Permalink
Cannot retrieve contributors at this time
2455 lines (2175 sloc)
54.7 KB
/* | |
complex.c: Coded by Tadayoshi Funaba 2008-2012 | |
This implementation is based on Keiju Ishitsuka's Complex library | |
which is written in ruby. | |
*/ | |
#include "ruby/internal/config.h" | |
#if defined _MSC_VER | |
/* Microsoft Visual C does not define M_PI and others by default */ | |
# define _USE_MATH_DEFINES 1 | |
#endif | |
#include <ctype.h> | |
#include <math.h> | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/array.h" | |
#include "internal/class.h" | |
#include "internal/complex.h" | |
#include "internal/math.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/rational.h" | |
#include "ruby_assert.h" | |
#define ZERO INT2FIX(0) | |
#define ONE INT2FIX(1) | |
#define TWO INT2FIX(2) | |
#if USE_FLONUM | |
#define RFLOAT_0 DBL2NUM(0) | |
#else | |
static VALUE RFLOAT_0; | |
#endif | |
#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \ | |
!defined(signbit) | |
extern int signbit(double); | |
#endif | |
VALUE rb_cComplex; | |
static ID id_abs, id_arg, | |
id_denominator, id_numerator, | |
id_real_p, id_i_real, id_i_imag, | |
id_finite_p, id_infinite_p, id_rationalize, | |
id_PI; | |
#define id_to_i idTo_i | |
#define id_to_r idTo_r | |
#define id_negate idUMinus | |
#define id_expt idPow | |
#define id_to_f idTo_f | |
#define id_quo idQuo | |
#define id_fdiv idFdiv | |
#define f_boolcast(x) ((x) ? Qtrue : Qfalse) | |
#define fun1(n) \ | |
inline static VALUE \ | |
f_##n(VALUE x)\ | |
{\ | |
return rb_funcall(x, id_##n, 0);\ | |
} | |
#define fun2(n) \ | |
inline static VALUE \ | |
f_##n(VALUE x, VALUE y)\ | |
{\ | |
return rb_funcall(x, id_##n, 1, y);\ | |
} | |
#define PRESERVE_SIGNEDZERO | |
inline static VALUE | |
f_add(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x) && | |
LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) { | |
if (FIXNUM_ZERO_P(x)) | |
return y; | |
if (FIXNUM_ZERO_P(y)) | |
return x; | |
return rb_int_plus(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(x) && | |
LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) { | |
if (FIXNUM_ZERO_P(y)) | |
return x; | |
return rb_float_plus(x, y); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL) && | |
LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) { | |
if (FIXNUM_ZERO_P(y)) | |
return x; | |
return rb_rational_plus(x, y); | |
} | |
return rb_funcall(x, '+', 1, y); | |
} | |
inline static VALUE | |
f_div(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y) && FIX2LONG(y) == 1) | |
return x; | |
return rb_funcall(x, '/', 1, y); | |
} | |
inline static int | |
f_gt_p(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
if (FIXNUM_P(x) && FIXNUM_P(y)) | |
return (SIGNED_VALUE)x > (SIGNED_VALUE)y; | |
return RTEST(rb_int_gt(x, y)); | |
} | |
else if (RB_FLOAT_TYPE_P(x)) | |
return RTEST(rb_float_gt(x, y)); | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y); | |
return cmp > 0; | |
} | |
return RTEST(rb_funcall(x, '>', 1, y)); | |
} | |
inline static VALUE | |
f_mul(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x) && | |
LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) { | |
if (FIXNUM_ZERO_P(y)) | |
return ZERO; | |
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y)) | |
return ZERO; | |
if (x == ONE) return y; | |
if (y == ONE) return x; | |
return rb_int_mul(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(x) && | |
LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) { | |
if (y == ONE) return x; | |
return rb_float_mul(x, y); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL) && | |
LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) { | |
if (y == ONE) return x; | |
return rb_rational_mul(x, y); | |
} | |
else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) { | |
if (y == ONE) return x; | |
} | |
return rb_funcall(x, '*', 1, y); | |
} | |
inline static VALUE | |
f_sub(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_ZERO_P(y) && | |
LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) { | |
return x; | |
} | |
return rb_funcall(x, '-', 1, y); | |
} | |
inline static VALUE | |
f_abs(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return rb_int_abs(x); | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return rb_float_abs(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return rb_rational_abs(x); | |
} | |
else if (RB_TYPE_P(x, T_COMPLEX)) { | |
return rb_complex_abs(x); | |
} | |
return rb_funcall(x, id_abs, 0); | |
} | |
static VALUE numeric_arg(VALUE self); | |
static VALUE float_arg(VALUE self); | |
inline static VALUE | |
f_arg(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return numeric_arg(x); | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return float_arg(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return numeric_arg(x); | |
} | |
else if (RB_TYPE_P(x, T_COMPLEX)) { | |
return rb_complex_arg(x); | |
} | |
return rb_funcall(x, id_arg, 0); | |
} | |
inline static VALUE | |
f_numerator(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_RATIONAL)) { | |
return RRATIONAL(x)->num; | |
} | |
if (RB_FLOAT_TYPE_P(x)) { | |
return rb_float_numerator(x); | |
} | |
return x; | |
} | |
inline static VALUE | |
f_denominator(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_RATIONAL)) { | |
return RRATIONAL(x)->den; | |
} | |
if (RB_FLOAT_TYPE_P(x)) { | |
return rb_float_denominator(x); | |
} | |
return INT2FIX(1); | |
} | |
inline static VALUE | |
f_negate(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return rb_int_uminus(x); | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return rb_float_uminus(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return rb_rational_uminus(x); | |
} | |
else if (RB_TYPE_P(x, T_COMPLEX)) { | |
return rb_complex_uminus(x); | |
} | |
return rb_funcall(x, id_negate, 0); | |
} | |
static bool nucomp_real_p(VALUE self); | |
static inline bool | |
f_real_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return true; | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return true; | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return true; | |
} | |
else if (RB_TYPE_P(x, T_COMPLEX)) { | |
return nucomp_real_p(x); | |
} | |
return rb_funcall(x, id_real_p, 0); | |
} | |
inline static VALUE | |
f_to_i(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_STRING)) | |
return rb_str_to_inum(x, 10, 0); | |
return rb_funcall(x, id_to_i, 0); | |
} | |
inline static VALUE | |
f_to_f(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_STRING)) | |
return DBL2NUM(rb_str_to_dbl(x, 0)); | |
return rb_funcall(x, id_to_f, 0); | |
} | |
fun1(to_r) | |
inline static int | |
f_eqeq_p(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x) && FIXNUM_P(y)) | |
return x == y; | |
else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y)) | |
return NUM2DBL(x) == NUM2DBL(y); | |
return (int)rb_equal(x, y); | |
} | |
fun2(expt) | |
fun2(fdiv) | |
static VALUE | |
f_quo(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_numeric_quo(x, y); | |
if (RB_FLOAT_TYPE_P(x)) | |
return rb_float_div(x, y); | |
if (RB_TYPE_P(x, T_RATIONAL)) | |
return rb_numeric_quo(x, y); | |
return rb_funcallv(x, id_quo, 1, &y); | |
} | |
inline static int | |
f_negative_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return INT_NEGATIVE_P(x); | |
else if (RB_FLOAT_TYPE_P(x)) | |
return RFLOAT_VALUE(x) < 0.0; | |
else if (RB_TYPE_P(x, T_RATIONAL)) | |
return INT_NEGATIVE_P(RRATIONAL(x)->num); | |
return rb_num_negative_p(x); | |
} | |
#define f_positive_p(x) (!f_negative_p(x)) | |
inline static int | |
f_zero_p(VALUE x) | |
{ | |
if (RB_FLOAT_TYPE_P(x)) { | |
return FLOAT_ZERO_P(x); | |
} | |
else if (RB_INTEGER_TYPE_P(x)) { | |
return FIXNUM_ZERO_P(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
const VALUE num = RRATIONAL(x)->num; | |
return FIXNUM_ZERO_P(num); | |
} | |
return (int)rb_equal(x, ZERO); | |
} | |
#define f_nonzero_p(x) (!f_zero_p(x)) | |
VALUE rb_flo_is_finite_p(VALUE num); | |
inline static int | |
f_finite_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return TRUE; | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return (int)rb_flo_is_finite_p(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return TRUE; | |
} | |
return RTEST(rb_funcallv(x, id_finite_p, 0, 0)); | |
} | |
VALUE rb_flo_is_infinite_p(VALUE num); | |
inline static VALUE | |
f_infinite_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return Qnil; | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
return rb_flo_is_infinite_p(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
return Qnil; | |
} | |
return rb_funcallv(x, id_infinite_p, 0, 0); | |
} | |
inline static int | |
f_kind_of_p(VALUE x, VALUE c) | |
{ | |
return (int)rb_obj_is_kind_of(x, c); | |
} | |
inline static int | |
k_numeric_p(VALUE x) | |
{ | |
return f_kind_of_p(x, rb_cNumeric); | |
} | |
#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x)) | |
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) | |
#define get_dat1(x) \ | |
struct RComplex *dat = RCOMPLEX(x) | |
#define get_dat2(x,y) \ | |
struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y) | |
inline static VALUE | |
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag) | |
{ | |
NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0)); | |
RCOMPLEX_SET_REAL(obj, real); | |
RCOMPLEX_SET_IMAG(obj, imag); | |
OBJ_FREEZE_RAW((VALUE)obj); | |
return (VALUE)obj; | |
} | |
static VALUE | |
nucomp_s_alloc(VALUE klass) | |
{ | |
return nucomp_s_new_internal(klass, ZERO, ZERO); | |
} | |
inline static VALUE | |
f_complex_new_bang1(VALUE klass, VALUE x) | |
{ | |
assert(!RB_TYPE_P(x, T_COMPLEX)); | |
return nucomp_s_new_internal(klass, x, ZERO); | |
} | |
inline static VALUE | |
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y) | |
{ | |
assert(!RB_TYPE_P(x, T_COMPLEX)); | |
assert(!RB_TYPE_P(y, T_COMPLEX)); | |
return nucomp_s_new_internal(klass, x, y); | |
} | |
inline static void | |
nucomp_real_check(VALUE num) | |
{ | |
if (!RB_INTEGER_TYPE_P(num) && | |
!RB_FLOAT_TYPE_P(num) && | |
!RB_TYPE_P(num, T_RATIONAL)) { | |
if (!k_numeric_p(num) || !f_real_p(num)) | |
rb_raise(rb_eTypeError, "not a real"); | |
} | |
} | |
inline static VALUE | |
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag) | |
{ | |
int complex_r, complex_i; | |
complex_r = RB_TYPE_P(real, T_COMPLEX); | |
complex_i = RB_TYPE_P(imag, T_COMPLEX); | |
if (!complex_r && !complex_i) { | |
return nucomp_s_new_internal(klass, real, imag); | |
} | |
else if (!complex_r) { | |
get_dat1(imag); | |
return nucomp_s_new_internal(klass, | |
f_sub(real, dat->imag), | |
f_add(ZERO, dat->real)); | |
} | |
else if (!complex_i) { | |
get_dat1(real); | |
return nucomp_s_new_internal(klass, | |
dat->real, | |
f_add(dat->imag, imag)); | |
} | |
else { | |
get_dat2(real, imag); | |
return nucomp_s_new_internal(klass, | |
f_sub(adat->real, bdat->imag), | |
f_add(adat->imag, bdat->real)); | |
} | |
} | |
/* | |
* call-seq: | |
* Complex.rect(real[, imag]) -> complex | |
* Complex.rectangular(real[, imag]) -> complex | |
* | |
* Returns a complex object which denotes the given rectangular form. | |
* | |
* Complex.rectangular(1, 2) #=> (1+2i) | |
*/ | |
static VALUE | |
nucomp_s_new(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE real, imag; | |
switch (rb_scan_args(argc, argv, "11", &real, &imag)) { | |
case 1: | |
nucomp_real_check(real); | |
imag = ZERO; | |
break; | |
default: | |
nucomp_real_check(real); | |
nucomp_real_check(imag); | |
break; | |
} | |
return nucomp_s_canonicalize_internal(klass, real, imag); | |
} | |
inline static VALUE | |
f_complex_new2(VALUE klass, VALUE x, VALUE y) | |
{ | |
assert(!RB_TYPE_P(x, T_COMPLEX)); | |
return nucomp_s_canonicalize_internal(klass, x, y); | |
} | |
static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise); | |
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass); | |
/* | |
* call-seq: | |
* Complex(x[, y], exception: true) -> numeric or nil | |
* | |
* Returns x+i*y; | |
* | |
* Complex(1, 2) #=> (1+2i) | |
* Complex('1+2i') #=> (1+2i) | |
* Complex(nil) #=> TypeError | |
* Complex(1, nil) #=> TypeError | |
* | |
* Complex(1, nil, exception: false) #=> nil | |
* Complex('1+2', exception: false) #=> nil | |
* | |
* Syntax of string form: | |
* | |
* string form = extra spaces , complex , extra spaces ; | |
* complex = real part | [ sign ] , imaginary part | |
* | real part , sign , imaginary part | |
* | rational , "@" , rational ; | |
* real part = rational ; | |
* imaginary part = imaginary unit | unsigned rational , imaginary unit ; | |
* rational = [ sign ] , unsigned rational ; | |
* unsigned rational = numerator | numerator , "/" , denominator ; | |
* numerator = integer part | fractional part | integer part , fractional part ; | |
* denominator = digits ; | |
* integer part = digits ; | |
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ; | |
* imaginary unit = "i" | "I" | "j" | "J" ; | |
* sign = "-" | "+" ; | |
* digits = digit , { digit | "_" , digit }; | |
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; | |
* extra spaces = ? \s* ? ; | |
* | |
* See String#to_c. | |
*/ | |
static VALUE | |
nucomp_f_complex(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE a1, a2, opts = Qnil; | |
int raise = TRUE; | |
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { | |
a2 = Qundef; | |
} | |
if (!NIL_P(opts)) { | |
raise = rb_opts_exception_p(opts, raise); | |
} | |
if (argc > 0 && CLASS_OF(a1) == rb_cComplex && a2 == Qundef) { | |
return a1; | |
} | |
return nucomp_convert(rb_cComplex, a1, a2, raise); | |
} | |
#define imp1(n) \ | |
inline static VALUE \ | |
m_##n##_bang(VALUE x)\ | |
{\ | |
return rb_math_##n(x);\ | |
} | |
imp1(cos) | |
imp1(cosh) | |
imp1(exp) | |
static VALUE | |
m_log_bang(VALUE x) | |
{ | |
return rb_math_log(1, &x); | |
} | |
imp1(sin) | |
imp1(sinh) | |
static VALUE | |
m_cos(VALUE x) | |
{ | |
if (!RB_TYPE_P(x, T_COMPLEX)) | |
return m_cos_bang(x); | |
{ | |
get_dat1(x); | |
return f_complex_new2(rb_cComplex, | |
f_mul(m_cos_bang(dat->real), | |
m_cosh_bang(dat->imag)), | |
f_mul(f_negate(m_sin_bang(dat->real)), | |
m_sinh_bang(dat->imag))); | |
} | |
} | |
static VALUE | |
m_sin(VALUE x) | |
{ | |
if (!RB_TYPE_P(x, T_COMPLEX)) | |
return m_sin_bang(x); | |
{ | |
get_dat1(x); | |
return f_complex_new2(rb_cComplex, | |
f_mul(m_sin_bang(dat->real), | |
m_cosh_bang(dat->imag)), | |
f_mul(m_cos_bang(dat->real), | |
m_sinh_bang(dat->imag))); | |
} | |
} | |
static VALUE | |
f_complex_polar(VALUE klass, VALUE x, VALUE y) | |
{ | |
assert(!RB_TYPE_P(x, T_COMPLEX)); | |
assert(!RB_TYPE_P(y, T_COMPLEX)); | |
if (f_zero_p(x) || f_zero_p(y)) { | |
return nucomp_s_new_internal(klass, x, RFLOAT_0); | |
} | |
if (RB_FLOAT_TYPE_P(y)) { | |
const double arg = RFLOAT_VALUE(y); | |
if (arg == M_PI) { | |
x = f_negate(x); | |
y = RFLOAT_0; | |
} | |
else if (arg == M_PI_2) { | |
y = x; | |
x = RFLOAT_0; | |
} | |
else if (arg == M_PI_2+M_PI) { | |
y = f_negate(x); | |
x = RFLOAT_0; | |
} | |
else if (RB_FLOAT_TYPE_P(x)) { | |
const double abs = RFLOAT_VALUE(x); | |
const double real = abs * cos(arg), imag = abs * sin(arg); | |
x = DBL2NUM(real); | |
y = DBL2NUM(imag); | |
} | |
else { | |
const double ax = sin(arg), ay = cos(arg); | |
y = f_mul(x, DBL2NUM(ax)); | |
x = f_mul(x, DBL2NUM(ay)); | |
} | |
return nucomp_s_new_internal(klass, x, y); | |
} | |
return nucomp_s_canonicalize_internal(klass, | |
f_mul(x, m_cos(y)), | |
f_mul(x, m_sin(y))); | |
} | |
#ifdef HAVE___COSPI | |
# define cospi(x) __cospi(x) | |
#else | |
# define cospi(x) cos((x) * M_PI) | |
#endif | |
#ifdef HAVE___SINPI | |
# define sinpi(x) __sinpi(x) | |
#else | |
# define sinpi(x) sin((x) * M_PI) | |
#endif | |
/* returns a Complex or Float of ang*PI-rotated abs */ | |
VALUE | |
rb_dbl_complex_new_polar_pi(double abs, double ang) | |
{ | |
double fi; | |
const double fr = modf(ang, &fi); | |
int pos = fr == +0.5; | |
if (pos || fr == -0.5) { | |
if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs; | |
return rb_complex_new(RFLOAT_0, DBL2NUM(abs)); | |
} | |
else if (fr == 0.0) { | |
if (modf(fi / 2.0, &fi) != 0.0) abs = -abs; | |
return DBL2NUM(abs); | |
} | |
else { | |
const double real = abs * cospi(ang), imag = abs * sinpi(ang); | |
return rb_complex_new(DBL2NUM(real), DBL2NUM(imag)); | |
} | |
} | |
/* | |
* call-seq: | |
* Complex.polar(abs[, arg]) -> complex | |
* | |
* Returns a complex object which denotes the given polar form. | |
* | |
* Complex.polar(3, 0) #=> (3.0+0.0i) | |
* Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i) | |
* Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i) | |
* Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i) | |
*/ | |
static VALUE | |
nucomp_s_polar(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE abs, arg; | |
switch (rb_scan_args(argc, argv, "11", &abs, &arg)) { | |
case 1: | |
nucomp_real_check(abs); | |
return nucomp_s_new_internal(klass, abs, ZERO); | |
default: | |
nucomp_real_check(abs); | |
nucomp_real_check(arg); | |
break; | |
} | |
if (RB_TYPE_P(abs, T_COMPLEX)) { | |
get_dat1(abs); | |
abs = dat->real; | |
} | |
if (RB_TYPE_P(arg, T_COMPLEX)) { | |
get_dat1(arg); | |
arg = dat->real; | |
} | |
return f_complex_polar(klass, abs, arg); | |
} | |
/* | |
* call-seq: | |
* cmp.real -> real | |
* | |
* Returns the real part. | |
* | |
* Complex(7).real #=> 7 | |
* Complex(9, -4).real #=> 9 | |
*/ | |
VALUE | |
rb_complex_real(VALUE self) | |
{ | |
get_dat1(self); | |
return dat->real; | |
} | |
/* | |
* call-seq: | |
* cmp.imag -> real | |
* cmp.imaginary -> real | |
* | |
* Returns the imaginary part. | |
* | |
* Complex(7).imaginary #=> 0 | |
* Complex(9, -4).imaginary #=> -4 | |
*/ | |
VALUE | |
rb_complex_imag(VALUE self) | |
{ | |
get_dat1(self); | |
return dat->imag; | |
} | |
/* | |
* call-seq: | |
* -cmp -> complex | |
* | |
* Returns negation of the value. | |
* | |
* -Complex(1, 2) #=> (-1-2i) | |
*/ | |
VALUE | |
rb_complex_uminus(VALUE self) | |
{ | |
get_dat1(self); | |
return f_complex_new2(CLASS_OF(self), | |
f_negate(dat->real), f_negate(dat->imag)); | |
} | |
/* | |
* call-seq: | |
* cmp + numeric -> complex | |
* | |
* Performs addition. | |
* | |
* Complex(2, 3) + Complex(2, 3) #=> (4+6i) | |
* Complex(900) + Complex(1) #=> (901+0i) | |
* Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i) | |
* Complex(9, 8) + 4 #=> (13+8i) | |
* Complex(20, 9) + 9.8 #=> (29.8+9i) | |
*/ | |
VALUE | |
rb_complex_plus(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
VALUE real, imag; | |
get_dat2(self, other); | |
real = f_add(adat->real, bdat->real); | |
imag = f_add(adat->imag, bdat->imag); | |
return f_complex_new2(CLASS_OF(self), real, imag); | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
get_dat1(self); | |
return f_complex_new2(CLASS_OF(self), | |
f_add(dat->real, other), dat->imag); | |
} | |
return rb_num_coerce_bin(self, other, '+'); | |
} | |
/* | |
* call-seq: | |
* cmp - numeric -> complex | |
* | |
* Performs subtraction. | |
* | |
* Complex(2, 3) - Complex(2, 3) #=> (0+0i) | |
* Complex(900) - Complex(1) #=> (899+0i) | |
* Complex(-2, 9) - Complex(-9, 2) #=> (7+7i) | |
* Complex(9, 8) - 4 #=> (5+8i) | |
* Complex(20, 9) - 9.8 #=> (10.2+9i) | |
*/ | |
VALUE | |
rb_complex_minus(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
VALUE real, imag; | |
get_dat2(self, other); | |
real = f_sub(adat->real, bdat->real); | |
imag = f_sub(adat->imag, bdat->imag); | |
return f_complex_new2(CLASS_OF(self), real, imag); | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
get_dat1(self); | |
return f_complex_new2(CLASS_OF(self), | |
f_sub(dat->real, other), dat->imag); | |
} | |
return rb_num_coerce_bin(self, other, '-'); | |
} | |
static VALUE | |
safe_mul(VALUE a, VALUE b, int az, int bz) | |
{ | |
double v; | |
if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) { | |
a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0); | |
} | |
if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) { | |
b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0); | |
} | |
return f_mul(a, b); | |
} | |
static void | |
comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag) | |
{ | |
int arzero = f_zero_p(areal); | |
int aizero = f_zero_p(aimag); | |
int brzero = f_zero_p(breal); | |
int bizero = f_zero_p(bimag); | |
*real = f_sub(safe_mul(areal, breal, arzero, brzero), | |
safe_mul(aimag, bimag, aizero, bizero)); | |
*imag = f_add(safe_mul(areal, bimag, arzero, bizero), | |
safe_mul(aimag, breal, aizero, brzero)); | |
} | |
/* | |
* call-seq: | |
* cmp * numeric -> complex | |
* | |
* Performs multiplication. | |
* | |
* Complex(2, 3) * Complex(2, 3) #=> (-5+12i) | |
* Complex(900) * Complex(1) #=> (900+0i) | |
* Complex(-2, 9) * Complex(-9, 2) #=> (0-85i) | |
* Complex(9, 8) * 4 #=> (36+32i) | |
* Complex(20, 9) * 9.8 #=> (196.0+88.2i) | |
*/ | |
VALUE | |
rb_complex_mul(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
VALUE real, imag; | |
get_dat2(self, other); | |
comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag); | |
return f_complex_new2(CLASS_OF(self), real, imag); | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
get_dat1(self); | |
return f_complex_new2(CLASS_OF(self), | |
f_mul(dat->real, other), | |
f_mul(dat->imag, other)); | |
} | |
return rb_num_coerce_bin(self, other, '*'); | |
} | |
inline static VALUE | |
f_divide(VALUE self, VALUE other, | |
VALUE (*func)(VALUE, VALUE), ID id) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
VALUE r, n, x, y; | |
int flo; | |
get_dat2(self, other); | |
flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) || | |
RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag)); | |
if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) { | |
r = (*func)(bdat->imag, bdat->real); | |
n = f_mul(bdat->real, f_add(ONE, f_mul(r, r))); | |
x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n); | |
y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n); | |
} | |
else { | |
r = (*func)(bdat->real, bdat->imag); | |
n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r))); | |
x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n); | |
y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n); | |
} | |
if (!flo) { | |
x = rb_rational_canonicalize(x); | |
y = rb_rational_canonicalize(y); | |
} | |
return f_complex_new2(CLASS_OF(self), x, y); | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
VALUE x, y; | |
get_dat1(self); | |
x = rb_rational_canonicalize((*func)(dat->real, other)); | |
y = rb_rational_canonicalize((*func)(dat->imag, other)); | |
return f_complex_new2(CLASS_OF(self), x, y); | |
} | |
return rb_num_coerce_bin(self, other, id); | |
} | |
#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0") | |
/* | |
* call-seq: | |
* cmp / numeric -> complex | |
* cmp.quo(numeric) -> complex | |
* | |
* Performs division. | |
* | |
* Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i) | |
* Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i) | |
* Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i) | |
* Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i) | |
* Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i) | |
*/ | |
VALUE | |
rb_complex_div(VALUE self, VALUE other) | |
{ | |
return f_divide(self, other, f_quo, id_quo); | |
} | |
#define nucomp_quo rb_complex_div | |
/* | |
* call-seq: | |
* cmp.fdiv(numeric) -> complex | |
* | |
* Performs division as each part is a float, never returns a float. | |
* | |
* Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i) | |
*/ | |
static VALUE | |
nucomp_fdiv(VALUE self, VALUE other) | |
{ | |
return f_divide(self, other, f_fdiv, id_fdiv); | |
} | |
inline static VALUE | |
f_reciprocal(VALUE x) | |
{ | |
return f_quo(ONE, x); | |
} | |
/* | |
* call-seq: | |
* cmp ** numeric -> complex | |
* | |
* Performs exponentiation. | |
* | |
* Complex('i') ** 2 #=> (-1+0i) | |
* Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i) | |
*/ | |
VALUE | |
rb_complex_pow(VALUE self, VALUE other) | |
{ | |
if (k_numeric_p(other) && k_exact_zero_p(other)) | |
return f_complex_new_bang1(CLASS_OF(self), ONE); | |
if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1)) | |
other = RRATIONAL(other)->num; /* c14n */ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
get_dat1(other); | |
if (k_exact_zero_p(dat->imag)) | |
other = dat->real; /* c14n */ | |
} | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
VALUE r, theta, nr, ntheta; | |
get_dat1(other); | |
r = f_abs(self); | |
theta = f_arg(self); | |
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), | |
f_mul(dat->imag, theta))); | |
ntheta = f_add(f_mul(theta, dat->real), | |
f_mul(dat->imag, m_log_bang(r))); | |
return f_complex_polar(CLASS_OF(self), nr, ntheta); | |
} | |
if (FIXNUM_P(other)) { | |
long n = FIX2LONG(other); | |
if (n == 0) { | |
return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO); | |
} | |
if (n < 0) { | |
self = f_reciprocal(self); | |
other = rb_int_uminus(other); | |
n = -n; | |
} | |
{ | |
get_dat1(self); | |
VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi; | |
if (f_zero_p(xi)) { | |
zr = rb_num_pow(zr, other); | |
} | |
else if (f_zero_p(xr)) { | |
zi = rb_num_pow(zi, other); | |
if (n & 2) zi = f_negate(zi); | |
if (!(n & 1)) { | |
VALUE tmp = zr; | |
zr = zi; | |
zi = tmp; | |
} | |
} | |
else { | |
while (--n) { | |
long q, r; | |
for (; q = n / 2, r = n % 2, r == 0; n = q) { | |
VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi)); | |
xi = f_mul(f_mul(TWO, xr), xi); | |
xr = tmp; | |
} | |
comp_mul(zr, zi, xr, xi, &zr, &zi); | |
} | |
} | |
return nucomp_s_new_internal(CLASS_OF(self), zr, zi); | |
} | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
VALUE r, theta; | |
if (RB_TYPE_P(other, T_BIGNUM)) | |
rb_warn("in a**b, b may be too big"); | |
r = f_abs(self); | |
theta = f_arg(self); | |
return f_complex_polar(CLASS_OF(self), f_expt(r, other), | |
f_mul(theta, other)); | |
} | |
return rb_num_coerce_bin(self, other, id_expt); | |
} | |
/* | |
* call-seq: | |
* cmp == object -> true or false | |
* | |
* Returns true if cmp equals object numerically. | |
* | |
* Complex(2, 3) == Complex(2, 3) #=> true | |
* Complex(5) == 5 #=> true | |
* Complex(0) == 0.0 #=> true | |
* Complex('1/3') == 0.33 #=> false | |
* Complex('1/2') == '1/2' #=> false | |
*/ | |
static VALUE | |
nucomp_eqeq_p(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
get_dat2(self, other); | |
return f_boolcast(f_eqeq_p(adat->real, bdat->real) && | |
f_eqeq_p(adat->imag, bdat->imag)); | |
} | |
if (k_numeric_p(other) && f_real_p(other)) { | |
get_dat1(self); | |
return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); | |
} | |
return f_boolcast(f_eqeq_p(other, self)); | |
} | |
static bool | |
nucomp_real_p(VALUE self) | |
{ | |
get_dat1(self); | |
return(f_zero_p(dat->imag) ? true : false); | |
} | |
/* | |
* call-seq: | |
* cmp <=> object -> 0, 1, -1, or nil | |
* | |
* If +cmp+'s imaginary part is zero, and +object+ is also a | |
* real number (or a Complex number where the imaginary part is zero), | |
* compare the real part of +cmp+ to object. Otherwise, return nil. | |
* | |
* Complex(2, 3) <=> Complex(2, 3) #=> nil | |
* Complex(2, 3) <=> 1 #=> nil | |
* Complex(2) <=> 1 #=> 1 | |
* Complex(2) <=> 2 #=> 0 | |
* Complex(2) <=> 3 #=> -1 | |
*/ | |
static VALUE | |
nucomp_cmp(VALUE self, VALUE other) | |
{ | |
if (nucomp_real_p(self) && k_numeric_p(other)) { | |
if (RB_TYPE_P(other, T_COMPLEX) && nucomp_real_p(other)) { | |
get_dat2(self, other); | |
return rb_funcall(adat->real, idCmp, 1, bdat->real); | |
} | |
else if (f_real_p(other)) { | |
get_dat1(self); | |
return rb_funcall(dat->real, idCmp, 1, other); | |
} | |
} | |
return Qnil; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_coerce(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) | |
return rb_assoc_new(other, self); | |
if (k_numeric_p(other) && f_real_p(other)) | |
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self); | |
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE, | |
rb_obj_class(other), rb_obj_class(self)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* cmp.abs -> real | |
* cmp.magnitude -> real | |
* | |
* Returns the absolute part of its polar form. | |
* | |
* Complex(-1).abs #=> 1 | |
* Complex(3.0, -4.0).abs #=> 5.0 | |
*/ | |
VALUE | |
rb_complex_abs(VALUE self) | |
{ | |
get_dat1(self); | |
if (f_zero_p(dat->real)) { | |
VALUE a = f_abs(dat->imag); | |
if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) | |
a = f_to_f(a); | |
return a; | |
} | |
if (f_zero_p(dat->imag)) { | |
VALUE a = f_abs(dat->real); | |
if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) | |
a = f_to_f(a); | |
return a; | |
} | |
return rb_math_hypot(dat->real, dat->imag); | |
} | |
/* | |
* call-seq: | |
* cmp.abs2 -> real | |
* | |
* Returns square of the absolute value. | |
* | |
* Complex(-1).abs2 #=> 1 | |
* Complex(3.0, -4.0).abs2 #=> 25.0 | |
*/ | |
static VALUE | |
nucomp_abs2(VALUE self) | |
{ | |
get_dat1(self); | |
return f_add(f_mul(dat->real, dat->real), | |
f_mul(dat->imag, dat->imag)); | |
} | |
/* | |
* call-seq: | |
* cmp.arg -> float | |
* cmp.angle -> float | |
* cmp.phase -> float | |
* | |
* Returns the angle part of its polar form. | |
* | |
* Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966 | |
*/ | |
VALUE | |
rb_complex_arg(VALUE self) | |
{ | |
get_dat1(self); | |
return rb_math_atan2(dat->imag, dat->real); | |
} | |
/* | |
* call-seq: | |
* cmp.rect -> array | |
* cmp.rectangular -> array | |
* | |
* Returns an array; [cmp.real, cmp.imag]. | |
* | |
* Complex(1, 2).rectangular #=> [1, 2] | |
*/ | |
static VALUE | |
nucomp_rect(VALUE self) | |
{ | |
get_dat1(self); | |
return rb_assoc_new(dat->real, dat->imag); | |
} | |
/* | |
* call-seq: | |
* cmp.polar -> array | |
* | |
* Returns an array; [cmp.abs, cmp.arg]. | |
* | |
* Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904] | |
*/ | |
static VALUE | |
nucomp_polar(VALUE self) | |
{ | |
return rb_assoc_new(f_abs(self), f_arg(self)); | |
} | |
/* | |
* call-seq: | |
* cmp.conj -> complex | |
* cmp.conjugate -> complex | |
* | |
* Returns the complex conjugate. | |
* | |
* Complex(1, 2).conjugate #=> (1-2i) | |
*/ | |
VALUE | |
rb_complex_conjugate(VALUE self) | |
{ | |
get_dat1(self); | |
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); | |
} | |
/* | |
* call-seq: | |
* Complex(1).real? -> false | |
* Complex(1, 2).real? -> false | |
* | |
* Returns false, even if the complex number has no imaginary part. | |
*/ | |
static VALUE | |
nucomp_real_p_m(VALUE self) | |
{ | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* cmp.denominator -> integer | |
* | |
* Returns the denominator (lcm of both denominator - real and imag). | |
* | |
* See numerator. | |
*/ | |
static VALUE | |
nucomp_denominator(VALUE self) | |
{ | |
get_dat1(self); | |
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); | |
} | |
/* | |
* call-seq: | |
* cmp.numerator -> numeric | |
* | |
* Returns the numerator. | |
* | |
* 1 2 3+4i <- numerator | |
* - + -i -> ---- | |
* 2 3 6 <- denominator | |
* | |
* c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i) | |
* n = c.numerator #=> (3+4i) | |
* d = c.denominator #=> 6 | |
* n / d #=> ((1/2)+(2/3)*i) | |
* Complex(Rational(n.real, d), Rational(n.imag, d)) | |
* #=> ((1/2)+(2/3)*i) | |
* See denominator. | |
*/ | |
static VALUE | |
nucomp_numerator(VALUE self) | |
{ | |
VALUE cd; | |
get_dat1(self); | |
cd = nucomp_denominator(self); | |
return f_complex_new2(CLASS_OF(self), | |
f_mul(f_numerator(dat->real), | |
f_div(cd, f_denominator(dat->real))), | |
f_mul(f_numerator(dat->imag), | |
f_div(cd, f_denominator(dat->imag)))); | |
} | |
/* :nodoc: */ | |
st_index_t | |
rb_complex_hash(VALUE self) | |
{ | |
st_index_t v, h[2]; | |
VALUE n; | |
get_dat1(self); | |
n = rb_hash(dat->real); | |
h[0] = NUM2LONG(n); | |
n = rb_hash(dat->imag); | |
h[1] = NUM2LONG(n); | |
v = rb_memhash(h, sizeof(h)); | |
return v; | |
} | |
static VALUE | |
nucomp_hash(VALUE self) | |
{ | |
return ST2FIX(rb_complex_hash(self)); | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_eql_p(VALUE self, VALUE other) | |
{ | |
if (RB_TYPE_P(other, T_COMPLEX)) { | |
get_dat2(self, other); | |
return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) && | |
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) && | |
f_eqeq_p(self, other)); | |
} | |
return Qfalse; | |
} | |
inline static int | |
f_signbit(VALUE x) | |
{ | |
if (RB_FLOAT_TYPE_P(x)) { | |
double f = RFLOAT_VALUE(x); | |
return !isnan(f) && signbit(f); | |
} | |
return f_negative_p(x); | |
} | |
inline static int | |
f_tpositive_p(VALUE x) | |
{ | |
return !f_signbit(x); | |
} | |
static VALUE | |
f_format(VALUE self, VALUE (*func)(VALUE)) | |
{ | |
VALUE s; | |
int impos; | |
get_dat1(self); | |
impos = f_tpositive_p(dat->imag); | |
s = (*func)(dat->real); | |
rb_str_cat2(s, !impos ? "-" : "+"); | |
rb_str_concat(s, (*func)(f_abs(dat->imag))); | |
if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1])) | |
rb_str_cat2(s, "*"); | |
rb_str_cat2(s, "i"); | |
return s; | |
} | |
/* | |
* call-seq: | |
* cmp.to_s -> string | |
* | |
* Returns the value as a string. | |
* | |
* Complex(2).to_s #=> "2+0i" | |
* Complex('-8/6').to_s #=> "-4/3+0i" | |
* Complex('1/2i').to_s #=> "0+1/2i" | |
* Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i" | |
* Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i" | |
*/ | |
static VALUE | |
nucomp_to_s(VALUE self) | |
{ | |
return f_format(self, rb_String); | |
} | |
/* | |
* call-seq: | |
* cmp.inspect -> string | |
* | |
* Returns the value as a string for inspection. | |
* | |
* Complex(2).inspect #=> "(2+0i)" | |
* Complex('-8/6').inspect #=> "((-4/3)+0i)" | |
* Complex('1/2i').inspect #=> "(0+(1/2)*i)" | |
* Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)" | |
* Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)" | |
*/ | |
static VALUE | |
nucomp_inspect(VALUE self) | |
{ | |
VALUE s; | |
s = rb_usascii_str_new2("("); | |
rb_str_concat(s, f_format(self, rb_inspect)); | |
rb_str_cat2(s, ")"); | |
return s; | |
} | |
#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL)) | |
/* | |
* call-seq: | |
* cmp.finite? -> true or false | |
* | |
* Returns +true+ if +cmp+'s real and imaginary parts are both finite numbers, | |
* otherwise returns +false+. | |
*/ | |
static VALUE | |
rb_complex_finite_p(VALUE self) | |
{ | |
get_dat1(self); | |
if (f_finite_p(dat->real) && f_finite_p(dat->imag)) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* cmp.infinite? -> nil or 1 | |
* | |
* Returns +1+ if +cmp+'s real or imaginary part is an infinite number, | |
* otherwise returns +nil+. | |
* | |
* For example: | |
* | |
* (1+1i).infinite? #=> nil | |
* (Float::INFINITY + 1i).infinite? #=> 1 | |
*/ | |
static VALUE | |
rb_complex_infinite_p(VALUE self) | |
{ | |
get_dat1(self); | |
if (NIL_P(f_infinite_p(dat->real)) && NIL_P(f_infinite_p(dat->imag))) { | |
return Qnil; | |
} | |
return ONE; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_dumper(VALUE self) | |
{ | |
return self; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_loader(VALUE self, VALUE a) | |
{ | |
get_dat1(self); | |
RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real)); | |
RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag)); | |
OBJ_FREEZE_RAW(self); | |
return self; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_marshal_dump(VALUE self) | |
{ | |
VALUE a; | |
get_dat1(self); | |
a = rb_assoc_new(dat->real, dat->imag); | |
rb_copy_generic_ivar(a, self); | |
return a; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nucomp_marshal_load(VALUE self, VALUE a) | |
{ | |
Check_Type(a, T_ARRAY); | |
if (RARRAY_LEN(a) != 2) | |
rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a)); | |
rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0)); | |
rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1)); | |
return self; | |
} | |
/* --- */ | |
VALUE | |
rb_complex_raw(VALUE x, VALUE y) | |
{ | |
return nucomp_s_new_internal(rb_cComplex, x, y); | |
} | |
VALUE | |
rb_complex_new(VALUE x, VALUE y) | |
{ | |
return nucomp_s_canonicalize_internal(rb_cComplex, x, y); | |
} | |
VALUE | |
rb_complex_new_polar(VALUE x, VALUE y) | |
{ | |
return f_complex_polar(rb_cComplex, x, y); | |
} | |
VALUE | |
rb_complex_polar(VALUE x, VALUE y) | |
{ | |
return rb_complex_new_polar(x, y); | |
} | |
VALUE | |
rb_Complex(VALUE x, VALUE y) | |
{ | |
VALUE a[2]; | |
a[0] = x; | |
a[1] = y; | |
return nucomp_s_convert(2, a, rb_cComplex); | |
} | |
/*! | |
* Creates a Complex object. | |
* | |
* \param real real part value | |
* \param imag imaginary part value | |
* \return a new Complex object | |
*/ | |
VALUE | |
rb_dbl_complex_new(double real, double imag) | |
{ | |
return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag)); | |
} | |
/* | |
* call-seq: | |
* cmp.to_i -> integer | |
* | |
* Returns the value as an integer if possible (the imaginary part | |
* should be exactly zero). | |
* | |
* Complex(1, 0).to_i #=> 1 | |
* Complex(1, 0.0).to_i # RangeError | |
* Complex(1, 2).to_i # RangeError | |
*/ | |
static VALUE | |
nucomp_to_i(VALUE self) | |
{ | |
get_dat1(self); | |
if (!k_exact_zero_p(dat->imag)) { | |
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer", | |
self); | |
} | |
return f_to_i(dat->real); | |
} | |
/* | |
* call-seq: | |
* cmp.to_f -> float | |
* | |
* Returns the value as a float if possible (the imaginary part should | |
* be exactly zero). | |
* | |
* Complex(1, 0).to_f #=> 1.0 | |
* Complex(1, 0.0).to_f # RangeError | |
* Complex(1, 2).to_f # RangeError | |
*/ | |
static VALUE | |
nucomp_to_f(VALUE self) | |
{ | |
get_dat1(self); | |
if (!k_exact_zero_p(dat->imag)) { | |
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float", | |
self); | |
} | |
return f_to_f(dat->real); | |
} | |
/* | |
* call-seq: | |
* cmp.to_r -> rational | |
* | |
* Returns the value as a rational if possible (the imaginary part | |
* should be exactly zero). | |
* | |
* Complex(1, 0).to_r #=> (1/1) | |
* Complex(1, 0.0).to_r # RangeError | |
* Complex(1, 2).to_r # RangeError | |
* | |
* See rationalize. | |
*/ | |
static VALUE | |
nucomp_to_r(VALUE self) | |
{ | |
get_dat1(self); | |
if (!k_exact_zero_p(dat->imag)) { | |
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", | |
self); | |
} | |
return f_to_r(dat->real); | |
} | |
/* | |
* call-seq: | |
* cmp.rationalize([eps]) -> rational | |
* | |
* Returns the value as a rational if possible (the imaginary part | |
* should be exactly zero). | |
* | |
* Complex(1.0/3, 0).rationalize #=> (1/3) | |
* Complex(1, 0.0).rationalize # RangeError | |
* Complex(1, 2).rationalize # RangeError | |
* | |
* See to_r. | |
*/ | |
static VALUE | |
nucomp_rationalize(int argc, VALUE *argv, VALUE self) | |
{ | |
get_dat1(self); | |
rb_check_arity(argc, 0, 1); | |
if (!k_exact_zero_p(dat->imag)) { | |
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", | |
self); | |
} | |
return rb_funcallv(dat->real, id_rationalize, argc, argv); | |
} | |
/* | |
* call-seq: | |
* complex.to_c -> self | |
* | |
* Returns self. | |
* | |
* Complex(2).to_c #=> (2+0i) | |
* Complex(-8, 6).to_c #=> (-8+6i) | |
*/ | |
static VALUE | |
nucomp_to_c(VALUE self) | |
{ | |
return self; | |
} | |
/* | |
* call-seq: | |
* nil.to_c -> (0+0i) | |
* | |
* Returns zero as a complex. | |
*/ | |
static VALUE | |
nilclass_to_c(VALUE self) | |
{ | |
return rb_complex_new1(INT2FIX(0)); | |
} | |
/* | |
* call-seq: | |
* num.to_c -> complex | |
* | |
* Returns the value as a complex. | |
*/ | |
static VALUE | |
numeric_to_c(VALUE self) | |
{ | |
return rb_complex_new1(self); | |
} | |
inline static int | |
issign(int c) | |
{ | |
return (c == '-' || c == '+'); | |
} | |
static int | |
read_sign(const char **s, | |
char **b) | |
{ | |
int sign = '?'; | |
if (issign(**s)) { | |
sign = **b = **s; | |
(*s)++; | |
(*b)++; | |
} | |
return sign; | |
} | |
inline static int | |
isdecimal(int c) | |
{ | |
return isdigit((unsigned char)c); | |
} | |
static int | |
read_digits(const char **s, int strict, | |
char **b) | |
{ | |
int us = 1; | |
if (!isdecimal(**s)) | |
return 0; | |
while (isdecimal(**s) || **s == '_') { | |
if (**s == '_') { | |
if (strict) { | |
if (us) | |
return 0; | |
} | |
us = 1; | |
} | |
else { | |
**b = **s; | |
(*b)++; | |
us = 0; | |
} | |
(*s)++; | |
} | |
if (us) | |
do { | |
(*s)--; | |
} while (**s == '_'); | |
return 1; | |
} | |
inline static int | |
islettere(int c) | |
{ | |
return (c == 'e' || c == 'E'); | |
} | |
static int | |
read_num(const char **s, int strict, | |
char **b) | |
{ | |
if (**s != '.') { | |
if (!read_digits(s, strict, b)) | |
return 0; | |
} | |
if (**s == '.') { | |
**b = **s; | |
(*s)++; | |
(*b)++; | |
if (!read_digits(s, strict, b)) { | |
(*b)--; | |
return 0; | |
} | |
} | |
if (islettere(**s)) { | |
**b = **s; | |
(*s)++; | |
(*b)++; | |
read_sign(s, b); | |
if (!read_digits(s, strict, b)) { | |
(*b)--; | |
return 0; | |
} | |
} | |
return 1; | |
} | |
inline static int | |
read_den(const char **s, int strict, | |
char **b) | |
{ | |
if (!read_digits(s, strict, b)) | |
return 0; | |
return 1; | |
} | |
static int | |
read_rat_nos(const char **s, int strict, | |
char **b) | |
{ | |
if (!read_num(s, strict, b)) | |
return 0; | |
if (**s == '/') { | |
**b = **s; | |
(*s)++; | |
(*b)++; | |
if (!read_den(s, strict, b)) { | |
(*b)--; | |
return 0; | |
} | |
} | |
return 1; | |
} | |
static int | |
read_rat(const char **s, int strict, | |
char **b) | |
{ | |
read_sign(s, b); | |
if (!read_rat_nos(s, strict, b)) | |
return 0; | |
return 1; | |
} | |
inline static int | |
isimagunit(int c) | |
{ | |
return (c == 'i' || c == 'I' || | |
c == 'j' || c == 'J'); | |
} | |
static VALUE | |
str2num(char *s) | |
{ | |
if (strchr(s, '/')) | |
return rb_cstr_to_rat(s, 0); | |
if (strpbrk(s, ".eE")) | |
return DBL2NUM(rb_cstr_to_dbl(s, 0)); | |
return rb_cstr_to_inum(s, 10, 0); | |
} | |
static int | |
read_comp(const char **s, int strict, | |
VALUE *ret, char **b) | |
{ | |
char *bb; | |
int sign; | |
VALUE num, num2; | |
bb = *b; | |
sign = read_sign(s, b); | |
if (isimagunit(**s)) { | |
(*s)++; | |
num = INT2FIX((sign == '-') ? -1 : + 1); | |
*ret = rb_complex_new2(ZERO, num); | |
return 1; /* e.g. "i" */ | |
} | |
if (!read_rat_nos(s, strict, b)) { | |
**b = '\0'; | |
num = str2num(bb); | |
*ret = rb_complex_new2(num, ZERO); | |
return 0; /* e.g. "-" */ | |
} | |
**b = '\0'; | |
num = str2num(bb); | |
if (isimagunit(**s)) { | |
(*s)++; | |
*ret = rb_complex_new2(ZERO, num); | |
return 1; /* e.g. "3i" */ | |
} | |
if (**s == '@') { | |
int st; | |
(*s)++; | |
bb = *b; | |
st = read_rat(s, strict, b); | |
**b = '\0'; | |
if (strlen(bb) < 1 || | |
!isdecimal(*(bb + strlen(bb) - 1))) { | |
*ret = rb_complex_new2(num, ZERO); | |
return 0; /* e.g. "1@-" */ | |
} | |
num2 = str2num(bb); | |
*ret = rb_complex_new_polar(num, num2); | |
if (!st) | |
return 0; /* e.g. "1@2." */ | |
else | |
return 1; /* e.g. "1@2" */ | |
} | |
if (issign(**s)) { | |
bb = *b; | |
sign = read_sign(s, b); | |
if (isimagunit(**s)) | |
num2 = INT2FIX((sign == '-') ? -1 : + 1); | |
else { | |
if (!read_rat_nos(s, strict, b)) { | |
*ret = rb_complex_new2(num, ZERO); | |
return 0; /* e.g. "1+xi" */ | |
} | |
**b = '\0'; | |
num2 = str2num(bb); | |
} | |
if (!isimagunit(**s)) { | |
*ret = rb_complex_new2(num, ZERO); | |
return 0; /* e.g. "1+3x" */ | |
} | |
(*s)++; | |
*ret = rb_complex_new2(num, num2); | |
return 1; /* e.g. "1+2i" */ | |
} | |
/* !(@, - or +) */ | |
{ | |
*ret = rb_complex_new2(num, ZERO); | |
return 1; /* e.g. "3" */ | |
} | |
} | |
inline static void | |
skip_ws(const char **s) | |
{ | |
while (isspace((unsigned char)**s)) | |
(*s)++; | |
} | |
static int | |
parse_comp(const char *s, int strict, VALUE *num) | |
{ | |
char *buf, *b; | |
VALUE tmp; | |
int ret = 1; | |
buf = ALLOCV_N(char, tmp, strlen(s) + 1); | |
b = buf; | |
skip_ws(&s); | |
if (!read_comp(&s, strict, num, &b)) { | |
ret = 0; | |
} | |
else { | |
skip_ws(&s); | |
if (strict) | |
if (*s != '\0') | |
ret = 0; | |
} | |
ALLOCV_END(tmp); | |
return ret; | |
} | |
static VALUE | |
string_to_c_strict(VALUE self, int raise) | |
{ | |
char *s; | |
VALUE num; | |
rb_must_asciicompat(self); | |
s = RSTRING_PTR(self); | |
if (!s || memchr(s, '\0', RSTRING_LEN(self))) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eArgError, "string contains null byte"); | |
} | |
if (s && s[RSTRING_LEN(self)]) { | |
rb_str_modify(self); | |
s = RSTRING_PTR(self); | |
s[RSTRING_LEN(self)] = '\0'; | |
} | |
if (!s) | |
s = (char *)""; | |
if (!parse_comp(s, 1, &num)) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE, | |
self); | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* str.to_c -> complex | |
* | |
* Returns a complex which denotes the string form. The parser | |
* ignores leading whitespaces and trailing garbage. Any digit | |
* sequences can be separated by an underscore. Returns zero for null | |
* or garbage string. | |
* | |
* '9'.to_c #=> (9+0i) | |
* '2.5'.to_c #=> (2.5+0i) | |
* '2.5/1'.to_c #=> ((5/2)+0i) | |
* '-3/2'.to_c #=> ((-3/2)+0i) | |
* '-i'.to_c #=> (0-1i) | |
* '45i'.to_c #=> (0+45i) | |
* '3-4i'.to_c #=> (3-4i) | |
* '-4e2-4e-2i'.to_c #=> (-400.0-0.04i) | |
* '-0.0-0.0i'.to_c #=> (-0.0-0.0i) | |
* '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i) | |
* 'ruby'.to_c #=> (0+0i) | |
* | |
* See Kernel.Complex. | |
*/ | |
static VALUE | |
string_to_c(VALUE self) | |
{ | |
char *s; | |
VALUE num; | |
rb_must_asciicompat(self); | |
s = RSTRING_PTR(self); | |
if (s && s[RSTRING_LEN(self)]) { | |
rb_str_modify(self); | |
s = RSTRING_PTR(self); | |
s[RSTRING_LEN(self)] = '\0'; | |
} | |
if (!s) | |
s = (char *)""; | |
(void)parse_comp(s, 0, &num); | |
return num; | |
} | |
static VALUE | |
to_complex(VALUE val) | |
{ | |
return rb_convert_type(val, T_COMPLEX, "Complex", "to_c"); | |
} | |
static VALUE | |
nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise) | |
{ | |
if (NIL_P(a1) || NIL_P(a2)) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eTypeError, "can't convert nil into Complex"); | |
} | |
if (RB_TYPE_P(a1, T_STRING)) { | |
a1 = string_to_c_strict(a1, raise); | |
if (NIL_P(a1)) return Qnil; | |
} | |
if (RB_TYPE_P(a2, T_STRING)) { | |
a2 = string_to_c_strict(a2, raise); | |
if (NIL_P(a2)) return Qnil; | |
} | |
if (RB_TYPE_P(a1, T_COMPLEX)) { | |
{ | |
get_dat1(a1); | |
if (k_exact_zero_p(dat->imag)) | |
a1 = dat->real; | |
} | |
} | |
if (RB_TYPE_P(a2, T_COMPLEX)) { | |
{ | |
get_dat1(a2); | |
if (k_exact_zero_p(dat->imag)) | |
a2 = dat->real; | |
} | |
} | |
if (RB_TYPE_P(a1, T_COMPLEX)) { | |
if (a2 == Qundef || (k_exact_zero_p(a2))) | |
return a1; | |
} | |
if (a2 == Qundef) { | |
if (k_numeric_p(a1) && !f_real_p(a1)) | |
return a1; | |
/* should raise exception for consistency */ | |
if (!k_numeric_p(a1)) { | |
if (!raise) | |
return rb_protect(to_complex, a1, NULL); | |
return to_complex(a1); | |
} | |
} | |
else { | |
if ((k_numeric_p(a1) && k_numeric_p(a2)) && | |
(!f_real_p(a1) || !f_real_p(a2))) | |
return f_add(a1, | |
f_mul(a2, | |
f_complex_new_bang2(rb_cComplex, ZERO, ONE))); | |
} | |
{ | |
int argc; | |
VALUE argv2[2]; | |
argv2[0] = a1; | |
if (a2 == Qundef) { | |
argv2[1] = Qnil; | |
argc = 1; | |
} | |
else { | |
if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL)) | |
return Qnil; | |
argv2[1] = a2; | |
argc = 2; | |
} | |
return nucomp_s_new(argc, argv2, klass); | |
} | |
} | |
static VALUE | |
nucomp_s_convert(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE a1, a2; | |
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) { | |
a2 = Qundef; | |
} | |
return nucomp_convert(klass, a1, a2, TRUE); | |
} | |
/* --- */ | |
/* | |
* call-seq: | |
* num.real -> self | |
* | |
* Returns self. | |
*/ | |
static VALUE | |
numeric_real(VALUE self) | |
{ | |
return self; | |
} | |
/* | |
* call-seq: | |
* num.imag -> 0 | |
* num.imaginary -> 0 | |
* | |
* Returns zero. | |
*/ | |
static VALUE | |
numeric_imag(VALUE self) | |
{ | |
return INT2FIX(0); | |
} | |
/* | |
* call-seq: | |
* num.abs2 -> real | |
* | |
* Returns square of self. | |
*/ | |
static VALUE | |
numeric_abs2(VALUE self) | |
{ | |
return f_mul(self, self); | |
} | |
/* | |
* call-seq: | |
* num.arg -> 0 or float | |
* num.angle -> 0 or float | |
* num.phase -> 0 or float | |
* | |
* Returns 0 if the value is positive, pi otherwise. | |
*/ | |
static VALUE | |
numeric_arg(VALUE self) | |
{ | |
if (f_positive_p(self)) | |
return INT2FIX(0); | |
return DBL2NUM(M_PI); | |
} | |
/* | |
* call-seq: | |
* num.rect -> array | |
* num.rectangular -> array | |
* | |
* Returns an array; [num, 0]. | |
*/ | |
static VALUE | |
numeric_rect(VALUE self) | |
{ | |
return rb_assoc_new(self, INT2FIX(0)); | |
} | |
/* | |
* call-seq: | |
* num.polar -> array | |
* | |
* Returns an array; [num.abs, num.arg]. | |
*/ | |
static VALUE | |
numeric_polar(VALUE self) | |
{ | |
VALUE abs, arg; | |
if (RB_INTEGER_TYPE_P(self)) { | |
abs = rb_int_abs(self); | |
arg = numeric_arg(self); | |
} | |
else if (RB_FLOAT_TYPE_P(self)) { | |
abs = rb_float_abs(self); | |
arg = float_arg(self); | |
} | |
else if (RB_TYPE_P(self, T_RATIONAL)) { | |
abs = rb_rational_abs(self); | |
arg = numeric_arg(self); | |
} | |
else { | |
abs = f_abs(self); | |
arg = f_arg(self); | |
} | |
return rb_assoc_new(abs, arg); | |
} | |
/* | |
* call-seq: | |
* num.conj -> self | |
* num.conjugate -> self | |
* | |
* Returns self. | |
*/ | |
static VALUE | |
numeric_conj(VALUE self) | |
{ | |
return self; | |
} | |
/* | |
* call-seq: | |
* flo.arg -> 0 or float | |
* flo.angle -> 0 or float | |
* flo.phase -> 0 or float | |
* | |
* Returns 0 if the value is positive, pi otherwise. | |
*/ | |
static VALUE | |
float_arg(VALUE self) | |
{ | |
if (isnan(RFLOAT_VALUE(self))) | |
return self; | |
if (f_tpositive_p(self)) | |
return INT2FIX(0); | |
return rb_const_get(rb_mMath, id_PI); | |
} | |
/* | |
* A complex number can be represented as a paired real number with | |
* imaginary unit; a+bi. Where a is real part, b is imaginary part | |
* and i is imaginary unit. Real a equals complex a+0i | |
* mathematically. | |
* | |
* Complex object can be created as literal, and also by using | |
* Kernel#Complex, Complex::rect, Complex::polar or to_c method. | |
* | |
* 2+1i #=> (2+1i) | |
* Complex(1) #=> (1+0i) | |
* Complex(2, 3) #=> (2+3i) | |
* Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) | |
* 3.to_c #=> (3+0i) | |
* | |
* You can also create complex object from floating-point numbers or | |
* strings. | |
* | |
* Complex(0.3) #=> (0.3+0i) | |
* Complex('0.3-0.5i') #=> (0.3-0.5i) | |
* Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) | |
* Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) | |
* | |
* 0.3.to_c #=> (0.3+0i) | |
* '0.3-0.5i'.to_c #=> (0.3-0.5i) | |
* '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) | |
* '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i) | |
* | |
* A complex object is either an exact or an inexact number. | |
* | |
* Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) | |
* Complex(1, 1) / 2.0 #=> (0.5+0.5i) | |
*/ | |
void | |
Init_Complex(void) | |
{ | |
VALUE compat; | |
id_abs = rb_intern_const("abs"); | |
id_arg = rb_intern_const("arg"); | |
id_denominator = rb_intern_const("denominator"); | |
id_numerator = rb_intern_const("numerator"); | |
id_real_p = rb_intern_const("real?"); | |
id_i_real = rb_intern_const("@real"); | |
id_i_imag = rb_intern_const("@image"); /* @image, not @imag */ | |
id_finite_p = rb_intern_const("finite?"); | |
id_infinite_p = rb_intern_const("infinite?"); | |
id_rationalize = rb_intern_const("rationalize"); | |
id_PI = rb_intern_const("PI"); | |
rb_cComplex = rb_define_class("Complex", rb_cNumeric); | |
rb_define_alloc_func(rb_cComplex, nucomp_s_alloc); | |
rb_undef_method(CLASS_OF(rb_cComplex), "allocate"); | |
rb_undef_method(CLASS_OF(rb_cComplex), "new"); | |
rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1); | |
rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1); | |
rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1); | |
rb_define_global_function("Complex", nucomp_f_complex, -1); | |
rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable)); | |
rb_undef_method(rb_cComplex, "%"); | |
rb_undef_method(rb_cComplex, "div"); | |
rb_undef_method(rb_cComplex, "divmod"); | |
rb_undef_method(rb_cComplex, "floor"); | |
rb_undef_method(rb_cComplex, "ceil"); | |
rb_undef_method(rb_cComplex, "modulo"); | |
rb_undef_method(rb_cComplex, "remainder"); | |
rb_undef_method(rb_cComplex, "round"); | |
rb_undef_method(rb_cComplex, "step"); | |
rb_undef_method(rb_cComplex, "truncate"); | |
rb_undef_method(rb_cComplex, "i"); | |
rb_define_method(rb_cComplex, "real", rb_complex_real, 0); | |
rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0); | |
rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0); | |
rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0); | |
rb_define_method(rb_cComplex, "+", rb_complex_plus, 1); | |
rb_define_method(rb_cComplex, "-", rb_complex_minus, 1); | |
rb_define_method(rb_cComplex, "*", rb_complex_mul, 1); | |
rb_define_method(rb_cComplex, "/", rb_complex_div, 1); | |
rb_define_method(rb_cComplex, "quo", nucomp_quo, 1); | |
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1); | |
rb_define_method(rb_cComplex, "**", rb_complex_pow, 1); | |
rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1); | |
rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1); | |
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1); | |
rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0); | |
rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0); | |
rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0); | |
rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0); | |
rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0); | |
rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0); | |
rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0); | |
rb_define_method(rb_cComplex, "rect", nucomp_rect, 0); | |
rb_define_method(rb_cComplex, "polar", nucomp_polar, 0); | |
rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0); | |
rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0); | |
rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0); | |
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0); | |
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0); | |
rb_define_method(rb_cComplex, "hash", nucomp_hash, 0); | |
rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1); | |
rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0); | |
rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0); | |
rb_undef_method(rb_cComplex, "positive?"); | |
rb_undef_method(rb_cComplex, "negative?"); | |
rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0); | |
rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0); | |
rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0); | |
/* :nodoc: */ | |
compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject); | |
rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1); | |
rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader); | |
/* --- */ | |
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0); | |
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0); | |
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0); | |
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1); | |
rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0); | |
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0); | |
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0); | |
rb_define_method(rb_cString, "to_c", string_to_c, 0); | |
rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1); | |
/* --- */ | |
rb_define_method(rb_cNumeric, "real", numeric_real, 0); | |
rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0); | |
rb_define_method(rb_cNumeric, "imag", numeric_imag, 0); | |
rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0); | |
rb_define_method(rb_cNumeric, "arg", numeric_arg, 0); | |
rb_define_method(rb_cNumeric, "angle", numeric_arg, 0); | |
rb_define_method(rb_cNumeric, "phase", numeric_arg, 0); | |
rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0); | |
rb_define_method(rb_cNumeric, "rect", numeric_rect, 0); | |
rb_define_method(rb_cNumeric, "polar", numeric_polar, 0); | |
rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0); | |
rb_define_method(rb_cNumeric, "conj", numeric_conj, 0); | |
rb_define_method(rb_cFloat, "arg", float_arg, 0); | |
rb_define_method(rb_cFloat, "angle", float_arg, 0); | |
rb_define_method(rb_cFloat, "phase", float_arg, 0); | |
/* | |
* The imaginary unit. | |
*/ | |
rb_define_const(rb_cComplex, "I", | |
f_complex_new_bang2(rb_cComplex, ZERO, ONE)); | |
#if !USE_FLONUM | |
rb_gc_register_mark_object(RFLOAT_0 = DBL2NUM(0.0)); | |
#endif | |
rb_provide("complex.so"); /* for backward compatibility */ | |
} |