len = RARRAY_LEN(ary); | |
if (!to_array) { | |
if (len < 2) | |
i = 0; | |
else | |
i = RAND_UPTO(len); | |
return rb_ary_elt(ary, i); | |
} | |
n = NUM2LONG(nv); | |
if (n < 0) rb_raise(rb_eArgError, "negative sample number"); | |
if (n > len) n = len; | |
if (n <= numberof(idx)) { | |
for (i = 0; i < n; ++i) { | |
rnds[i] = RAND_UPTO(len - i); | |
} | |
} | |
k = len; | |
len = RARRAY_LEN(ary); | |
if (len < k && n <= numberof(idx)) { | |
for (i = 0; i < n; ++i) { | |
if (rnds[i] >= len) return rb_ary_new_capa(0); | |
} | |
} | |
if (n > len) n = len; | |
switch (n) { | |
case 0: | |
return rb_ary_new_capa(0); | |
case 1: | |
i = rnds[0]; | |
return rb_ary_new_from_args(1, RARRAY_AREF(ary, i)); | |
case 2: | |
i = rnds[0]; | |
j = rnds[1]; | |
if (j >= i) j++; | |
return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j)); | |
case 3: | |
i = rnds[0]; | |
j = rnds[1]; | |
k = rnds[2]; | |
{ | |
long l = j, g = i; | |
if (j >= i) l = i, g = ++j; | |
if (k >= l && (++k >= g)) ++k; | |
} | |
return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k)); | |
} | |
memo_threshold = | |
len < 2560 ? len / 128 : | |
len < 5120 ? len / 64 : | |
len < 10240 ? len / 32 : | |
len / 16; | |
if (n <= numberof(idx)) { | |
long sorted[numberof(idx)]; | |
sorted[0] = idx[0] = rnds[0]; | |
for (i=1; i<n; i++) { | |
k = rnds[i]; | |
for (j = 0; j < i; ++j) { | |
if (k < sorted[j]) break; | |
++k; | |
} | |
memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j)); | |
sorted[j] = idx[i] = k; | |
} | |
result = rb_ary_new_capa(n); | |
RARRAY_PTR_USE_TRANSIENT(result, ptr_result, { | |
for (i=0; i<n; i++) { | |
ptr_result[i] = RARRAY_AREF(ary, idx[i]); | |
} | |
}); | |
} | |
else if (n <= memo_threshold / 2) { | |
long max_idx = 0; | |
#undef RUBY_UNTYPED_DATA_WARNING | |
#define RUBY_UNTYPED_DATA_WARNING 0 | |
VALUE vmemo = Data_Wrap_Struct(0, 0, st_free_table, 0); | |
st_table *memo = st_init_numtable_with_size(n); | |
DATA_PTR(vmemo) = memo; | |
result = rb_ary_new_capa(n); | |
RARRAY_PTR_USE(result, ptr_result, { | |
for (i=0; i<n; i++) { | |
long r = RAND_UPTO(len-i) + i; | |
ptr_result[i] = r; | |
if (r > max_idx) max_idx = r; | |
} | |
len = RARRAY_LEN(ary); | |
if (len <= max_idx) n = 0; | |
else if (n > len) n = len; | |
RARRAY_PTR_USE_TRANSIENT(ary, ptr_ary, { | |
for (i=0; i<n; i++) { | |
long j2 = j = ptr_result[i]; | |
long i2 = i; | |
st_data_t value; | |
if (st_lookup(memo, (st_data_t)i, &value)) i2 = (long)value; | |
if (st_lookup(memo, (st_data_t)j, &value)) j2 = (long)value; | |
st_insert(memo, (st_data_t)j, (st_data_t)i2); | |
ptr_result[i] = ptr_ary[j2]; | |
} | |
}); | |
}); | |
DATA_PTR(vmemo) = 0; | |
st_free_table(memo); | |
} | |
else { | |
result = rb_ary_dup(ary); | |
RBASIC_CLEAR_CLASS(result); | |
RB_GC_GUARD(ary); | |
RARRAY_PTR_USE(result, ptr_result, { | |
for (i=0; i<n; i++) { | |
j = RAND_UPTO(len-i) + i; | |
nv = ptr_result[j]; | |
ptr_result[j] = ptr_result[i]; | |
ptr_result[i] = nv; | |
} | |
}); | |
RBASIC_SET_CLASS_RAW(result, rb_cArray); | |
} | |
ARY_SET_LEN(result, n); | |
return result; | |
} | |
static VALUE | |
rb_ary_cycle_size(VALUE self, VALUE args, VALUE eobj) | |
{ | |
long mul; | |
VALUE n = Qnil; | |
if (args && (RARRAY_LEN(args) > 0)) { | |
n = RARRAY_AREF(args, 0); | |
} | |
if (RARRAY_LEN(self) == 0) return INT2FIX(0); | |
if (n == Qnil) return DBL2NUM(HUGE_VAL); | |
mul = NUM2LONG(n); | |
if (mul <= 0) return INT2FIX(0); | |
n = LONG2FIX(mul); | |
return rb_fix_mul_fix(rb_ary_length(self), n); | |
} | |
/* | |
* call-seq: | |
* array.cycle {|element| ... } -> nil | |
* array.cycle(count) {|element| ... } -> nil | |
* array.cycle -> new_enumerator | |
* array.cycle(count) -> new_enumerator | |
* | |
* When called with positive \Integer argument +count+ and a block, | |
* calls the block with each element, then does so again, | |
* until it has done so +count+ times; returns +nil+: | |
* output = [] | |
* [0, 1].cycle(2) {|element| output.push(element) } # => nil | |
* output # => [0, 1, 0, 1] | |
* | |
* If +count+ is zero or negative, does not call the block: | |
* [0, 1].cycle(0) {|element| fail 'Cannot happen' } # => nil | |
* [0, 1].cycle(-1) {|element| fail 'Cannot happen' } # => nil | |
* | |
* When a block is given, and argument is omitted or +nil+, cycles forever: | |
* # Prints 0 and 1 forever. | |
* [0, 1].cycle {|element| puts element } | |
* [0, 1].cycle(nil) {|element| puts element } | |
* | |
* When no block is given, returns a new \Enumerator: | |
* | |
* [0, 1].cycle(2) # => #<Enumerator: [0, 1]:cycle(2)> | |
* [0, 1].cycle # => # => #<Enumerator: [0, 1]:cycle> | |
* [0, 1].cycle.first(5) # => [0, 1, 0, 1, 0] | |
*/ | |
static VALUE | |
rb_ary_cycle(int argc, VALUE *argv, VALUE ary) | |
{ | |
long n, i; | |
rb_check_arity(argc, 0, 1); | |
RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size); | |
if (argc == 0 || NIL_P(argv[0])) { | |
n = -1; | |
} | |
else { | |
n = NUM2LONG(argv[0]); | |
if (n <= 0) return Qnil; | |
} | |
while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) { | |
for (i=0; i<RARRAY_LEN(ary); i++) { | |
rb_yield(RARRAY_AREF(ary, i)); | |
} | |
} | |
return Qnil; | |
} | |
#define tmpary(n) rb_ary_tmp_new(n) | |
#define tmpary_discard(a) (ary_discard(a), RBASIC_SET_CLASS_RAW(a, rb_cArray)) | |
/* | |
* Build a ruby array of the corresponding values and yield it to the | |
* associated block. | |
* Return the class of +values+ for reentry check. | |
*/ | |
static int | |
yield_indexed_values(const VALUE values, const long r, const long *const p) | |
{ | |
const VALUE result = rb_ary_new2(r); | |
long i; | |
for (i = 0; i < r; i++) ARY_SET(result, i, RARRAY_AREF(values, p[i])); | |
ARY_SET_LEN(result, r); | |
rb_yield(result); | |
return !RBASIC(values)->klass; | |
} | |
/* | |
* Compute permutations of +r+ elements of the set <code>[0..n-1]</code>. | |
* | |
* When we have a complete permutation of array indices, copy the values | |
* at those indices into a new array and yield that array. | |
* | |
* n: the size of the set | |
* r: the number of elements in each permutation | |
* p: the array (of size r) that we're filling in | |
* used: an array of booleans: whether a given index is already used | |
* values: the Ruby array that holds the actual values to permute | |
*/ | |
static void | |
permute0(const long n, const long r, long *const p, char *const used, const VALUE values) | |
{ | |
long i = 0, index = 0; | |
for (;;) { | |
const char *const unused = memchr(&used[i], 0, n-i); | |
if (!unused) { | |
if (!index) break; | |
i = p[--index]; /* pop index */ | |
used[i++] = 0; /* index unused */ | |
} | |
else { | |
i = unused - used; | |
p[index] = i; | |
used[i] = 1; /* mark index used */ | |
++index; | |
if (index < r-1) { /* if not done yet */ | |
p[index] = i = 0; | |
continue; | |
} | |
for (i = 0; i < n; ++i) { | |
if (used[i]) continue; | |
p[index] = i; | |
if (!yield_indexed_values(values, r, p)) { | |
rb_raise(rb_eRuntimeError, "permute reentered"); | |
} | |
} | |
i = p[--index]; /* pop index */ | |
used[i] = 0; /* index unused */ | |
p[index] = ++i; | |
} | |
} | |
} | |
/* | |
* Returns the product of from, from-1, ..., from - how_many + 1. | |
* https://en.wikipedia.org/wiki/Pochhammer_symbol | |
*/ | |
static VALUE | |
descending_factorial(long from, long how_many) | |
{ | |
VALUE cnt; | |
if (how_many > 0) { | |
cnt = LONG2FIX(from); | |
while (--how_many > 0) { | |
long v = --from; | |
cnt = rb_int_mul(cnt, LONG2FIX(v)); | |
} | |
} | |
else { | |
cnt = LONG2FIX(how_many == 0); | |
} | |
return cnt; | |
} | |
static VALUE | |
binomial_coefficient(long comb, long size) | |
{ | |
VALUE r; | |
long i; | |
if (comb > size-comb) { | |
comb = size-comb; | |
} | |
if (comb < 0) { | |
return LONG2FIX(0); | |
} | |
else if (comb == 0) { | |
return LONG2FIX(1); | |
} | |
r = LONG2FIX(size); | |
for (i = 1; i < comb; ++i) { | |
r = rb_int_mul(r, LONG2FIX(size - i)); | |
r = rb_int_idiv(r, LONG2FIX(i + 1)); | |
} | |
return r; | |
} | |
static VALUE | |
rb_ary_permutation_size(VALUE ary, VALUE args, VALUE eobj) | |
{ | |
long n = RARRAY_LEN(ary); | |
long k = (args && (RARRAY_LEN(args) > 0)) ? NUM2LONG(RARRAY_AREF(args, 0)) : n; | |
return descending_factorial(n, k); | |
} | |
/* | |
* call-seq: | |
* array.permutation {|element| ... } -> self | |
* array.permutation(n) {|element| ... } -> self | |
* array.permutation -> new_enumerator | |
* array.permutation(n) -> new_enumerator | |
* | |
* When invoked with a block, yield all permutations of elements of +self+; returns +self+. | |
* The order of permutations is indeterminate. | |
* | |
* When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>) | |
* are given, calls the block with all +n+-tuple permutations of +self+. | |
* | |
* Example: | |
* a = [0, 1, 2] | |
* a.permutation(2) {|permutation| p permutation } | |
* Output: | |
* [0, 1] | |
* [0, 2] | |
* [1, 0] | |
* [1, 2] | |
* [2, 0] | |
* [2, 1] | |
* Another example: | |
* a = [0, 1, 2] | |
* a.permutation(3) {|permutation| p permutation } | |
* Output: | |
* [0, 1, 2] | |
* [0, 2, 1] | |
* [1, 0, 2] | |
* [1, 2, 0] | |
* [2, 0, 1] | |
* [2, 1, 0] | |
* | |
* When +n+ is zero, calls the block once with a new empty \Array: | |
* a = [0, 1, 2] | |
* a.permutation(0) {|permutation| p permutation } | |
* Output: | |
* [] | |
* | |
* When +n+ is out of range (negative or larger than <tt>self.size</tt>), | |
* does not call the block: | |
* a = [0, 1, 2] | |
* a.permutation(-1) {|permutation| fail 'Cannot happen' } | |
* a.permutation(4) {|permutation| fail 'Cannot happen' } | |
* | |
* When a block given but no argument, | |
* behaves the same as <tt>a.permutation(a.size)</tt>: | |
* a = [0, 1, 2] | |
* a.permutation {|permutation| p permutation } | |
* Output: | |
* [0, 1, 2] | |
* [0, 2, 1] | |
* [1, 0, 2] | |
* [1, 2, 0] | |
* [2, 0, 1] | |
* [2, 1, 0] | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [0, 1, 2] | |
* a.permutation # => #<Enumerator: [0, 1, 2]:permutation> | |
* a.permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)> | |
*/ | |
static VALUE | |
rb_ary_permutation(int argc, VALUE *argv, VALUE ary) | |
{ | |
long r, n, i; | |
n = RARRAY_LEN(ary); /* Array length */ | |
RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size); /* Return enumerator if no block */ | |
r = n; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) | |
r = NUM2LONG(argv[0]); /* Permutation size from argument */ | |
if (r < 0 || n < r) { | |
/* no permutations: yield nothing */ | |
} | |
else if (r == 0) { /* exactly one permutation: the zero-length array */ | |
rb_yield(rb_ary_new2(0)); | |
} | |
else if (r == 1) { /* this is a special, easy case */ | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); | |
} | |
} | |
else { /* this is the general case */ | |
volatile VALUE t0; | |
long *p = ALLOCV_N(long, t0, r+roomof(n, sizeof(long))); | |
char *used = (char*)(p + r); | |
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ | |
RBASIC_CLEAR_CLASS(ary0); | |
MEMZERO(used, char, n); /* initialize array */ | |
permute0(n, r, p, used, ary0); /* compute and yield permutations */ | |
ALLOCV_END(t0); | |
RBASIC_SET_CLASS_RAW(ary0, rb_cArray); | |
} | |
return ary; | |
} | |
static void | |
combinate0(const long len, const long n, long *const stack, const VALUE values) | |
{ | |
long lev = 0; | |
MEMZERO(stack+1, long, n); | |
stack[0] = -1; | |
for (;;) { | |
for (lev++; lev < n; lev++) { | |
stack[lev+1] = stack[lev]+1; | |
} | |
if (!yield_indexed_values(values, n, stack+1)) { | |
rb_raise(rb_eRuntimeError, "combination reentered"); | |
} | |
do { | |
if (lev == 0) return; | |
stack[lev--]++; | |
} while (stack[lev+1]+n == len+lev+1); | |
} | |
} | |
static VALUE | |
rb_ary_combination_size(VALUE ary, VALUE args, VALUE eobj) | |
{ | |
long n = RARRAY_LEN(ary); | |
long k = NUM2LONG(RARRAY_AREF(args, 0)); | |
return binomial_coefficient(k, n); | |
} | |
/* | |
* call-seq: | |
* array.combination(n) {|element| ... } -> self | |
* array.combination(n) -> new_enumerator | |
* | |
* Calls the block, if given, with combinations of elements of +self+; | |
* returns +self+. The order of combinations is indeterminate. | |
* | |
* When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>) | |
* are given, calls the block with all +n+-tuple combinations of +self+. | |
* | |
* Example: | |
* a = [0, 1, 2] | |
* a.combination(2) {|combination| p combination } | |
* Output: | |
* [0, 1] | |
* [0, 2] | |
* [1, 2] | |
* | |
* Another example: | |
* a = [0, 1, 2] | |
* a.combination(3) {|combination| p combination } | |
* Output: | |
* [0, 1, 2] | |
* | |
* When +n+ is zero, calls the block once with a new empty \Array: | |
* a = [0, 1, 2] | |
* a1 = a.combination(0) {|combination| p combination } | |
* Output: | |
* [] | |
* | |
* When +n+ is out of range (negative or larger than <tt>self.size</tt>), | |
* does not call the block: | |
* a = [0, 1, 2] | |
* a.combination(-1) {|combination| fail 'Cannot happen' } | |
* a.combination(4) {|combination| fail 'Cannot happen' } | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [0, 1, 2] | |
* a.combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)> | |
*/ | |
static VALUE | |
rb_ary_combination(VALUE ary, VALUE num) | |
{ | |
long i, n, len; | |
n = NUM2LONG(num); | |
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size); | |
len = RARRAY_LEN(ary); | |
if (n < 0 || len < n) { | |
/* yield nothing */ | |
} | |
else if (n == 0) { | |
rb_yield(rb_ary_new2(0)); | |
} | |
else if (n == 1) { | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); | |
} | |
} | |
else { | |
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ | |
volatile VALUE t0; | |
long *stack = ALLOCV_N(long, t0, n+1); | |
RBASIC_CLEAR_CLASS(ary0); | |
combinate0(len, n, stack, ary0); | |
ALLOCV_END(t0); | |
RBASIC_SET_CLASS_RAW(ary0, rb_cArray); | |
} | |
return ary; | |
} | |
/* | |
* Compute repeated permutations of +r+ elements of the set | |
* <code>[0..n-1]</code>. | |
* | |
* When we have a complete repeated permutation of array indices, copy the | |
* values at those indices into a new array and yield that array. | |
* | |
* n: the size of the set | |
* r: the number of elements in each permutation | |
* p: the array (of size r) that we're filling in | |
* values: the Ruby array that holds the actual values to permute | |
*/ | |
static void | |
rpermute0(const long n, const long r, long *const p, const VALUE values) | |
{ | |
long i = 0, index = 0; | |
p[index] = i; | |
for (;;) { | |
if (++index < r-1) { | |
p[index] = i = 0; | |
continue; | |
} | |
for (i = 0; i < n; ++i) { | |
p[index] = i; | |
if (!yield_indexed_values(values, r, p)) { | |
rb_raise(rb_eRuntimeError, "repeated permute reentered"); | |
} | |
} | |
do { | |
if (index <= 0) return; | |
} while ((i = ++p[--index]) >= n); | |
} | |
} | |
static VALUE | |
rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj) | |
{ | |
long n = RARRAY_LEN(ary); | |
long k = NUM2LONG(RARRAY_AREF(args, 0)); | |
if (k < 0) { | |
return LONG2FIX(0); | |
} | |
if (n <= 0) { | |
return LONG2FIX(!k); | |
} | |
return rb_int_positive_pow(n, (unsigned long)k); | |
} | |
/* | |
* call-seq: | |
* array.repeated_permutation(n) {|permutation| ... } -> self | |
* array.repeated_permutation(n) -> new_enumerator | |
* | |
* Calls the block with each repeated permutation of length +n+ of the elements of +self+; | |
* each permutation is an \Array; | |
* returns +self+. The order of the permutations is indeterminate. | |
* | |
* When a block and a positive \Integer argument +n+ are given, calls the block with each | |
* +n+-tuple repeated permutation of the elements of +self+. | |
* The number of permutations is <tt>self.size**n</tt>. | |
* | |
* +n+ = 1: | |
* a = [0, 1, 2] | |
* a.repeated_permutation(1) {|permutation| p permutation } | |
* Output: | |
* [0] | |
* [1] | |
* [2] | |
* | |
* +n+ = 2: | |
* a.repeated_permutation(2) {|permutation| p permutation } | |
* Output: | |
* [0, 0] | |
* [0, 1] | |
* [0, 2] | |
* [1, 0] | |
* [1, 1] | |
* [1, 2] | |
* [2, 0] | |
* [2, 1] | |
* [2, 2] | |
* | |
* If +n+ is zero, calls the block once with an empty \Array. | |
* | |
* If +n+ is negative, does not call the block: | |
* a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' } | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [0, 1, 2] | |
* a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)> | |
* | |
* Using Enumerators, it's convenient to show the permutations and counts | |
* for some values of +n+: | |
* e = a.repeated_permutation(0) | |
* e.size # => 1 | |
* e.to_a # => [[]] | |
* e = a.repeated_permutation(1) | |
* e.size # => 3 | |
* e.to_a # => [[0], [1], [2]] | |
* e = a.repeated_permutation(2) | |
* e.size # => 9 | |
* e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] | |
*/ | |
static VALUE | |
rb_ary_repeated_permutation(VALUE ary, VALUE num) | |
{ | |
long r, n, i; | |
n = RARRAY_LEN(ary); /* Array length */ | |
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size); /* Return Enumerator if no block */ | |
r = NUM2LONG(num); /* Permutation size from argument */ | |
if (r < 0) { | |
/* no permutations: yield nothing */ | |
} | |
else if (r == 0) { /* exactly one permutation: the zero-length array */ | |
rb_yield(rb_ary_new2(0)); | |
} | |
else if (r == 1) { /* this is a special, easy case */ | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); | |
} | |
} | |
else { /* this is the general case */ | |
volatile VALUE t0; | |
long *p = ALLOCV_N(long, t0, r); | |
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ | |
RBASIC_CLEAR_CLASS(ary0); | |
rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */ | |
ALLOCV_END(t0); | |
RBASIC_SET_CLASS_RAW(ary0, rb_cArray); | |
} | |
return ary; | |
} | |
static void | |
rcombinate0(const long n, const long r, long *const p, const long rest, const VALUE values) | |
{ | |
long i = 0, index = 0; | |
p[index] = i; | |
for (;;) { | |
if (++index < r-1) { | |
p[index] = i; | |
continue; | |
} | |
for (; i < n; ++i) { | |
p[index] = i; | |
if (!yield_indexed_values(values, r, p)) { | |
rb_raise(rb_eRuntimeError, "repeated combination reentered"); | |
} | |
} | |
do { | |
if (index <= 0) return; | |
} while ((i = ++p[--index]) >= n); | |
} | |
} | |
static VALUE | |
rb_ary_repeated_combination_size(VALUE ary, VALUE args, VALUE eobj) | |
{ | |
long n = RARRAY_LEN(ary); | |
long k = NUM2LONG(RARRAY_AREF(args, 0)); | |
if (k == 0) { | |
return LONG2FIX(1); | |
} | |
return binomial_coefficient(k, n + k - 1); | |
} | |
/* | |
* call-seq: | |
* array.repeated_combination(n) {|combination| ... } -> self | |
* array.repeated_combination(n) -> new_enumerator | |
* | |
* Calls the block with each repeated combination of length +n+ of the elements of +self+; | |
* each combination is an \Array; | |
* returns +self+. The order of the combinations is indeterminate. | |
* | |
* When a block and a positive \Integer argument +n+ are given, calls the block with each | |
* +n+-tuple repeated combination of the elements of +self+. | |
* The number of combinations is <tt>(n+1)(n+2)/2</tt>. | |
* | |
* +n+ = 1: | |
* a = [0, 1, 2] | |
* a.repeated_combination(1) {|combination| p combination } | |
* Output: | |
* [0] | |
* [1] | |
* [2] | |
* | |
* +n+ = 2: | |
* a.repeated_combination(2) {|combination| p combination } | |
* Output: | |
* [0, 0] | |
* [0, 1] | |
* [0, 2] | |
* [1, 1] | |
* [1, 2] | |
* [2, 2] | |
* | |
* If +n+ is zero, calls the block once with an empty \Array. | |
* | |
* If +n+ is negative, does not call the block: | |
* a.repeated_combination(-1) {|combination| fail 'Cannot happen' } | |
* | |
* Returns a new \Enumerator if no block given: | |
* a = [0, 1, 2] | |
* a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)> | |
* | |
* Using Enumerators, it's convenient to show the combinations and counts | |
* for some values of +n+: | |
* e = a.repeated_combination(0) | |
* e.size # => 1 | |
* e.to_a # => [[]] | |
* e = a.repeated_combination(1) | |
* e.size # => 3 | |
* e.to_a # => [[0], [1], [2]] | |
* e = a.repeated_combination(2) | |
* e.size # => 6 | |
* e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]] | |
*/ | |
static VALUE | |
rb_ary_repeated_combination(VALUE ary, VALUE num) | |
{ | |
long n, i, len; | |
n = NUM2LONG(num); /* Combination size from argument */ | |
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size); /* Return enumerator if no block */ | |
len = RARRAY_LEN(ary); | |
if (n < 0) { | |
/* yield nothing */ | |
} | |
else if (n == 0) { | |
rb_yield(rb_ary_new2(0)); | |
} | |
else if (n == 1) { | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); | |
} | |
} | |
else if (len == 0) { | |
/* yield nothing */ | |
} | |
else { | |
volatile VALUE t0; | |
long *p = ALLOCV_N(long, t0, n); | |
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ | |
RBASIC_CLEAR_CLASS(ary0); | |
rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */ | |
ALLOCV_END(t0); | |
RBASIC_SET_CLASS_RAW(ary0, rb_cArray); | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* array.product(*other_arrays) -> new_array | |
* array.product(*other_arrays) {|combination| ... } -> self | |
* | |
* Computes and returns or yields all combinations of elements from all the Arrays, | |
* including both +self+ and +other_arrays+. | |
* - The number of combinations is the product of the sizes of all the arrays, | |
* including both +self+ and +other_arrays+. | |
* - The order of the returned combinations is indeterminate. | |
* | |
* When no block is given, returns the combinations as an \Array of Arrays: | |
* a = [0, 1, 2] | |
* a1 = [3, 4] | |
* a2 = [5, 6] | |
* p = a.product(a1) | |
* p.size # => 6 # a.size * a1.size | |
* p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]] | |
* p = a.product(a1, a2) | |
* p.size # => 12 # a.size * a1.size * a2.size | |
* p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]] | |
* | |
* If any argument is an empty \Array, returns an empty \Array. | |
* | |
* If no argument is given, returns an \Array of 1-element Arrays, | |
* each containing an element of +self+: | |
* a.product # => [[0], [1], [2]] | |
* | |
* When a block is given, yields each combination as an \Array; returns +self+: | |
* a.product(a1) {|combination| p combination } | |
* Output: | |
* [0, 3] | |
* [0, 4] | |
* [1, 3] | |
* [1, 4] | |
* [2, 3] | |
* [2, 4] | |
* | |
* If any argument is an empty \Array, does not call the block: | |
* a.product(a1, a2, []) {|combination| fail 'Cannot happen' } | |
* | |
* If no argument is given, yields each element of +self+ as a 1-element \Array: | |
* a.product {|combination| p combination } | |
* Output: | |
* [0] | |
* [1] | |
* [2] | |
*/ | |
static VALUE | |
rb_ary_product(int argc, VALUE *argv, VALUE ary) | |
{ | |
int n = argc+1; /* How many arrays we're operating on */ | |
volatile VALUE t0 = tmpary(n); | |
volatile VALUE t1 = Qundef; | |
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */ | |
int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */ | |
VALUE result = Qnil; /* The array we'll be returning, when no block given */ | |
long i,j; | |
long resultlen = 1; | |
RBASIC_CLEAR_CLASS(t0); | |
/* initialize the arrays of arrays */ | |
ARY_SET_LEN(t0, n); | |
arrays[0] = ary; | |
for (i = 1; i < n; i++) arrays[i] = Qnil; | |
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]); | |
/* initialize the counters for the arrays */ | |
for (i = 0; i < n; i++) counters[i] = 0; | |
/* Otherwise, allocate and fill in an array of results */ | |
if (rb_block_given_p()) { | |
/* Make defensive copies of arrays; exit if any is empty */ | |
for (i = 0; i < n; i++) { | |
if (RARRAY_LEN(arrays[i]) == 0) goto done; | |
arrays[i] = ary_make_shared_copy(arrays[i]); | |
} | |
} | |
else { | |
/* Compute the length of the result array; return [] if any is empty */ | |
for (i = 0; i < n; i++) { | |
long k = RARRAY_LEN(arrays[i]); | |
if (k == 0) { | |
result = rb_ary_new2(0); | |
goto done; | |
} | |
if (MUL_OVERFLOW_LONG_P(resultlen, k)) | |
rb_raise(rb_eRangeError, "too big to product"); | |
resultlen *= k; | |
} | |
result = rb_ary_new2(resultlen); | |
} | |
for (;;) { | |
int m; | |
/* fill in one subarray */ | |
VALUE subarray = rb_ary_new2(n); | |
for (j = 0; j < n; j++) { | |
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); | |
} | |
/* put it on the result array */ | |
if (NIL_P(result)) { | |
FL_SET(t0, FL_USER5); | |
rb_yield(subarray); | |
if (! FL_TEST(t0, FL_USER5)) { | |
rb_raise(rb_eRuntimeError, "product reentered"); | |
} | |
else { | |
FL_UNSET(t0, FL_USER5); | |
} | |
} | |
else { | |
rb_ary_push(result, subarray); | |
} | |
/* | |
* Increment the last counter. If it overflows, reset to 0 | |
* and increment the one before it. | |
*/ | |
m = n-1; | |
counters[m]++; | |
while (counters[m] == RARRAY_LEN(arrays[m])) { | |
counters[m] = 0; | |
/* If the first counter overflows, we are done */ | |
if (--m < 0) goto done; | |
counters[m]++; | |
} | |
} | |
done: | |
tmpary_discard(t0); | |
ALLOCV_END(t1); | |
return NIL_P(result) ? ary : result; | |
} | |
/* | |
* call-seq: | |
* array.take(n) -> new_array | |
* | |
* Returns a new \Array containing the first +n+ element of +self+, | |
* where +n+ is a non-negative \Integer; | |
* does not modify +self+. | |
* | |
* Examples: | |
* a = [0, 1, 2, 3, 4, 5] | |
* a.take(1) # => [0] | |
* a.take(2) # => [0, 1] | |
* a.take(50) # => [0, 1, 2, 3, 4, 5] | |
* a # => [0, 1, 2, 3, 4, 5] | |
*/ | |
static VALUE | |
rb_ary_take(VALUE obj, VALUE n) | |
{ | |
long len = NUM2LONG(n); | |
if (len < 0) { | |
rb_raise(rb_eArgError, "attempt to take negative size"); | |
} | |
return rb_ary_subseq(obj, 0, len); | |
} | |
/* | |
* call-seq: | |
* array.take_while {|element| ... } -> new_array | |
* array.take_while -> new_enumerator | |
* | |
* Returns a new \Array containing zero or more leading elements of +self+; | |
* does not modify +self+. | |
* | |
* With a block given, calls the block with each successive element of +self+; | |
* stops if the block returns +false+ or +nil+; | |
* returns a new Array containing those elements for which the block returned a truthy value: | |
* a = [0, 1, 2, 3, 4, 5] | |
* a.take_while {|element| element < 3 } # => [0, 1, 2] | |
* a.take_while {|element| true } # => [0, 1, 2, 3, 4, 5] | |
* a # => [0, 1, 2, 3, 4, 5] | |
* | |
* With no block given, returns a new \Enumerator: | |
* [0, 1].take_while # => #<Enumerator: [0, 1]:take_while> | |
*/ | |
static VALUE | |
rb_ary_take_while(VALUE ary) | |
{ | |
long i; | |
RETURN_ENUMERATOR(ary, 0, 0); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break; | |
} | |
return rb_ary_take(ary, LONG2FIX(i)); | |
} | |
/* | |
* call-seq: | |
* array.drop(n) -> new_array | |
* | |
* Returns a new \Array containing all but the first +n+ element of +self+, | |
* where +n+ is a non-negative \Integer; | |
* does not modify +self+. | |
* | |
* Examples: | |
* a = [0, 1, 2, 3, 4, 5] | |
* a.drop(0) # => [0, 1, 2, 3, 4, 5] | |
* a.drop(1) # => [1, 2, 3, 4, 5] | |
* a.drop(2) # => [2, 3, 4, 5] | |
*/ | |
static VALUE | |
rb_ary_drop(VALUE ary, VALUE n) | |
{ | |
VALUE result; | |
long pos = NUM2LONG(n); | |
if (pos < 0) { | |
rb_raise(rb_eArgError, "attempt to drop negative size"); | |
} | |
result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary)); | |
if (result == Qnil) result = rb_ary_new(); | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.drop_while {|element| ... } -> new_array | |
* array.drop_while -> new_enumerator | |
* Returns a new \Array containing zero or more trailing elements of +self+; | |
* does not modify +self+. | |
* | |
* With a block given, calls the block with each successive element of +self+; | |
* stops if the block returns +false+ or +nil+; | |
* returns a new Array _omitting_ those elements for which the block returned a truthy value: | |
* a = [0, 1, 2, 3, 4, 5] | |
* a.drop_while {|element| element < 3 } # => [3, 4, 5] | |
* | |
* With no block given, returns a new \Enumerator: | |
* [0, 1].drop_while # => # => #<Enumerator: [0, 1]:drop_while> | |
*/ | |
static VALUE | |
rb_ary_drop_while(VALUE ary) | |
{ | |
long i; | |
RETURN_ENUMERATOR(ary, 0, 0); | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break; | |
} | |
return rb_ary_drop(ary, LONG2FIX(i)); | |
} | |
/* | |
* call-seq: | |
* array.any? -> true or false | |
* array.any? {|element| ... } -> true or false | |
* array.any?(obj) -> true or false | |
* | |
* Returns +true+ if any element of +self+ meets a given criterion. | |
* | |
* With no block given and no argument, returns +true+ if +self+ has any truthy element, | |
* +false+ otherwise: | |
* [nil, 0, false].any? # => true | |
* [nil, false].any? # => false | |
* [].any? # => false | |
* | |
* With a block given and no argument, calls the block with each element in +self+; | |
* returns +true+ if the block returns any truthy value, +false+ otherwise: | |
* [0, 1, 2].any? {|element| element > 1 } # => true | |
* [0, 1, 2].any? {|element| element > 2 } # => false | |
* | |
* If argument +obj+ is given, returns +true+ if +obj+.<tt>===</tt> any element, | |
* +false+ otherwise: | |
* ['food', 'drink'].any?(/foo/) # => true | |
* ['food', 'drink'].any?(/bar/) # => false | |
* [].any?(/foo/) # => false | |
* [0, 1, 2].any?(1) # => true | |
* [0, 1, 2].any?(3) # => false | |
* | |
* Related: Enumerable#any? | |
*/ | |
static VALUE | |
rb_ary_any_p(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, len = RARRAY_LEN(ary); | |
rb_check_arity(argc, 0, 1); | |
if (!len) return Qfalse; | |
if (argc) { | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qtrue; | |
} | |
} | |
else if (!rb_block_given_p()) { | |
for (i = 0; i < len; ++i) { | |
if (RTEST(RARRAY_AREF(ary, i))) return Qtrue; | |
} | |
} | |
else { | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue; | |
} | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* array.all? -> true or false | |
* array.all? {|element| ... } -> true or false | |
* array.all?(obj) -> true or false | |
* | |
* Returns +true+ if all elements of +self+ meet a given criterion. | |
* | |
* With no block given and no argument, returns +true+ if +self+ contains only truthy elements, | |
* +false+ otherwise: | |
* [0, 1, :foo].all? # => true | |
* [0, nil, 2].all? # => false | |
* [].all? # => true | |
* | |
* With a block given and no argument, calls the block with each element in +self+; | |
* returns +true+ if the block returns only truthy values, +false+ otherwise: | |
* [0, 1, 2].all? { |element| element < 3 } # => true | |
* [0, 1, 2].all? { |element| element < 2 } # => false | |
* | |
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> every element, +false+ otherwise: | |
* ['food', 'fool', 'foot'].all?(/foo/) # => true | |
* ['food', 'drink'].all?(/bar/) # => false | |
* [].all?(/foo/) # => true | |
* [0, 0, 0].all?(0) # => true | |
* [0, 1, 2].all?(1) # => false | |
* | |
* Related: Enumerable#all? | |
*/ | |
static VALUE | |
rb_ary_all_p(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, len = RARRAY_LEN(ary); | |
rb_check_arity(argc, 0, 1); | |
if (!len) return Qtrue; | |
if (argc) { | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (!RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse; | |
} | |
} | |
else if (!rb_block_given_p()) { | |
for (i = 0; i < len; ++i) { | |
if (!RTEST(RARRAY_AREF(ary, i))) return Qfalse; | |
} | |
} | |
else { | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse; | |
} | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* array.none? -> true or false | |
* array.none? {|element| ... } -> true or false | |
* array.none?(obj) -> true or false | |
* | |
* Returns +true+ if no element of +self+ meet a given criterion. | |
* | |
* With no block given and no argument, returns +true+ if +self+ has no truthy elements, | |
* +false+ otherwise: | |
* [nil, false].none? # => true | |
* [nil, 0, false].none? # => false | |
* [].none? # => true | |
* | |
* With a block given and no argument, calls the block with each element in +self+; | |
* returns +true+ if the block returns no truthy value, +false+ otherwise: | |
* [0, 1, 2].none? {|element| element > 3 } # => true | |
* [0, 1, 2].none? {|element| element > 1 } # => false | |
* | |
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> no element, +false+ otherwise: | |
* ['food', 'drink'].none?(/bar/) # => true | |
* ['food', 'drink'].none?(/foo/) # => false | |
* [].none?(/foo/) # => true | |
* [0, 1, 2].none?(3) # => true | |
* [0, 1, 2].none?(1) # => false | |
* | |
* Related: Enumerable#none? | |
*/ | |
static VALUE | |
rb_ary_none_p(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, len = RARRAY_LEN(ary); | |
rb_check_arity(argc, 0, 1); | |
if (!len) return Qtrue; | |
if (argc) { | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse; | |
} | |
} | |
else if (!rb_block_given_p()) { | |
for (i = 0; i < len; ++i) { | |
if (RTEST(RARRAY_AREF(ary, i))) return Qfalse; | |
} | |
} | |
else { | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse; | |
} | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* array.one? -> true or false | |
* array.one? {|element| ... } -> true or false | |
* array.one?(obj) -> true or false | |
* | |
* Returns +true+ if exactly one element of +self+ meets a given criterion. | |
* | |
* With no block given and no argument, returns +true+ if +self+ has exactly one truthy element, | |
* +false+ otherwise: | |
* [nil, 0].one? # => true | |
* [0, 0].one? # => false | |
* [nil, nil].one? # => false | |
* [].one? # => false | |
* | |
* With a block given and no argument, calls the block with each element in +self+; | |
* returns +true+ if the block a truthy value for exactly one element, +false+ otherwise: | |
* [0, 1, 2].one? {|element| element > 0 } # => false | |
* [0, 1, 2].one? {|element| element > 1 } # => true | |
* [0, 1, 2].one? {|element| element > 2 } # => false | |
* | |
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> exactly one element, | |
* +false+ otherwise: | |
* [0, 1, 2].one?(0) # => true | |
* [0, 0, 1].one?(0) # => false | |
* [1, 1, 2].one?(0) # => false | |
* ['food', 'drink'].one?(/bar/) # => false | |
* ['food', 'drink'].one?(/foo/) # => true | |
* [].one?(/foo/) # => false | |
* | |
* Related: Enumerable#one? | |
*/ | |
static VALUE | |
rb_ary_one_p(int argc, VALUE *argv, VALUE ary) | |
{ | |
long i, len = RARRAY_LEN(ary); | |
VALUE result = Qfalse; | |
rb_check_arity(argc, 0, 1); | |
if (!len) return Qfalse; | |
if (argc) { | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) { | |
if (result) return Qfalse; | |
result = Qtrue; | |
} | |
} | |
} | |
else if (!rb_block_given_p()) { | |
for (i = 0; i < len; ++i) { | |
if (RTEST(RARRAY_AREF(ary, i))) { | |
if (result) return Qfalse; | |
result = Qtrue; | |
} | |
} | |
} | |
else { | |
for (i = 0; i < RARRAY_LEN(ary); ++i) { | |
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) { | |
if (result) return Qfalse; | |
result = Qtrue; | |
} | |
} | |
} | |
return result; | |
} | |
/* | |
* call-seq: | |
* array.dig(index, *identifiers) -> object | |
* | |
* Finds and returns the object in nested objects | |
* that is specified by +index+ and +identifiers+. | |
* The nested objects may be instances of various classes. | |
* See {Dig Methods}[rdoc-ref:doc/dig_methods.rdoc]. | |
* | |
* Examples: | |
* a = [:foo, [:bar, :baz, [:bat, :bam]]] | |
* a.dig(1) # => [:bar, :baz, [:bat, :bam]] | |
* a.dig(1, 2) # => [:bat, :bam] | |
* a.dig(1, 2, 0) # => :bat | |
* a.dig(1, 2, 3) # => nil | |
*/ | |
static VALUE | |
rb_ary_dig(int argc, VALUE *argv, VALUE self) | |
{ | |
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); | |
self = rb_ary_at(self, *argv); | |
if (!--argc) return self; | |
++argv; | |
return rb_obj_dig(argc, argv, self, Qnil); | |
} | |
static inline VALUE | |
finish_exact_sum(long n, VALUE r, VALUE v, int z) | |
{ | |
if (n != 0) | |
v = rb_fix_plus(LONG2FIX(n), v); | |
if (r != Qundef) { | |
v = rb_rational_plus(r, v); | |
} | |
else if (!n && z) { | |
v = rb_fix_plus(LONG2FIX(0), v); | |
} | |
return v; | |
} | |
/* | |
* call-seq: | |
* array.sum(init = 0) -> object | |
* array.sum(init = 0) {|element| ... } -> object | |
* | |
* When no block is given, returns the object equivalent to: | |
* sum = init | |
* array.each {|element| sum += element } | |
* sum | |
* For example, <tt>[e1, e2, e3].sum</tt> returns <tt>init + e1 + e2 + e3</tt>. | |
* | |
* Examples: | |
* a = [0, 1, 2, 3] | |
* a.sum # => 6 | |
* a.sum(100) # => 106 | |
* | |
* The elements need not be numeric, but must be <tt>+</tt>-compatible | |
* with each other and with +init+: | |
* a = ['abc', 'def', 'ghi'] | |
* a.sum('jkl') # => "jklabcdefghi" | |
* | |
* When a block is given, it is called with each element | |
* and the block's return value (instead of the element itself) is used as the addend: | |
* a = ['zero', 1, :two] | |
* s = a.sum('Coerced and concatenated: ') {|element| element.to_s } | |
* s # => "Coerced and concatenated: zero1two" | |
* | |
* Notes: | |
* - Array#join and Array#flatten may be faster than Array#sum | |
* for an \Array of Strings or an \Array of Arrays. | |
* - Array#sum method may not respect method redefinition of "+" methods such as Integer#+. | |
*/ | |
static VALUE | |
rb_ary_sum(int argc, VALUE *argv, VALUE ary) | |
{ | |
VALUE e, v, r; | |
long i, n; | |
int block_given; | |
v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0)); | |
block_given = rb_block_given_p(); | |
if (RARRAY_LEN(ary) == 0) | |
return v; | |
n = 0; | |
r = Qundef; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (block_given) | |
e = rb_yield(e); | |
if (FIXNUM_P(e)) { | |
n += FIX2LONG(e); /* should not overflow long type */ | |
if (!FIXABLE(n)) { | |
v = rb_big_plus(LONG2NUM(n), v); | |
n = 0; | |
} | |
} | |
else if (RB_TYPE_P(e, T_BIGNUM)) | |
v = rb_big_plus(e, v); | |
else if (RB_TYPE_P(e, T_RATIONAL)) { | |
if (r == Qundef) | |
r = e; | |
else | |
r = rb_rational_plus(r, e); | |
} | |
else | |
goto not_exact; | |
} | |
v = finish_exact_sum(n, r, v, argc!=0); | |
return v; | |
not_exact: | |
v = finish_exact_sum(n, r, v, i!=0); | |
if (RB_FLOAT_TYPE_P(e)) { | |
/* | |
* Kahan-Babuska balancing compensated summation algorithm | |
* See https://link.springer.com/article/10.1007/s00607-005-0139-x | |
*/ | |
double f, c; | |
double x, t; | |
f = NUM2DBL(v); | |
c = 0.0; | |
goto has_float_value; | |
for (; i < RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (block_given) | |
e = rb_yield(e); | |
if (RB_FLOAT_TYPE_P(e)) | |
has_float_value: | |
x = RFLOAT_VALUE(e); | |
else if (FIXNUM_P(e)) | |
x = FIX2LONG(e); | |
else if (RB_TYPE_P(e, T_BIGNUM)) | |
x = rb_big2dbl(e); | |
else if (RB_TYPE_P(e, T_RATIONAL)) | |
x = rb_num2dbl(e); | |
else | |
goto not_float; | |
if (isnan(f)) continue; | |
if (isnan(x)) { | |
f = x; | |
continue; | |
} | |
if (isinf(x)) { | |
if (isinf(f) && signbit(x) != signbit(f)) | |
f = NAN; | |
else | |
f = x; | |
continue; | |
} | |
if (isinf(f)) continue; | |
t = f + x; | |
if (fabs(f) >= fabs(x)) | |
c += ((f - t) + x); | |
else | |
c += ((x - t) + f); | |
f = t; | |
} | |
f += c; | |
return DBL2NUM(f); | |
not_float: | |
v = DBL2NUM(f); | |
} | |
goto has_some_value; | |
for (; i < RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (block_given) | |
e = rb_yield(e); | |
has_some_value: | |
v = rb_funcall(v, idPLUS, 1, e); | |
} | |
return v; | |
} | |
static VALUE | |
rb_ary_deconstruct(VALUE ary) | |
{ | |
return ary; | |
} | |
/* | |
* An \Array is an ordered, integer-indexed collection of objects, | |
* called _elements_. Any object may be an \Array element. | |
* | |
* == \Array Indexes | |
* | |
* \Array indexing starts at 0, as in C or Java. | |
* | |
* A positive index is an offset from the first element: | |
* - Index 0 indicates the first element. | |
* - Index 1 indicates the second element. | |
* - ... | |
* | |
* A negative index is an offset, backwards, from the end of the array: | |
* - Index -1 indicates the last element. | |
* - Index -2 indicates the next-to-last element. | |
* - ... | |
* | |
* A non-negative index is <i>in range</i> if it is smaller than | |
* the size of the array. For a 3-element array: | |
* - Indexes 0 through 2 are in range. | |
* - Index 3 is out of range. | |
* | |
* A negative index is <i>in range</i> if its absolute value is | |
* not larger than the size of the array. For a 3-element array: | |
* - Indexes -1 through -3 are in range. | |
* - Index -4 is out of range. | |
* | |
* == Creating Arrays | |
* | |
* A new array can be created by using the literal constructor | |
* <code>[]</code>. Arrays can contain different types of objects. For | |
* example, the array below contains an Integer, a String and a Float: | |
* | |
* ary = [1, "two", 3.0] #=> [1, "two", 3.0] | |
* | |
* An array can also be created by explicitly calling Array.new with zero, one | |
* (the initial size of the Array) or two arguments (the initial size and a | |
* default object). | |
* | |
* ary = Array.new #=> [] | |
* Array.new(3) #=> [nil, nil, nil] | |
* Array.new(3, true) #=> [true, true, true] | |
* | |
* Note that the second argument populates the array with references to the | |
* same object. Therefore, it is only recommended in cases when you need to | |
* instantiate arrays with natively immutable objects such as Symbols, | |
* numbers, true or false. | |
* | |
* To create an array with separate objects a block can be passed instead. | |
* This method is safe to use with mutable objects such as hashes, strings or | |
* other arrays: | |
* | |
* Array.new(4) {Hash.new} #=> [{}, {}, {}, {}] | |
* Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"] | |
* | |
* This is also a quick way to build up multi-dimensional arrays: | |
* | |
* empty_table = Array.new(3) {Array.new(3)} | |
* #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]] | |
* | |
* An array can also be created by using the Array() method, provided by | |
* Kernel, which tries to call #to_ary, then #to_a on its argument. | |
* | |
* Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]] | |
* | |
* == Example Usage | |
* | |
* In addition to the methods it mixes in through the Enumerable module, the | |
* Array class has proprietary methods for accessing, searching and otherwise | |
* manipulating arrays. | |
* | |
* Some of the more common ones are illustrated below. | |
* | |
* == Accessing Elements | |
* | |
* Elements in an array can be retrieved using the Array#[] method. It can | |
* take a single integer argument (a numeric index), a pair of arguments | |
* (start and length) or a range. Negative indices start counting from the end, | |
* with -1 being the last element. | |
* | |
* arr = [1, 2, 3, 4, 5, 6] | |
* arr[2] #=> 3 | |
* arr[100] #=> nil | |
* arr[-3] #=> 4 | |
* arr[2, 3] #=> [3, 4, 5] | |
* arr[1..4] #=> [2, 3, 4, 5] | |
* arr[1..-3] #=> [2, 3, 4] | |
* | |
* Another way to access a particular array element is by using the #at method | |
* | |
* arr.at(0) #=> 1 | |
* | |
* The #slice method works in an identical manner to Array#[]. | |
* | |
* To raise an error for indices outside of the array bounds or else to | |
* provide a default value when that happens, you can use #fetch. | |
* | |
* arr = ['a', 'b', 'c', 'd', 'e', 'f'] | |
* arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6 | |
* arr.fetch(100, "oops") #=> "oops" | |
* | |
* The special methods #first and #last will return the first and last | |
* elements of an array, respectively. | |
* | |
* arr.first #=> 1 | |
* arr.last #=> 6 | |
* | |
* To return the first +n+ elements of an array, use #take | |
* | |
* arr.take(3) #=> [1, 2, 3] | |
* | |
* #drop does the opposite of #take, by returning the elements after +n+ | |
* elements have been dropped: | |
* | |
* arr.drop(3) #=> [4, 5, 6] | |
* | |
* == Obtaining Information about an Array | |
* | |
* Arrays keep track of their own length at all times. To query an array | |
* about the number of elements it contains, use #length, #count or #size. | |
* | |
* browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE'] | |
* browsers.length #=> 5 | |
* browsers.count #=> 5 | |
* | |
* To check whether an array contains any elements at all | |
* | |
* browsers.empty? #=> false | |
* | |
* To check whether a particular item is included in the array | |
* | |
* browsers.include?('Konqueror') #=> false | |
* | |
* == Adding Items to Arrays | |
* | |
* Items can be added to the end of an array by using either #push or #<< | |
* | |
* arr = [1, 2, 3, 4] | |
* arr.push(5) #=> [1, 2, 3, 4, 5] | |
* arr << 6 #=> [1, 2, 3, 4, 5, 6] | |
* | |
* #unshift will add a new item to the beginning of an array. | |
* | |
* arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6] | |
* | |
* With #insert you can add a new element to an array at any position. | |
* | |
* arr.insert(3, 'apple') #=> [0, 1, 2, 'apple', 3, 4, 5, 6] | |
* | |
* Using the #insert method, you can also insert multiple values at once: | |
* | |
* arr.insert(3, 'orange', 'pear', 'grapefruit') | |
* #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6] | |
* | |
* == Removing Items from an Array | |
* | |
* The method #pop removes the last element in an array and returns it: | |
* | |
* arr = [1, 2, 3, 4, 5, 6] | |
* arr.pop #=> 6 | |
* arr #=> [1, 2, 3, 4, 5] | |
* | |
* To retrieve and at the same time remove the first item, use #shift: | |
* | |
* arr.shift #=> 1 | |
* arr #=> [2, 3, 4, 5] | |
* | |
* To delete an element at a particular index: | |
* | |
* arr.delete_at(2) #=> 4 | |
* arr #=> [2, 3, 5] | |
* | |
* To delete a particular element anywhere in an array, use #delete: | |
* | |
* arr = [1, 2, 2, 3] | |
* arr.delete(2) #=> 2 | |
* arr #=> [1,3] | |
* | |
* A useful method if you need to remove +nil+ values from an array is | |
* #compact: | |
* | |
* arr = ['foo', 0, nil, 'bar', 7, 'baz', nil] | |
* arr.compact #=> ['foo', 0, 'bar', 7, 'baz'] | |
* arr #=> ['foo', 0, nil, 'bar', 7, 'baz', nil] | |
* arr.compact! #=> ['foo', 0, 'bar', 7, 'baz'] | |
* arr #=> ['foo', 0, 'bar', 7, 'baz'] | |
* | |
* Another common need is to remove duplicate elements from an array. | |
* | |
* It has the non-destructive #uniq, and destructive method #uniq! | |
* | |
* arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556] | |
* arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123] | |
* | |
* == Iterating over Arrays | |
* | |
* Like all classes that include the Enumerable module, Array has an each | |
* method, which defines what elements should be iterated over and how. In | |
* case of Array's #each, all elements in the Array instance are yielded to | |
* the supplied block in sequence. | |
* | |
* Note that this operation leaves the array unchanged. | |
* | |
* arr = [1, 2, 3, 4, 5] | |
* arr.each {|a| print a -= 10, " "} | |
* # prints: -9 -8 -7 -6 -5 | |
* #=> [1, 2, 3, 4, 5] | |
* | |
* Another sometimes useful iterator is #reverse_each which will iterate over | |
* the elements in the array in reverse order. | |
* | |
* words = %w[first second third fourth fifth sixth] | |
* str = "" | |
* words.reverse_each {|word| str += "#{word} "} | |
* p str #=> "sixth fifth fourth third second first " | |
* | |
* The #map method can be used to create a new array based on the original | |
* array, but with the values modified by the supplied block: | |
* | |
* arr.map {|a| 2*a} #=> [2, 4, 6, 8, 10] | |
* arr #=> [1, 2, 3, 4, 5] | |
* arr.map! {|a| a**2} #=> [1, 4, 9, 16, 25] | |
* arr #=> [1, 4, 9, 16, 25] | |
* | |
* == Selecting Items from an Array | |
* | |
* Elements can be selected from an array according to criteria defined in a | |
* block. The selection can happen in a destructive or a non-destructive | |
* manner. While the destructive operations will modify the array they were | |
* called on, the non-destructive methods usually return a new array with the | |
* selected elements, but leave the original array unchanged. | |
* | |
* === Non-destructive Selection | |
* | |
* arr = [1, 2, 3, 4, 5, 6] | |
* arr.select {|a| a > 3} #=> [4, 5, 6] | |
* arr.reject {|a| a < 3} #=> [3, 4, 5, 6] | |
* arr.drop_while {|a| a < 4} #=> [4, 5, 6] | |
* arr #=> [1, 2, 3, 4, 5, 6] | |
* | |
* === Destructive Selection | |
* | |
* #select! and #reject! are the corresponding destructive methods to #select | |
* and #reject | |
* | |
* Similar to #select vs. #reject, #delete_if and #keep_if have the exact | |
* opposite result when supplied with the same block: | |
* | |
* arr.delete_if {|a| a < 4} #=> [4, 5, 6] | |
* arr #=> [4, 5, 6] | |
* | |
* arr = [1, 2, 3, 4, 5, 6] | |
* arr.keep_if {|a| a < 4} #=> [1, 2, 3] | |
* arr #=> [1, 2, 3] | |
* | |
* == What's Here | |
* | |
* First, what's elsewhere. \Class \Array: | |
* | |
* - Inherits from {class Object}[Object.html#class-Object-label-What-27s+Here]. | |
* - Includes {module Enumerable}[Enumerable.html#module-Enumerable-label-What-27s+Here], | |
* which provides dozens of additional methods. | |
* | |
* Here, class \Array provides methods that are useful for: | |
* | |
* - {Creating an Array}[#class-Array-label-Methods+for+Creating+an+Array] | |
* - {Querying}[#class-Array-label-Methods+for+Querying] | |
* - {Comparing}[#class-Array-label-Methods+for+Comparing] | |
* - {Fetching}[#class-Array-label-Methods+for+Fetching] | |
* - {Assigning}[#class-Array-label-Methods+for+Assigning] | |
* - {Deleting}[#class-Array-label-Methods+for+Deleting] | |
* - {Combining}[#class-Array-label-Methods+for+Combining] | |
* - {Iterating}[#class-Array-label-Methods+for+Iterating] | |
* - {Converting}[#class-Array-label-Methods+for+Converting] | |
* - {And more....}[#class-Array-label-Other+Methods] | |
* | |
* === Methods for Creating an Array | |
* | |
* ::[]:: Returns a new array populated with given objects. | |
* ::new:: Returns a new array. | |
* ::try_convert:: Returns a new array created from a given object. | |
* | |
* === Methods for Querying | |
* | |
* #length, #size:: Returns the count of elements. | |
* #include?:: Returns whether any element <tt>==</tt> a given object. | |
* #empty?:: Returns whether there are no elements. | |
* #all?:: Returns whether all elements meet a given criterion. | |
* #any?:: Returns whether any element meets a given criterion. | |
* #none?:: Returns whether no element <tt>==</tt> a given object. | |
* #one?:: Returns whether exactly one element <tt>==</tt> a given object. | |
* #count:: Returns the count of elements that meet a given criterion. | |
* #find_index, #index:: Returns the index of the first element that meets a given criterion. | |
* #rindex:: Returns the index of the last element that meets a given criterion. | |
* #hash:: Returns the integer hash code. | |
* | |
* === Methods for Comparing | |
* {#<=>}[#method-i-3C-3D-3E]:: Returns -1, 0, or 1 | |
* as +self+ is less than, equal to, or greater than a given object. | |
* {#==}[#method-i-3D-3D]:: Returns whether each element in +self+ is <tt>==</tt> to the | |
* corresponding element in a given object. | |
* #eql?:: Returns whether each element in +self+ is <tt>eql?</tt> to the corresponding | |
* element in a given object. | |
* === Methods for Fetching | |
* | |
* These methods do not modify +self+. | |
* | |
* #[]:: Returns one or more elements. | |
* #fetch:: Returns the element at a given offset. | |
* #first:: Returns one or more leading elements. | |
* #last:: Returns one or more trailing elements. | |
* #max:: Returns one or more maximum-valued elements, | |
* as determined by <tt><=></tt> or a given block. | |
* #max:: Returns one or more minimum-valued elements, | |
* as determined by <tt><=></tt> or a given block. | |
* #minmax:: Returns the minimum-valued and maximum-valued elements, | |
* as determined by <tt><=></tt> or a given block. | |
* #assoc:: Returns the first element that is an array | |
* whose first element <tt>==</tt> a given object. | |
* #rassoc:: Returns the first element that is an array | |
* whose second element <tt>==</tt> a given object. | |
* #at:: Returns the element at a given offset. | |
* #values_at:: Returns the elements at given offsets. | |
* #dig:: Returns the object in nested objects | |
* that is specified by a given index and additional arguments. | |
* #drop:: Returns trailing elements as determined by a given index. | |
* #take:: Returns leading elements as determined by a given index. | |
* #drop_while:: Returns trailing elements as determined by a given block. | |
* #take_while:: Returns leading elements as determined by a given block. | |
* #slice:: Returns consecutive elements as determined by a given argument. | |
* #sort:: Returns all elements in an order determined by <tt><=></tt> or a given block. | |
* #reverse:: Returns all elements in reverse order. | |
* #compact:: Returns an array containing all non-+nil+ elements. | |
* #select, #filter:: Returns an array containing elements selected by a given block. | |
* #uniq:: Returns an array containing non-duplicate elements. | |
* #rotate:: Returns all elements with some rotated from one end to the other. | |
* #bsearch:: Returns an element selected via a binary search | |
* as determined by a given block. | |
* #bsearch_index:: Returns the index of an element selected via a binary search | |
* as determined by a given block. | |
* #sample:: Returns one or more random elements. | |
* #shuffle:: Returns elements in a random order. | |
* | |
* === Methods for Assigning | |
* | |
* These methods add, replace, or reorder elements in +self+. | |
* | |
* #[]=:: Assigns specified elements with a given object. | |
* #push, #append, #<<:: Appends trailing elements. | |
* #unshift, #prepend:: Prepends leading elements. | |
* #insert:: Inserts given objects at a given offset; does not replace elements. | |
* #concat:: Appends all elements from given arrays. | |
* #fill:: Replaces specified elements with specified objects. | |
* #replace:: Replaces the content of +self+ with the content of a given array. | |
* #reverse!:: Replaces +self+ with its elements reversed. | |
* #rotate!:: Replaces +self+ with its elements rotated. | |
* #shuffle!:: Replaces +self+ with its elements in random order. | |
* #sort!:: Replaces +self+ with its elements sorted, | |
* as determined by <tt><=></tt> or a given block. | |
* #sort_by!:: Replaces +self+ with its elements sorted, as determined by a given block. | |
* | |
* === Methods for Deleting | |
* | |
* Each of these methods removes elements from +self+: | |
* | |
* #pop:: Removes and returns the last element. | |
* #shift:: Removes and returns the first element. | |
* #compact!:: Removes all non-+nil+ elements. | |
* #delete:: Removes elements equal to a given object. | |
* #delete_at:: Removes the element at a given offset. | |
* #delete_if:: Removes elements specified by a given block. | |
* #keep_if:: Removes elements not specified by a given block. | |
* #reject!:: Removes elements specified by a given block. | |
* #select!, #filter!:: Removes elements not specified by a given block. | |
* #slice!:: Removes and returns a sequence of elements. | |
* #uniq!:: Removes duplicates. | |
* | |
* === Methods for Combining | |
* | |
* {#&}[#method-i-26]:: Returns an array containing elements found both in +self+ and a given array. | |
* #intersection:: Returns an array containing elements found both in +self+ | |
* and in each given array. | |
* #+:: Returns an array containing all elements of +self+ followed by all elements of a given array. | |
* #-:: Returns an array containiing all elements of +self+ that are not found in a given array. | |
* {#|}[#method-i-7C]:: Returns an array containing all elements of +self+ and all elements of a given array, | |
* duplicates removed. | |
* #union:: Returns an array containing all elements of +self+ and all elements of given arrays, | |
* duplicates removed. | |
* #difference:: Returns an array containing all elements of +self+ that are not found | |
* in any of the given arrays.. | |
* #product:: Returns or yields all combinations of elements from +self+ and given arrays. | |
* | |
* === Methods for Iterating | |
* | |
* #each:: Passes each element to a given block. | |
* #reverse_each:: Passes each element, in reverse order, to a given block. | |
* #each_index:: Passes each element index to a given block. | |
* #cycle:: Calls a given block with each element, then does so again, | |
* for a specified number of times, or forever. | |
* #combination:: Calls a given block with combinations of elements of +self+; | |
* a combination does not use the same element more than once. | |
* #permutation:: Calls a given block with permutations of elements of +self+; | |
* a permutation does not use the same element more than once. | |
* #repeated_combination:: Calls a given block with combinations of elements of +self+; | |
* a combination may use the same element more than once. | |
* #repeated_permutation:: Calls a given block with permutations of elements of +self+; | |
* a permutation may use the same element more than once. | |
* | |
* === Methods for Converting | |
* | |
* #map, #collect:: Returns an array containing the block return-value for each element. | |
* #map!, #collect!:: Replaces each element with a block return-value. | |
* #flatten:: Returns an array that is a recursive flattening of +self+. | |
* #flatten!:: Replaces each nested array in +self+ with the elements from that array. | |
* #inspect, #to_s:: Returns a new String containing the elements. | |
* #join:: Returns a newsString containing the elements joined by the field separator. | |
* #to_a:: Returns +self+ or a new array containing all elements. | |
* #to_ary:: Returns +self+. | |
* #to_h:: Returns a new hash formed from the elements. | |
* #transpose:: Transposes +self+, which must be an array of arrays. | |
* #zip:: Returns a new array of arrays containing +self+ and given arrays; | |
* follow the link for details. | |
* | |
* === Other Methods | |
* | |
* #*:: Returns one of the following: | |
* - With integer argument +n+, a new array that is the concatenation | |
* of +n+ copies of +self+. | |
* - With string argument +field_separator+, a new string that is equivalent to | |
* <tt>join(field_separator)</tt>. | |
* #abbrev:: Returns a hash of unambiguous abbreviations for elements. | |
* #pack:: Packs the the elements into a binary sequence. | |
* #sum:: Returns a sum of elements according to either <tt>+</tt> or a given block. | |
*/ | |
void | |
Init_Array(void) | |
{ | |
rb_cArray = rb_define_class("Array", rb_cObject); | |
rb_include_module(rb_cArray, rb_mEnumerable); | |
rb_define_alloc_func(rb_cArray, empty_ary_alloc); | |
rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1); | |
rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1); | |
rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1); | |
rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1); | |
rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0); | |
rb_define_alias(rb_cArray, "to_s", "inspect"); | |
rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0); | |
rb_define_method(rb_cArray, "to_h", rb_ary_to_h, 0); | |
rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0); | |
rb_define_method(rb_cArray, "==", rb_ary_equal, 1); | |
rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1); | |
rb_define_method(rb_cArray, "hash", rb_ary_hash, 0); | |
rb_define_method(rb_cArray, "[]", rb_ary_aref, -1); | |
rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1); | |
rb_define_method(rb_cArray, "at", rb_ary_at, 1); | |
rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1); | |
rb_define_method(rb_cArray, "first", rb_ary_first, -1); | |
rb_define_method(rb_cArray, "last", rb_ary_last, -1); | |
rb_define_method(rb_cArray, "concat", rb_ary_concat_multi, -1); | |
rb_define_method(rb_cArray, "union", rb_ary_union_multi, -1); | |
rb_define_method(rb_cArray, "difference", rb_ary_difference_multi, -1); | |
rb_define_method(rb_cArray, "intersection", rb_ary_intersection_multi, -1); | |
rb_define_method(rb_cArray, "intersect?", rb_ary_intersect_p, 1); | |
rb_define_method(rb_cArray, "<<", rb_ary_push, 1); | |
rb_define_method(rb_cArray, "push", rb_ary_push_m, -1); | |
rb_define_alias(rb_cArray, "append", "push"); | |
rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1); | |
rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1); | |
rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1); | |
rb_define_alias(rb_cArray, "prepend", "unshift"); | |
rb_define_method(rb_cArray, "insert", rb_ary_insert, -1); | |
rb_define_method(rb_cArray, "each", rb_ary_each, 0); | |
rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0); | |
rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0); | |
rb_define_method(rb_cArray, "length", rb_ary_length, 0); | |
rb_define_alias(rb_cArray, "size", "length"); | |
rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0); | |
rb_define_method(rb_cArray, "find_index", rb_ary_index, -1); | |
rb_define_method(rb_cArray, "index", rb_ary_index, -1); | |
rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1); | |
rb_define_method(rb_cArray, "join", rb_ary_join_m, -1); | |
rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0); | |
rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0); | |
rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1); | |
rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1); | |
rb_define_method(rb_cArray, "sort", rb_ary_sort, 0); | |
rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0); | |
rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0); | |
rb_define_method(rb_cArray, "collect", rb_ary_collect, 0); | |
rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0); | |
rb_define_method(rb_cArray, "map", rb_ary_collect, 0); | |
rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0); | |
rb_define_method(rb_cArray, "select", rb_ary_select, 0); | |
rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0); | |
rb_define_method(rb_cArray, "filter", rb_ary_select, 0); | |
rb_define_method(rb_cArray, "filter!", rb_ary_select_bang, 0); | |
rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0); | |
rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1); | |
rb_define_method(rb_cArray, "delete", rb_ary_delete, 1); | |
rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1); | |
rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0); | |
rb_define_method(rb_cArray, "reject", rb_ary_reject, 0); | |
rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0); | |
rb_define_method(rb_cArray, "zip", rb_ary_zip, -1); | |
rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0); | |
rb_define_method(rb_cArray, "replace", rb_ary_replace, 1); | |
rb_define_method(rb_cArray, "clear", rb_ary_clear, 0); | |
rb_define_method(rb_cArray, "fill", rb_ary_fill, -1); | |
rb_define_method(rb_cArray, "include?", rb_ary_includes, 1); | |
rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1); | |
rb_define_method(rb_cArray, "slice", rb_ary_aref, -1); | |
rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1); | |
rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1); | |
rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1); | |
rb_define_method(rb_cArray, "+", rb_ary_plus, 1); | |
rb_define_method(rb_cArray, "*", rb_ary_times, 1); | |
rb_define_method(rb_cArray, "-", rb_ary_diff, 1); | |
rb_define_method(rb_cArray, "&", rb_ary_and, 1); | |
rb_define_method(rb_cArray, "|", rb_ary_or, 1); | |
rb_define_method(rb_cArray, "max", rb_ary_max, -1); | |
rb_define_method(rb_cArray, "min", rb_ary_min, -1); | |
rb_define_method(rb_cArray, "minmax", rb_ary_minmax, 0); | |
rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0); | |
rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0); | |
rb_define_method(rb_cArray, "compact", rb_ary_compact, 0); | |
rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0); | |
rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1); | |
rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1); | |
rb_define_method(rb_cArray, "count", rb_ary_count, -1); | |
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1); | |
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1); | |
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1); | |
rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1); | |
rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1); | |
rb_define_method(rb_cArray, "product", rb_ary_product, -1); | |
rb_define_method(rb_cArray, "take", rb_ary_take, 1); | |
rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0); | |
rb_define_method(rb_cArray, "drop", rb_ary_drop, 1); | |
rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0); | |
rb_define_method(rb_cArray, "bsearch", rb_ary_bsearch, 0); | |
rb_define_method(rb_cArray, "bsearch_index", rb_ary_bsearch_index, 0); | |
rb_define_method(rb_cArray, "any?", rb_ary_any_p, -1); | |
rb_define_method(rb_cArray, "all?", rb_ary_all_p, -1); | |
rb_define_method(rb_cArray, "none?", rb_ary_none_p, -1); | |
rb_define_method(rb_cArray, "one?", rb_ary_one_p, -1); | |
rb_define_method(rb_cArray, "dig", rb_ary_dig, -1); | |
rb_define_method(rb_cArray, "sum", rb_ary_sum, -1); | |
rb_define_method(rb_cArray, "deconstruct", rb_ary_deconstruct, 0); | |
} | |
#include "array.rbinc" |