Permalink
Cannot retrieve contributors at this time
4499 lines (4019 sloc)
119 KB
/********************************************************************** | |
enum.c - | |
$Author$ | |
created at: Fri Oct 1 15:15:19 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
**********************************************************************/ | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/compar.h" | |
#include "internal/enum.h" | |
#include "internal/hash.h" | |
#include "internal/imemo.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/proc.h" | |
#include "internal/rational.h" | |
#include "internal/re.h" | |
#include "ruby/util.h" | |
#include "ruby_assert.h" | |
#include "symbol.h" | |
VALUE rb_mEnumerable; | |
static ID id_next; | |
static ID id__alone; | |
static ID id__separator; | |
static ID id_chunk_categorize; | |
static ID id_chunk_enumerable; | |
static ID id_sliceafter_enum; | |
static ID id_sliceafter_pat; | |
static ID id_sliceafter_pred; | |
static ID id_slicebefore_enumerable; | |
static ID id_slicebefore_sep_pat; | |
static ID id_slicebefore_sep_pred; | |
static ID id_slicewhen_enum; | |
static ID id_slicewhen_inverted; | |
static ID id_slicewhen_pred; | |
#define id_div idDiv | |
#define id_each idEach | |
#define id_eqq idEqq | |
#define id_cmp idCmp | |
#define id_lshift idLTLT | |
#define id_call idCall | |
#define id_size idSize | |
VALUE | |
rb_enum_values_pack(int argc, const VALUE *argv) | |
{ | |
if (argc == 0) return Qnil; | |
if (argc == 1) return argv[0]; | |
return rb_ary_new4(argc, argv); | |
} | |
#define ENUM_WANT_SVALUE() do { \ | |
i = rb_enum_values_pack(argc, argv); \ | |
} while (0) | |
static VALUE | |
enum_yield(int argc, VALUE ary) | |
{ | |
if (argc > 1) | |
return rb_yield_force_blockarg(ary); | |
if (argc == 1) | |
return rb_yield(ary); | |
return rb_yield_values2(0, 0); | |
} | |
static VALUE | |
enum_yield_array(VALUE ary) | |
{ | |
long len = RARRAY_LEN(ary); | |
if (len > 1) | |
return rb_yield_force_blockarg(ary); | |
if (len == 1) | |
return rb_yield(RARRAY_AREF(ary, 0)); | |
return rb_yield_values2(0, 0); | |
} | |
static VALUE | |
grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
ENUM_WANT_SVALUE(); | |
if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { | |
rb_ary_push(memo->v2, i); | |
} | |
return Qnil; | |
} | |
static VALUE | |
grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
VALUE converted_element, match; | |
ENUM_WANT_SVALUE(); | |
/* In case element can't be converted to a Symbol or String: not a match (don't raise) */ | |
converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i); | |
match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0); | |
if (match == memo->u3.value) { | |
rb_ary_push(memo->v2, i); | |
} | |
return Qnil; | |
} | |
static VALUE | |
grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
ENUM_WANT_SVALUE(); | |
if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { | |
rb_ary_push(memo->v2, enum_yield(argc, i)); | |
} | |
return Qnil; | |
} | |
static VALUE | |
enum_grep0(VALUE obj, VALUE pat, VALUE test) | |
{ | |
VALUE ary = rb_ary_new(); | |
struct MEMO *memo = MEMO_NEW(pat, ary, test); | |
rb_block_call_func_t fn; | |
if (rb_block_given_p()) { | |
fn = grep_iter_i; | |
} | |
else if (RB_TYPE_P(pat, T_REGEXP) && | |
LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) { | |
fn = grep_regexp_i; | |
} | |
else { | |
fn = grep_i; | |
} | |
rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* grep(pattern) -> array | |
* grep(pattern) {|element| ... } -> array | |
* | |
* Returns an array of objects based elements of +self+ that match the given pattern. | |
* | |
* With no block given, returns an array containing each element | |
* for which <tt>pattern === element</tt> is +true+: | |
* | |
* a = ['foo', 'bar', 'car', 'moo'] | |
* a.grep(/ar/) # => ["bar", "car"] | |
* (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8] | |
* ['a', 'b', 0, 1].grep(Integer) # => [0, 1] | |
* | |
* With a block given, | |
* calls the block with each matching element and returns an array containing each | |
* object returned by the block: | |
* | |
* a = ['foo', 'bar', 'car', 'moo'] | |
* a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"] | |
* | |
* Related: #grep_v. | |
*/ | |
static VALUE | |
enum_grep(VALUE obj, VALUE pat) | |
{ | |
return enum_grep0(obj, pat, Qtrue); | |
} | |
/* | |
* call-seq: | |
* grep_v(pattern) -> array | |
* grep_v(pattern) {|element| ... } -> array | |
* | |
* Returns an array of objects based on elements of +self+ | |
* that <em>don't</em> match the given pattern. | |
* | |
* With no block given, returns an array containing each element | |
* for which <tt>pattern === element</tt> is +false+: | |
* | |
* a = ['foo', 'bar', 'car', 'moo'] | |
* a.grep_v(/ar/) # => ["foo", "moo"] | |
* (1..10).grep_v(3..8) # => [1, 2, 9, 10] | |
* ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"] | |
* | |
* With a block given, | |
* calls the block with each non-matching element and returns an array containing each | |
* object returned by the block: | |
* | |
* a = ['foo', 'bar', 'car', 'moo'] | |
* a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"] | |
* | |
* Related: #grep. | |
*/ | |
static VALUE | |
enum_grep_v(VALUE obj, VALUE pat) | |
{ | |
return enum_grep0(obj, pat, Qfalse); | |
} | |
#define COUNT_BIGNUM IMEMO_FL_USER0 | |
#define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v)) | |
static void | |
imemo_count_up(struct MEMO *memo) | |
{ | |
if (memo->flags & COUNT_BIGNUM) { | |
MEMO_V3_SET(memo, rb_int_succ(memo->u3.value)); | |
} | |
else if (++memo->u3.cnt == 0) { | |
/* overflow */ | |
unsigned long buf[2] = {0, 1}; | |
MEMO_V3_SET(memo, rb_big_unpack(buf, 2)); | |
memo->flags |= COUNT_BIGNUM; | |
} | |
} | |
static VALUE | |
imemo_count_value(struct MEMO *memo) | |
{ | |
if (memo->flags & COUNT_BIGNUM) { | |
return memo->u3.value; | |
} | |
else { | |
return ULONG2NUM(memo->u3.cnt); | |
} | |
} | |
static VALUE | |
count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
struct MEMO *memo = MEMO_CAST(memop); | |
ENUM_WANT_SVALUE(); | |
if (rb_equal(i, memo->v1)) { | |
imemo_count_up(memo); | |
} | |
return Qnil; | |
} | |
static VALUE | |
count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
struct MEMO *memo = MEMO_CAST(memop); | |
if (RTEST(rb_yield_values2(argc, argv))) { | |
imemo_count_up(memo); | |
} | |
return Qnil; | |
} | |
static VALUE | |
count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
struct MEMO *memo = MEMO_CAST(memop); | |
imemo_count_up(memo); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* count -> integer | |
* count(object) -> integer | |
* count {|element| ... } -> integer | |
* | |
* Returns the count of elements, based on an argument or block criterion, if given. | |
* | |
* With no argument and no block given, returns the number of elements: | |
* | |
* [0, 1, 2].count # => 3 | |
* {foo: 0, bar: 1, baz: 2}.count # => 3 | |
* | |
* With argument +object+ given, | |
* returns the number of elements that are <tt>==</tt> to +object+: | |
* | |
* [0, 1, 2, 1].count(1) # => 2 | |
* | |
* With a block given, calls the block with each element | |
* and returns the number of elements for which the block returns a truthy value: | |
* | |
* [0, 1, 2, 3].count {|element| element < 2} # => 2 | |
* {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2 | |
* | |
*/ | |
static VALUE | |
enum_count(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE item = Qnil; | |
struct MEMO *memo; | |
rb_block_call_func *func; | |
if (argc == 0) { | |
if (rb_block_given_p()) { | |
func = count_iter_i; | |
} | |
else { | |
func = count_all_i; | |
} | |
} | |
else { | |
rb_scan_args(argc, argv, "1", &item); | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
func = count_i; | |
} | |
memo = MEMO_NEW(item, 0, 0); | |
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); | |
return imemo_count_value(memo); | |
} | |
static VALUE | |
find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
ENUM_WANT_SVALUE(); | |
if (RTEST(enum_yield(argc, i))) { | |
struct MEMO *memo = MEMO_CAST(memop); | |
MEMO_V1_SET(memo, i); | |
memo->u3.cnt = 1; | |
rb_iter_break(); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* find(if_none_proc = nil) {|element| ... } -> object or nil | |
* find(if_none_proc = nil) -> enumerator | |
* | |
* Returns the first element for which the block returns a truthy value. | |
* | |
* With a block given, calls the block with successive elements of the collection; | |
* returns the first element for which the block returns a truthy value: | |
* | |
* (0..9).find {|element| element > 2} # => 3 | |
* | |
* If no such element is found, calls +if_none_proc+ and returns its return value. | |
* | |
* (0..9).find(proc {false}) {|element| element > 12} # => false | |
* {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1] | |
* {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => [] | |
* | |
* With no block given, returns an \Enumerator. | |
* | |
*/ | |
static VALUE | |
enum_find(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
VALUE if_none; | |
if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; | |
RETURN_ENUMERATOR(obj, argc, argv); | |
memo = MEMO_NEW(Qundef, 0, 0); | |
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo); | |
if (memo->u3.cnt) { | |
return memo->v1; | |
} | |
if (!NIL_P(if_none)) { | |
return rb_funcallv(if_none, id_call, 0, 0); | |
} | |
return Qnil; | |
} | |
static VALUE | |
find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
struct MEMO *memo = MEMO_CAST(memop); | |
ENUM_WANT_SVALUE(); | |
if (rb_equal(i, memo->v2)) { | |
MEMO_V1_SET(memo, imemo_count_value(memo)); | |
rb_iter_break(); | |
} | |
imemo_count_up(memo); | |
return Qnil; | |
} | |
static VALUE | |
find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) | |
{ | |
struct MEMO *memo = MEMO_CAST(memop); | |
if (RTEST(rb_yield_values2(argc, argv))) { | |
MEMO_V1_SET(memo, imemo_count_value(memo)); | |
rb_iter_break(); | |
} | |
imemo_count_up(memo); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* find_index(object) -> integer or nil | |
* find_index {|element| ... } -> integer or nil | |
* find_index -> enumerator | |
* | |
* Returns the index of the first element that meets a specified criterion, | |
* or +nil+ if no such element is found. | |
* | |
* With argument +object+ given, | |
* returns the index of the first element that is <tt>==</tt> +object+: | |
* | |
* ['a', 'b', 'c', 'b'].find_index('b') # => 1 | |
* | |
* With a block given, calls the block with successive elements; | |
* returns the first element for which the block returns a truthy value: | |
* | |
* ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1 | |
* {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2 | |
* | |
* With no argument and no block given, returns an \Enumerator. | |
* | |
*/ | |
static VALUE | |
enum_find_index(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; /* [return value, current index, ] */ | |
VALUE condition_value = Qnil; | |
rb_block_call_func *func; | |
if (argc == 0) { | |
RETURN_ENUMERATOR(obj, 0, 0); | |
func = find_index_iter_i; | |
} | |
else { | |
rb_scan_args(argc, argv, "1", &condition_value); | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
func = find_index_i; | |
} | |
memo = MEMO_NEW(Qnil, condition_value, 0); | |
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); | |
return memo->v1; | |
} | |
static VALUE | |
find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
ENUM_WANT_SVALUE(); | |
if (RTEST(enum_yield(argc, i))) { | |
rb_ary_push(ary, i); | |
} | |
return Qnil; | |
} | |
static VALUE | |
enum_size(VALUE self, VALUE args, VALUE eobj) | |
{ | |
return rb_check_funcall_default(self, id_size, 0, 0, Qnil); | |
} | |
static long | |
limit_by_enum_size(VALUE obj, long n) | |
{ | |
unsigned long limit; | |
VALUE size = rb_check_funcall(obj, id_size, 0, 0); | |
if (!FIXNUM_P(size)) return n; | |
limit = FIX2ULONG(size); | |
return ((unsigned long)n > limit) ? (long)limit : n; | |
} | |
static int | |
enum_size_over_p(VALUE obj, long n) | |
{ | |
VALUE size = rb_check_funcall(obj, id_size, 0, 0); | |
if (!FIXNUM_P(size)) return 0; | |
return ((unsigned long)n > FIX2ULONG(size)); | |
} | |
/* | |
* call-seq: | |
* select {|element| ... } -> array | |
* select -> enumerator | |
* | |
* Returns an array containing elements selected by the block. | |
* | |
* With a block given, calls the block with successive elements; | |
* returns an array of those elements for which the block returns a truthy value: | |
* | |
* (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9] | |
* a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') } | |
* a # => {:bar=>1, :baz=>2} | |
* | |
* With no block given, returns an \Enumerator. | |
* | |
* Related: #reject. | |
*/ | |
static VALUE | |
enum_find_all(VALUE obj) | |
{ | |
VALUE ary; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, find_all_i, ary); | |
return ary; | |
} | |
static VALUE | |
filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
i = rb_yield_values2(argc, argv); | |
if (RTEST(i)) { | |
rb_ary_push(ary, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* filter_map {|element| ... } -> array | |
* filter_map -> enumerator | |
* | |
* Returns an array containing truthy elements returned by the block. | |
* | |
* With a block given, calls the block with successive elements; | |
* returns an array containing each truthy value returned by the block: | |
* | |
* (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16] | |
* {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz] | |
* | |
* When no block given, returns an \Enumerator. | |
* | |
*/ | |
static VALUE | |
enum_filter_map(VALUE obj) | |
{ | |
VALUE ary; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, filter_map_i, ary); | |
return ary; | |
} | |
static VALUE | |
reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
ENUM_WANT_SVALUE(); | |
if (!RTEST(enum_yield(argc, i))) { | |
rb_ary_push(ary, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* reject {|element| ... } -> array | |
* reject -> enumerator | |
* | |
* Returns an array of objects rejected by the block. | |
* | |
* With a block given, calls the block with successive elements; | |
* returns an array of those elements for which the block returns +nil+ or +false+: | |
* | |
* (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9] | |
* {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2} | |
* | |
* When no block given, returns an \Enumerator. | |
* | |
* Related: #select. | |
*/ | |
static VALUE | |
enum_reject(VALUE obj) | |
{ | |
VALUE ary; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, reject_i, ary); | |
return ary; | |
} | |
static VALUE | |
collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
rb_ary_push(ary, rb_yield_values2(argc, argv)); | |
return Qnil; | |
} | |
static VALUE | |
collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
rb_ary_push(ary, rb_enum_values_pack(argc, argv)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* map {|element| ... } -> array | |
* map -> enumerator | |
* | |
* Returns an array of objects returned by the block. | |
* | |
* With a block given, calls the block with successive elements; | |
* returns an array of the objects returned by the block: | |
* | |
* (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16] | |
* {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4] | |
* | |
* With no block given, returns an \Enumerator. | |
* | |
*/ | |
static VALUE | |
enum_collect(VALUE obj) | |
{ | |
VALUE ary; | |
int min_argc, max_argc; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
ary = rb_ary_new(); | |
min_argc = rb_block_min_max_arity(&max_argc); | |
rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary); | |
return ary; | |
} | |
static VALUE | |
flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
VALUE tmp; | |
i = rb_yield_values2(argc, argv); | |
tmp = rb_check_array_type(i); | |
if (NIL_P(tmp)) { | |
rb_ary_push(ary, i); | |
} | |
else { | |
rb_ary_concat(ary, tmp); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* flat_map {|element| ... } -> array | |
* flat_map -> enumerator | |
* | |
* Returns an array of flattened objects returned by the block. | |
* | |
* With a block given, calls the block with successive elements; | |
* returns a flattened array of objects returned by the block: | |
* | |
* [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3] | |
* [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3] | |
* [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100] | |
* {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2] | |
* | |
* With no block given, returns an \Enumerator. | |
* | |
* Alias: #collect_concat. | |
*/ | |
static VALUE | |
enum_flat_map(VALUE obj) | |
{ | |
VALUE ary; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary); | |
return ary; | |
} | |
/* | |
* call-seq: | |
* enum.to_a(*args) -> array | |
* enum.entries(*args) -> array | |
* | |
* Returns an array containing the items in <i>enum</i>. | |
* | |
* (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7] | |
* { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]] | |
* | |
* require 'prime' | |
* Prime.entries 10 #=> [2, 3, 5, 7] | |
*/ | |
static VALUE | |
enum_to_a(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE ary = rb_ary_new(); | |
rb_block_call(obj, id_each, argc, argv, collect_all, ary); | |
return ary; | |
} | |
static VALUE | |
enum_hashify_into(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter, VALUE hash) | |
{ | |
rb_block_call(obj, id_each, argc, argv, iter, hash); | |
return hash; | |
} | |
static VALUE | |
enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter) | |
{ | |
return enum_hashify_into(obj, argc, argv, iter, rb_hash_new()); | |
} | |
static VALUE | |
enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
ENUM_WANT_SVALUE(); | |
return rb_hash_set_pair(hash, i); | |
} | |
static VALUE | |
enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
return rb_hash_set_pair(hash, rb_yield_values2(argc, argv)); | |
} | |
/* | |
* call-seq: | |
* enum.to_h(*args) -> hash | |
* enum.to_h(*args) {...} -> hash | |
* | |
* Returns the result of interpreting <i>enum</i> as a list of | |
* <tt>[key, value]</tt> pairs. | |
* | |
* %i[hello world].each_with_index.to_h | |
* # => {:hello => 0, :world => 1} | |
* | |
* If a block is given, the results of the block on each element of | |
* the enum will be used as pairs. | |
* | |
* (1..5).to_h {|x| [x, x ** 2]} | |
* #=> {1=>1, 2=>4, 3=>9, 4=>16, 5=>25} | |
*/ | |
static VALUE | |
enum_to_h(int argc, VALUE *argv, VALUE obj) | |
{ | |
rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i; | |
return enum_hashify(obj, argc, argv, iter); | |
} | |
static VALUE | |
inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) | |
{ | |
struct MEMO *memo = MEMO_CAST(p); | |
ENUM_WANT_SVALUE(); | |
if (memo->v1 == Qundef) { | |
MEMO_V1_SET(memo, i); | |
} | |
else { | |
MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i)); | |
} | |
return Qnil; | |
} | |
static VALUE | |
inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) | |
{ | |
struct MEMO *memo = MEMO_CAST(p); | |
VALUE name; | |
ENUM_WANT_SVALUE(); | |
if (memo->v1 == Qundef) { | |
MEMO_V1_SET(memo, i); | |
} | |
else if (SYMBOL_P(name = memo->u3.value)) { | |
const ID mid = SYM2ID(name); | |
MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i)); | |
} | |
else { | |
VALUE args[2]; | |
args[0] = name; | |
args[1] = i; | |
MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1)); | |
} | |
return Qnil; | |
} | |
static VALUE | |
ary_inject_op(VALUE ary, VALUE init, VALUE op) | |
{ | |
ID id; | |
VALUE v, e; | |
long i, n; | |
if (RARRAY_LEN(ary) == 0) | |
return init == Qundef ? Qnil : init; | |
if (init == Qundef) { | |
v = RARRAY_AREF(ary, 0); | |
i = 1; | |
if (RARRAY_LEN(ary) == 1) | |
return v; | |
} | |
else { | |
v = init; | |
i = 0; | |
} | |
id = SYM2ID(op); | |
if (id == idPLUS) { | |
if (RB_INTEGER_TYPE_P(v) && | |
rb_method_basic_definition_p(rb_cInteger, idPLUS) && | |
rb_obj_respond_to(v, idPLUS, FALSE)) { | |
n = 0; | |
for (; i < RARRAY_LEN(ary); i++) { | |
e = RARRAY_AREF(ary, i); | |
if (FIXNUM_P(e)) { | |
n += FIX2LONG(e); /* should not overflow long type */ | |
if (!FIXABLE(n)) { | |
v = rb_big_plus(LONG2NUM(n), v); | |
n = 0; | |
} | |
} | |
else if (RB_TYPE_P(e, T_BIGNUM)) | |
v = rb_big_plus(e, v); | |
else | |
goto not_integer; | |
} | |
if (n != 0) | |
v = rb_fix_plus(LONG2FIX(n), v); | |
return v; | |
not_integer: | |
if (n != 0) | |
v = rb_fix_plus(LONG2FIX(n), v); | |
} | |
} | |
for (; i < RARRAY_LEN(ary); i++) { | |
VALUE arg = RARRAY_AREF(ary, i); | |
v = rb_funcallv_public(v, id, 1, &arg); | |
} | |
return v; | |
} | |
/* | |
* call-seq: | |
* enum.inject(initial, sym) -> obj | |
* enum.inject(sym) -> obj | |
* enum.inject(initial) { |memo, obj| block } -> obj | |
* enum.inject { |memo, obj| block } -> obj | |
* enum.reduce(initial, sym) -> obj | |
* enum.reduce(sym) -> obj | |
* enum.reduce(initial) { |memo, obj| block } -> obj | |
* enum.reduce { |memo, obj| block } -> obj | |
* | |
* Combines all elements of <i>enum</i> by applying a binary | |
* operation, specified by a block or a symbol that names a | |
* method or operator. | |
* | |
* The <i>inject</i> and <i>reduce</i> methods are aliases. There | |
* is no performance benefit to either. | |
* | |
* If you specify a block, then for each element in <i>enum</i> | |
* the block is passed an accumulator value (<i>memo</i>) and the element. | |
* If you specify a symbol instead, then each element in the collection | |
* will be passed to the named method of <i>memo</i>. | |
* In either case, the result becomes the new value for <i>memo</i>. | |
* At the end of the iteration, the final value of <i>memo</i> is the | |
* return value for the method. | |
* | |
* If you do not explicitly specify an <i>initial</i> value for <i>memo</i>, | |
* then the first element of collection is used as the initial value | |
* of <i>memo</i>. | |
* | |
* | |
* # Sum some numbers | |
* (5..10).reduce(:+) #=> 45 | |
* # Same using a block and inject | |
* (5..10).inject { |sum, n| sum + n } #=> 45 | |
* # Multiply some numbers | |
* (5..10).reduce(1, :*) #=> 151200 | |
* # Same using a block | |
* (5..10).inject(1) { |product, n| product * n } #=> 151200 | |
* # find the longest word | |
* longest = %w{ cat sheep bear }.inject do |memo, word| | |
* memo.length > word.length ? memo : word | |
* end | |
* longest #=> "sheep" | |
* | |
*/ | |
static VALUE | |
enum_inject(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
VALUE init, op; | |
rb_block_call_func *iter = inject_i; | |
ID id; | |
switch (rb_scan_args(argc, argv, "02", &init, &op)) { | |
case 0: | |
init = Qundef; | |
break; | |
case 1: | |
if (rb_block_given_p()) { | |
break; | |
} | |
id = rb_check_id(&init); | |
op = id ? ID2SYM(id) : init; | |
init = Qundef; | |
iter = inject_op_i; | |
break; | |
case 2: | |
if (rb_block_given_p()) { | |
rb_warning("given block not used"); | |
} | |
id = rb_check_id(&op); | |
if (id) op = ID2SYM(id); | |
iter = inject_op_i; | |
break; | |
} | |
if (iter == inject_op_i && | |
SYMBOL_P(op) && | |
RB_TYPE_P(obj, T_ARRAY) && | |
rb_method_basic_definition_p(CLASS_OF(obj), id_each)) { | |
return ary_inject_op(obj, init, op); | |
} | |
memo = MEMO_NEW(init, Qnil, op); | |
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); | |
if (memo->v1 == Qundef) return Qnil; | |
return memo->v1; | |
} | |
static VALUE | |
partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys)) | |
{ | |
struct MEMO *memo = MEMO_CAST(arys); | |
VALUE ary; | |
ENUM_WANT_SVALUE(); | |
if (RTEST(enum_yield(argc, i))) { | |
ary = memo->v1; | |
} | |
else { | |
ary = memo->v2; | |
} | |
rb_ary_push(ary, i); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.partition { |obj| block } -> [ true_array, false_array ] | |
* enum.partition -> an_enumerator | |
* | |
* Returns two arrays, the first containing the elements of | |
* <i>enum</i> for which the block evaluates to true, the second | |
* containing the rest. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]] | |
* | |
*/ | |
static VALUE | |
enum_partition(VALUE obj) | |
{ | |
struct MEMO *memo; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0); | |
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo); | |
return rb_assoc_new(memo->v1, memo->v2); | |
} | |
static VALUE | |
group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
VALUE group; | |
VALUE values; | |
ENUM_WANT_SVALUE(); | |
group = enum_yield(argc, i); | |
values = rb_hash_aref(hash, group); | |
if (!RB_TYPE_P(values, T_ARRAY)) { | |
values = rb_ary_new3(1, i); | |
rb_hash_aset(hash, group, values); | |
} | |
else { | |
rb_ary_push(values, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.group_by { |obj| block } -> a_hash | |
* enum.group_by -> an_enumerator | |
* | |
* Groups the collection by result of the block. Returns a hash where the | |
* keys are the evaluated result from the block and the values are | |
* arrays of elements in the collection that correspond to the key. | |
* | |
* If no block is given an enumerator is returned. | |
* | |
* (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]} | |
* | |
*/ | |
static VALUE | |
enum_group_by(VALUE obj) | |
{ | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
return enum_hashify(obj, 0, 0, group_by_i); | |
} | |
static int | |
tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing) | |
{ | |
VALUE tally = (VALUE)*value; | |
VALUE hash = (VALUE)arg; | |
if (!existing) { | |
tally = INT2FIX(1); | |
} | |
else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) { | |
tally += INT2FIX(1) & ~FIXNUM_FLAG; | |
} | |
else { | |
Check_Type(tally, T_BIGNUM); | |
tally = rb_big_plus(tally, INT2FIX(1)); | |
RB_OBJ_WRITTEN(hash, Qundef, tally); | |
} | |
*value = (st_data_t)tally; | |
if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group); | |
return ST_CONTINUE; | |
} | |
static VALUE | |
rb_enum_tally_up(VALUE hash, VALUE group) | |
{ | |
rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash); | |
return hash; | |
} | |
static VALUE | |
tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
ENUM_WANT_SVALUE(); | |
rb_enum_tally_up(hash, i); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.tally -> a_hash | |
* enum.tally(a_hash) -> a_hash | |
* | |
* Tallies the collection, i.e., counts the occurrences of each element. | |
* Returns a hash with the elements of the collection as keys and the | |
* corresponding counts as values. | |
* | |
* ["a", "b", "c", "b"].tally #=> {"a"=>1, "b"=>2, "c"=>1} | |
* | |
* If a hash is given, the number of occurrences is added to each value | |
* in the hash, and the hash is returned. The value corresponding to | |
* each element must be an integer. | |
*/ | |
static VALUE | |
enum_tally(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE hash; | |
if (rb_check_arity(argc, 0, 1)) { | |
hash = rb_convert_type(argv[0], T_HASH, "Hash", "to_hash"); | |
rb_check_frozen(hash); | |
} | |
else { | |
hash = rb_hash_new(); | |
} | |
return enum_hashify_into(obj, 0, 0, tally_i, hash); | |
} | |
NORETURN(static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))); | |
static VALUE | |
first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)) | |
{ | |
struct MEMO *memo = MEMO_CAST(params); | |
ENUM_WANT_SVALUE(); | |
MEMO_V1_SET(memo, i); | |
rb_iter_break(); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
static VALUE enum_take(VALUE obj, VALUE n); | |
/* | |
* call-seq: | |
* enum.first -> obj or nil | |
* enum.first(n) -> an_array | |
* | |
* Returns the first element, or the first +n+ elements, of the enumerable. | |
* If the enumerable is empty, the first form returns <code>nil</code>, and the | |
* second form returns an empty array. | |
* | |
* %w[foo bar baz].first #=> "foo" | |
* %w[foo bar baz].first(2) #=> ["foo", "bar"] | |
* %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"] | |
* [].first #=> nil | |
* [].first(10) #=> [] | |
* | |
*/ | |
static VALUE | |
enum_first(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
rb_check_arity(argc, 0, 1); | |
if (argc > 0) { | |
return enum_take(obj, argv[0]); | |
} | |
else { | |
memo = MEMO_NEW(Qnil, 0, 0); | |
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo); | |
return memo->v1; | |
} | |
} | |
/* | |
* call-seq: | |
* enum.sort -> array | |
* enum.sort { |a, b| block } -> array | |
* | |
* Returns an array containing the items in <i>enum</i> sorted. | |
* | |
* Comparisons for the sort will be done using the items' own | |
* <code><=></code> operator or using an optional code block. | |
* | |
* The block must implement a comparison between +a+ and +b+ and return | |
* an integer less than 0 when +b+ follows +a+, +0+ when +a+ and +b+ | |
* are equivalent, or an integer greater than 0 when +a+ follows +b+. | |
* | |
* The result is not guaranteed to be stable. When the comparison of two | |
* elements returns +0+, the order of the elements is unpredictable. | |
* | |
* %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"] | |
* (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] | |
* | |
* See also Enumerable#sort_by. It implements a Schwartzian transform | |
* which is useful when key computation or comparison is expensive. | |
*/ | |
static VALUE | |
enum_sort(VALUE obj) | |
{ | |
return rb_ary_sort_bang(enum_to_a(0, 0, obj)); | |
} | |
#define SORT_BY_BUFSIZE 16 | |
struct sort_by_data { | |
const VALUE ary; | |
const VALUE buf; | |
long n; | |
}; | |
static VALUE | |
sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) | |
{ | |
struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1; | |
VALUE ary = data->ary; | |
VALUE v; | |
ENUM_WANT_SVALUE(); | |
v = enum_yield(argc, i); | |
if (RBASIC(ary)->klass) { | |
rb_raise(rb_eRuntimeError, "sort_by reentered"); | |
} | |
if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) { | |
rb_raise(rb_eRuntimeError, "sort_by reentered"); | |
} | |
RARRAY_ASET(data->buf, data->n*2, v); | |
RARRAY_ASET(data->buf, data->n*2+1, i); | |
data->n++; | |
if (data->n == SORT_BY_BUFSIZE) { | |
rb_ary_concat(ary, data->buf); | |
data->n = 0; | |
} | |
return Qnil; | |
} | |
static int | |
sort_by_cmp(const void *ap, const void *bp, void *data) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
VALUE a; | |
VALUE b; | |
VALUE ary = (VALUE)data; | |
if (RBASIC(ary)->klass) { | |
rb_raise(rb_eRuntimeError, "sort_by reentered"); | |
} | |
a = *(VALUE *)ap; | |
b = *(VALUE *)bp; | |
return OPTIMIZED_CMP(a, b, cmp_opt); | |
} | |
/* | |
* call-seq: | |
* enum.sort_by { |obj| block } -> array | |
* enum.sort_by -> an_enumerator | |
* | |
* Sorts <i>enum</i> using a set of keys generated by mapping the | |
* values in <i>enum</i> through the given block. | |
* | |
* The result is not guaranteed to be stable. When two keys are equal, | |
* the order of the corresponding elements is unpredictable. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* %w{apple pear fig}.sort_by { |word| word.length } | |
* #=> ["fig", "pear", "apple"] | |
* | |
* The current implementation of #sort_by generates an array of | |
* tuples containing the original collection element and the mapped | |
* value. This makes #sort_by fairly expensive when the keysets are | |
* simple. | |
* | |
* require 'benchmark' | |
* | |
* a = (1..100000).map { rand(100000) } | |
* | |
* Benchmark.bm(10) do |b| | |
* b.report("Sort") { a.sort } | |
* b.report("Sort by") { a.sort_by { |a| a } } | |
* end | |
* | |
* <em>produces:</em> | |
* | |
* user system total real | |
* Sort 0.180000 0.000000 0.180000 ( 0.175469) | |
* Sort by 1.980000 0.040000 2.020000 ( 2.013586) | |
* | |
* However, consider the case where comparing the keys is a non-trivial | |
* operation. The following code sorts some files on modification time | |
* using the basic #sort method. | |
* | |
* files = Dir["*"] | |
* sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime } | |
* sorted #=> ["mon", "tues", "wed", "thurs"] | |
* | |
* This sort is inefficient: it generates two new File | |
* objects during every comparison. A slightly better technique is to | |
* use the Kernel#test method to generate the modification | |
* times directly. | |
* | |
* files = Dir["*"] | |
* sorted = files.sort { |a, b| | |
* test(?M, a) <=> test(?M, b) | |
* } | |
* sorted #=> ["mon", "tues", "wed", "thurs"] | |
* | |
* This still generates many unnecessary Time objects. A more | |
* efficient technique is to cache the sort keys (modification times | |
* in this case) before the sort. Perl users often call this approach | |
* a Schwartzian transform, after Randal Schwartz. We construct a | |
* temporary array, where each element is an array containing our | |
* sort key along with the filename. We sort this array, and then | |
* extract the filename from the result. | |
* | |
* sorted = Dir["*"].collect { |f| | |
* [test(?M, f), f] | |
* }.sort.collect { |f| f[1] } | |
* sorted #=> ["mon", "tues", "wed", "thurs"] | |
* | |
* This is exactly what #sort_by does internally. | |
* | |
* sorted = Dir["*"].sort_by { |f| test(?M, f) } | |
* sorted #=> ["mon", "tues", "wed", "thurs"] | |
* | |
* To produce the reverse of a specific order, the following can be used: | |
* | |
* ary.sort_by { ... }.reverse! | |
*/ | |
static VALUE | |
enum_sort_by(VALUE obj) | |
{ | |
VALUE ary, buf; | |
struct MEMO *memo; | |
long i; | |
struct sort_by_data *data; | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) { | |
ary = rb_ary_new2(RARRAY_LEN(obj)*2); | |
} | |
else { | |
ary = rb_ary_new(); | |
} | |
RBASIC_CLEAR_CLASS(ary); | |
buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2); | |
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil); | |
memo = MEMO_NEW(0, 0, 0); | |
data = (struct sort_by_data *)&memo->v1; | |
RB_OBJ_WRITE(memo, &data->ary, ary); | |
RB_OBJ_WRITE(memo, &data->buf, buf); | |
data->n = 0; | |
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo); | |
ary = data->ary; | |
buf = data->buf; | |
if (data->n) { | |
rb_ary_resize(buf, data->n*2); | |
rb_ary_concat(ary, buf); | |
} | |
if (RARRAY_LEN(ary) > 2) { | |
RARRAY_PTR_USE(ary, ptr, | |
ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE), | |
sort_by_cmp, (void *)ary)); | |
} | |
if (RBASIC(ary)->klass) { | |
rb_raise(rb_eRuntimeError, "sort_by reentered"); | |
} | |
for (i=1; i<RARRAY_LEN(ary); i+=2) { | |
RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i)); | |
} | |
rb_ary_resize(ary, RARRAY_LEN(ary)/2); | |
RBASIC_SET_CLASS_RAW(ary, rb_cArray); | |
return ary; | |
} | |
#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i | |
#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0)) | |
#define DEFINE_ENUMFUNCS(name) \ | |
static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \ | |
\ | |
static VALUE \ | |
name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \ | |
{ \ | |
return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \ | |
} \ | |
\ | |
static VALUE \ | |
name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \ | |
{ \ | |
return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \ | |
} \ | |
\ | |
static VALUE \ | |
name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \ | |
{ \ | |
ENUM_WANT_SVALUE(); \ | |
return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \ | |
} \ | |
\ | |
static VALUE \ | |
enum_##name##_func(VALUE result, struct MEMO *memo) | |
#define WARN_UNUSED_BLOCK(argc) do { \ | |
if ((argc) > 0 && rb_block_given_p()) { \ | |
rb_warn("given block not used"); \ | |
} \ | |
} while (0) | |
DEFINE_ENUMFUNCS(all) | |
{ | |
if (!RTEST(result)) { | |
MEMO_V1_SET(memo, Qfalse); | |
rb_iter_break(); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.all? [{ |obj| block } ] -> true or false | |
* enum.all?(pattern) -> true or false | |
* | |
* Passes each element of the collection to the given block. The method | |
* returns <code>true</code> if the block never returns | |
* <code>false</code> or <code>nil</code>. If the block is not given, | |
* Ruby adds an implicit block of <code>{ |obj| obj }</code> which will | |
* cause #all? to return +true+ when none of the collection members are | |
* +false+ or +nil+. | |
* | |
* If instead a pattern is supplied, the method returns whether | |
* <code>pattern === element</code> for every collection member. | |
* | |
* %w[ant bear cat].all? { |word| word.length >= 3 } #=> true | |
* %w[ant bear cat].all? { |word| word.length >= 4 } #=> false | |
* %w[ant bear cat].all?(/t/) #=> false | |
* [1, 2i, 3.14].all?(Numeric) #=> true | |
* [nil, true, 99].all? #=> false | |
* [].all? #=> true | |
* | |
*/ | |
static VALUE | |
enum_all(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); | |
WARN_UNUSED_BLOCK(argc); | |
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo); | |
return memo->v1; | |
} | |
DEFINE_ENUMFUNCS(any) | |
{ | |
if (RTEST(result)) { | |
MEMO_V1_SET(memo, Qtrue); | |
rb_iter_break(); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.any? [{ |obj| block }] -> true or false | |
* enum.any?(pattern) -> true or false | |
* | |
* Passes each element of the collection to the given block. The method | |
* returns <code>true</code> if the block ever returns a value other | |
* than <code>false</code> or <code>nil</code>. If the block is not | |
* given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that | |
* will cause #any? to return +true+ if at least one of the collection | |
* members is not +false+ or +nil+. | |
* | |
* If instead a pattern is supplied, the method returns whether | |
* <code>pattern === element</code> for any collection member. | |
* | |
* %w[ant bear cat].any? { |word| word.length >= 3 } #=> true | |
* %w[ant bear cat].any? { |word| word.length >= 4 } #=> true | |
* %w[ant bear cat].any?(/d/) #=> false | |
* [nil, true, 99].any?(Integer) #=> true | |
* [nil, true, 99].any? #=> true | |
* [].any? #=> false | |
* | |
*/ | |
static VALUE | |
enum_any(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo = MEMO_ENUM_NEW(Qfalse); | |
WARN_UNUSED_BLOCK(argc); | |
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo); | |
return memo->v1; | |
} | |
DEFINE_ENUMFUNCS(one) | |
{ | |
if (RTEST(result)) { | |
if (memo->v1 == Qundef) { | |
MEMO_V1_SET(memo, Qtrue); | |
} | |
else if (memo->v1 == Qtrue) { | |
MEMO_V1_SET(memo, Qfalse); | |
rb_iter_break(); | |
} | |
} | |
return Qnil; | |
} | |
struct nmin_data { | |
long n; | |
long bufmax; | |
long curlen; | |
VALUE buf; | |
VALUE limit; | |
int (*cmpfunc)(const void *, const void *, void *); | |
int rev: 1; /* max if 1 */ | |
int by: 1; /* min_by if 1 */ | |
}; | |
static VALUE | |
cmpint_reenter_check(struct nmin_data *data, VALUE val) | |
{ | |
if (RBASIC(data->buf)->klass) { | |
rb_raise(rb_eRuntimeError, "%s%s reentered", | |
data->rev ? "max" : "min", | |
data->by ? "_by" : ""); | |
} | |
return val; | |
} | |
static int | |
nmin_cmp(const void *ap, const void *bp, void *_data) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
struct nmin_data *data = (struct nmin_data *)_data; | |
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; | |
#define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b) | |
return OPTIMIZED_CMP(a, b, cmp_opt); | |
#undef rb_cmpint | |
} | |
static int | |
nmin_block_cmp(const void *ap, const void *bp, void *_data) | |
{ | |
struct nmin_data *data = (struct nmin_data *)_data; | |
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; | |
VALUE cmp = rb_yield_values(2, a, b); | |
cmpint_reenter_check(data, cmp); | |
return rb_cmpint(cmp, a, b); | |
} | |
static void | |
nmin_filter(struct nmin_data *data) | |
{ | |
long n; | |
VALUE *beg; | |
int eltsize; | |
long numelts; | |
long left, right; | |
long store_index; | |
long i, j; | |
if (data->curlen <= data->n) | |
return; | |
n = data->n; | |
beg = RARRAY_PTR(data->buf); | |
eltsize = data->by ? 2 : 1; | |
numelts = data->curlen; | |
left = 0; | |
right = numelts-1; | |
#define GETPTR(i) (beg+(i)*eltsize) | |
#define SWAP(i, j) do { \ | |
VALUE tmp[2]; \ | |
memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \ | |
memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \ | |
memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \ | |
} while (0) | |
while (1) { | |
long pivot_index = left + (right-left)/2; | |
long num_pivots = 1; | |
SWAP(pivot_index, right); | |
pivot_index = right; | |
store_index = left; | |
i = left; | |
while (i <= right-num_pivots) { | |
int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data); | |
if (data->rev) | |
c = -c; | |
if (c == 0) { | |
SWAP(i, right-num_pivots); | |
num_pivots++; | |
continue; | |
} | |
if (c < 0) { | |
SWAP(i, store_index); | |
store_index++; | |
} | |
i++; | |
} | |
j = store_index; | |
for (i = right; right-num_pivots < i; i--) { | |
if (i <= j) | |
break; | |
SWAP(j, i); | |
j++; | |
} | |
if (store_index <= n && n <= store_index+num_pivots) | |
break; | |
if (n < store_index) { | |
right = store_index-1; | |
} | |
else { | |
left = store_index+num_pivots; | |
} | |
} | |
#undef GETPTR | |
#undef SWAP | |
data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */ | |
data->curlen = data->n; | |
rb_ary_resize(data->buf, data->n * eltsize); | |
} | |
static VALUE | |
nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) | |
{ | |
struct nmin_data *data = (struct nmin_data *)_data; | |
VALUE cmpv; | |
ENUM_WANT_SVALUE(); | |
if (data->by) | |
cmpv = enum_yield(argc, i); | |
else | |
cmpv = i; | |
if (data->limit != Qundef) { | |
int c = data->cmpfunc(&cmpv, &data->limit, data); | |
if (data->rev) | |
c = -c; | |
if (c >= 0) | |
return Qnil; | |
} | |
if (data->by) | |
rb_ary_push(data->buf, cmpv); | |
rb_ary_push(data->buf, i); | |
data->curlen++; | |
if (data->curlen == data->bufmax) { | |
nmin_filter(data); | |
} | |
return Qnil; | |
} | |
VALUE | |
rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary) | |
{ | |
VALUE result; | |
struct nmin_data data; | |
data.n = NUM2LONG(num); | |
if (data.n < 0) | |
rb_raise(rb_eArgError, "negative size (%ld)", data.n); | |
if (data.n == 0) | |
return rb_ary_new2(0); | |
if (LONG_MAX/4/(by ? 2 : 1) < data.n) | |
rb_raise(rb_eArgError, "too big size"); | |
data.bufmax = data.n * 4; | |
data.curlen = 0; | |
data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1)); | |
data.limit = Qundef; | |
data.cmpfunc = by ? nmin_cmp : | |
rb_block_given_p() ? nmin_block_cmp : | |
nmin_cmp; | |
data.rev = rev; | |
data.by = by; | |
if (ary) { | |
long i; | |
for (i = 0; i < RARRAY_LEN(obj); i++) { | |
VALUE args[1]; | |
args[0] = RARRAY_AREF(obj, i); | |
nmin_i(obj, (VALUE)&data, 1, args, Qundef); | |
} | |
} | |
else { | |
rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data); | |
} | |
nmin_filter(&data); | |
result = data.buf; | |
if (by) { | |
long i; | |
RARRAY_PTR_USE(result, ptr, { | |
ruby_qsort(ptr, | |
RARRAY_LEN(result)/2, | |
sizeof(VALUE)*2, | |
data.cmpfunc, (void *)&data); | |
for (i=1; i<RARRAY_LEN(result); i+=2) { | |
ptr[i/2] = ptr[i]; | |
} | |
}); | |
rb_ary_resize(result, RARRAY_LEN(result)/2); | |
} | |
else { | |
RARRAY_PTR_USE(result, ptr, { | |
ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE), | |
data.cmpfunc, (void *)&data); | |
}); | |
} | |
if (rev) { | |
rb_ary_reverse(result); | |
} | |
RBASIC_SET_CLASS(result, rb_cArray); | |
return result; | |
} | |
/* | |
* call-seq: | |
* enum.one? [{ |obj| block }] -> true or false | |
* enum.one?(pattern) -> true or false | |
* | |
* Passes each element of the collection to the given block. The method | |
* returns <code>true</code> if the block returns <code>true</code> | |
* exactly once. If the block is not given, <code>one?</code> will return | |
* <code>true</code> only if exactly one of the collection members is | |
* true. | |
* | |
* If instead a pattern is supplied, the method returns whether | |
* <code>pattern === element</code> for exactly one collection member. | |
* | |
* %w{ant bear cat}.one? { |word| word.length == 4 } #=> true | |
* %w{ant bear cat}.one? { |word| word.length > 4 } #=> false | |
* %w{ant bear cat}.one? { |word| word.length < 4 } #=> false | |
* %w{ant bear cat}.one?(/t/) #=> false | |
* [ nil, true, 99 ].one? #=> false | |
* [ nil, true, false ].one? #=> true | |
* [ nil, true, 99 ].one?(Integer) #=> true | |
* [].one? #=> false | |
* | |
*/ | |
static VALUE | |
enum_one(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo = MEMO_ENUM_NEW(Qundef); | |
VALUE result; | |
WARN_UNUSED_BLOCK(argc); | |
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo); | |
result = memo->v1; | |
if (result == Qundef) return Qfalse; | |
return result; | |
} | |
DEFINE_ENUMFUNCS(none) | |
{ | |
if (RTEST(result)) { | |
MEMO_V1_SET(memo, Qfalse); | |
rb_iter_break(); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.none? [{ |obj| block }] -> true or false | |
* enum.none?(pattern) -> true or false | |
* | |
* Passes each element of the collection to the given block. The method | |
* returns <code>true</code> if the block never returns <code>true</code> | |
* for all elements. If the block is not given, <code>none?</code> will return | |
* <code>true</code> only if none of the collection members is true. | |
* | |
* If instead a pattern is supplied, the method returns whether | |
* <code>pattern === element</code> for none of the collection members. | |
* | |
* %w{ant bear cat}.none? { |word| word.length == 5 } #=> true | |
* %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false | |
* %w{ant bear cat}.none?(/d/) #=> true | |
* [1, 3.14, 42].none?(Float) #=> false | |
* [].none? #=> true | |
* [nil].none? #=> true | |
* [nil, false].none? #=> true | |
* [nil, false, true].none? #=> false | |
*/ | |
static VALUE | |
enum_none(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); | |
WARN_UNUSED_BLOCK(argc); | |
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo); | |
return memo->v1; | |
} | |
struct min_t { | |
VALUE min; | |
struct cmp_opt_data cmp_opt; | |
}; | |
static VALUE | |
min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct min_t *memo = MEMO_FOR(struct min_t, args); | |
ENUM_WANT_SVALUE(); | |
if (memo->min == Qundef) { | |
memo->min = i; | |
} | |
else { | |
if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) { | |
memo->min = i; | |
} | |
} | |
return Qnil; | |
} | |
static VALUE | |
min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
VALUE cmp; | |
struct min_t *memo = MEMO_FOR(struct min_t, args); | |
ENUM_WANT_SVALUE(); | |
if (memo->min == Qundef) { | |
memo->min = i; | |
} | |
else { | |
cmp = rb_yield_values(2, i, memo->min); | |
if (rb_cmpint(cmp, i, memo->min) < 0) { | |
memo->min = i; | |
} | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.min -> obj | |
* enum.min { |a, b| block } -> obj | |
* enum.min(n) -> array | |
* enum.min(n) { |a, b| block } -> array | |
* | |
* Returns the object in _enum_ with the minimum value. The | |
* first form assumes all objects implement <code><=></code>; | |
* the second uses the block to return <em>a <=> b</em>. | |
* | |
* a = %w(albatross dog horse) | |
* a.min #=> "albatross" | |
* a.min { |a, b| a.length <=> b.length } #=> "dog" | |
* | |
* If the +n+ argument is given, minimum +n+ elements are returned | |
* as a sorted array. | |
* | |
* a = %w[albatross dog horse] | |
* a.min(2) #=> ["albatross", "dog"] | |
* a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"] | |
* [5, 1, 3, 4, 2].min(3) #=> [1, 2, 3] | |
*/ | |
static VALUE | |
enum_min(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE memo; | |
struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo); | |
VALUE result; | |
VALUE num; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) | |
return rb_nmin_run(obj, num, 0, 0, 0); | |
m->min = Qundef; | |
m->cmp_opt.opt_methods = 0; | |
m->cmp_opt.opt_inited = 0; | |
if (rb_block_given_p()) { | |
rb_block_call(obj, id_each, 0, 0, min_ii, memo); | |
} | |
else { | |
rb_block_call(obj, id_each, 0, 0, min_i, memo); | |
} | |
result = m->min; | |
if (result == Qundef) return Qnil; | |
return result; | |
} | |
struct max_t { | |
VALUE max; | |
struct cmp_opt_data cmp_opt; | |
}; | |
static VALUE | |
max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct max_t *memo = MEMO_FOR(struct max_t, args); | |
ENUM_WANT_SVALUE(); | |
if (memo->max == Qundef) { | |
memo->max = i; | |
} | |
else { | |
if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) { | |
memo->max = i; | |
} | |
} | |
return Qnil; | |
} | |
static VALUE | |
max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct max_t *memo = MEMO_FOR(struct max_t, args); | |
VALUE cmp; | |
ENUM_WANT_SVALUE(); | |
if (memo->max == Qundef) { | |
memo->max = i; | |
} | |
else { | |
cmp = rb_yield_values(2, i, memo->max); | |
if (rb_cmpint(cmp, i, memo->max) > 0) { | |
memo->max = i; | |
} | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.max -> obj | |
* enum.max { |a, b| block } -> obj | |
* enum.max(n) -> array | |
* enum.max(n) { |a, b| block } -> array | |
* | |
* Returns the object in _enum_ with the maximum value. The | |
* first form assumes all objects implement <code><=></code>; | |
* the second uses the block to return <em>a <=> b</em>. | |
* | |
* a = %w(albatross dog horse) | |
* a.max #=> "horse" | |
* a.max { |a, b| a.length <=> b.length } #=> "albatross" | |
* | |
* If the +n+ argument is given, maximum +n+ elements are returned | |
* as an array, sorted in descending order. | |
* | |
* a = %w[albatross dog horse] | |
* a.max(2) #=> ["horse", "dog"] | |
* a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"] | |
* [5, 1, 3, 4, 2].max(3) #=> [5, 4, 3] | |
*/ | |
static VALUE | |
enum_max(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE memo; | |
struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo); | |
VALUE result; | |
VALUE num; | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) | |
return rb_nmin_run(obj, num, 0, 1, 0); | |
m->max = Qundef; | |
m->cmp_opt.opt_methods = 0; | |
m->cmp_opt.opt_inited = 0; | |
if (rb_block_given_p()) { | |
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo); | |
} | |
else { | |
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo); | |
} | |
result = m->max; | |
if (result == Qundef) return Qnil; | |
return result; | |
} | |
struct minmax_t { | |
VALUE min; | |
VALUE max; | |
VALUE last; | |
struct cmp_opt_data cmp_opt; | |
}; | |
static void | |
minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo) | |
{ | |
int n; | |
if (memo->min == Qundef) { | |
memo->min = i; | |
memo->max = j; | |
} | |
else { | |
n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt); | |
if (n < 0) { | |
memo->min = i; | |
} | |
n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt); | |
if (n > 0) { | |
memo->max = j; | |
} | |
} | |
} | |
static VALUE | |
minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) | |
{ | |
struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); | |
int n; | |
VALUE j; | |
ENUM_WANT_SVALUE(); | |
if (memo->last == Qundef) { | |
memo->last = i; | |
return Qnil; | |
} | |
j = memo->last; | |
memo->last = Qundef; | |
n = OPTIMIZED_CMP(j, i, memo->cmp_opt); | |
if (n == 0) | |
i = j; | |
else if (n < 0) { | |
VALUE tmp; | |
tmp = i; | |
i = j; | |
j = tmp; | |
} | |
minmax_i_update(i, j, memo); | |
return Qnil; | |
} | |
static void | |
minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo) | |
{ | |
int n; | |
if (memo->min == Qundef) { | |
memo->min = i; | |
memo->max = j; | |
} | |
else { | |
n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min); | |
if (n < 0) { | |
memo->min = i; | |
} | |
n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max); | |
if (n > 0) { | |
memo->max = j; | |
} | |
} | |
} | |
static VALUE | |
minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) | |
{ | |
struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); | |
int n; | |
VALUE j; | |
ENUM_WANT_SVALUE(); | |
if (memo->last == Qundef) { | |
memo->last = i; | |
return Qnil; | |
} | |
j = memo->last; | |
memo->last = Qundef; | |
n = rb_cmpint(rb_yield_values(2, j, i), j, i); | |
if (n == 0) | |
i = j; | |
else if (n < 0) { | |
VALUE tmp; | |
tmp = i; | |
i = j; | |
j = tmp; | |
} | |
minmax_ii_update(i, j, memo); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.minmax -> [min, max] | |
* enum.minmax { |a, b| block } -> [min, max] | |
* | |
* Returns a two element array which contains the minimum and the | |
* maximum value in the enumerable. The first form assumes all | |
* objects implement <code><=></code>; the second uses the | |
* block to return <em>a <=> b</em>. | |
* | |
* a = %w(albatross dog horse) | |
* a.minmax #=> ["albatross", "horse"] | |
* a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"] | |
*/ | |
static VALUE | |
enum_minmax(VALUE obj) | |
{ | |
VALUE memo; | |
struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo); | |
m->min = Qundef; | |
m->last = Qundef; | |
m->cmp_opt.opt_methods = 0; | |
m->cmp_opt.opt_inited = 0; | |
if (rb_block_given_p()) { | |
rb_block_call(obj, id_each, 0, 0, minmax_ii, memo); | |
if (m->last != Qundef) | |
minmax_ii_update(m->last, m->last, m); | |
} | |
else { | |
rb_block_call(obj, id_each, 0, 0, minmax_i, memo); | |
if (m->last != Qundef) | |
minmax_i_update(m->last, m->last, m); | |
} | |
if (m->min != Qundef) { | |
return rb_assoc_new(m->min, m->max); | |
} | |
return rb_assoc_new(Qnil, Qnil); | |
} | |
static VALUE | |
min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
struct MEMO *memo = MEMO_CAST(args); | |
VALUE v; | |
ENUM_WANT_SVALUE(); | |
v = enum_yield(argc, i); | |
if (memo->v1 == Qundef) { | |
MEMO_V1_SET(memo, v); | |
MEMO_V2_SET(memo, i); | |
} | |
else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) { | |
MEMO_V1_SET(memo, v); | |
MEMO_V2_SET(memo, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.min_by {|obj| block } -> obj | |
* enum.min_by -> an_enumerator | |
* enum.min_by(n) {|obj| block } -> array | |
* enum.min_by(n) -> an_enumerator | |
* | |
* Returns the object in <i>enum</i> that gives the minimum | |
* value from the given block. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = %w(albatross dog horse) | |
* a.min_by { |x| x.length } #=> "dog" | |
* | |
* If the +n+ argument is given, minimum +n+ elements are returned | |
* as an array. These +n+ elements are sorted by the value from the | |
* given block. | |
* | |
* a = %w[albatross dog horse] | |
* p a.min_by(2) {|x| x.length } #=> ["dog", "horse"] | |
*/ | |
static VALUE | |
enum_min_by(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
VALUE num; | |
rb_check_arity(argc, 0, 1); | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); | |
if (argc && !NIL_P(num = argv[0])) | |
return rb_nmin_run(obj, num, 1, 0, 0); | |
memo = MEMO_NEW(Qundef, Qnil, 0); | |
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); | |
return memo->v2; | |
} | |
static VALUE | |
max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
struct MEMO *memo = MEMO_CAST(args); | |
VALUE v; | |
ENUM_WANT_SVALUE(); | |
v = enum_yield(argc, i); | |
if (memo->v1 == Qundef) { | |
MEMO_V1_SET(memo, v); | |
MEMO_V2_SET(memo, i); | |
} | |
else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) { | |
MEMO_V1_SET(memo, v); | |
MEMO_V2_SET(memo, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.max_by {|obj| block } -> obj | |
* enum.max_by -> an_enumerator | |
* enum.max_by(n) {|obj| block } -> obj | |
* enum.max_by(n) -> an_enumerator | |
* | |
* Returns the object in <i>enum</i> that gives the maximum | |
* value from the given block. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = %w(albatross dog horse) | |
* a.max_by { |x| x.length } #=> "albatross" | |
* | |
* If the +n+ argument is given, maximum +n+ elements are returned | |
* as an array. These +n+ elements are sorted by the value from the | |
* given block, in descending order. | |
* | |
* a = %w[albatross dog horse] | |
* a.max_by(2) {|x| x.length } #=> ["albatross", "horse"] | |
* | |
* enum.max_by(n) can be used to implement weighted random sampling. | |
* Following example implements and use Enumerable#wsample. | |
* | |
* module Enumerable | |
* # weighted random sampling. | |
* # | |
* # Pavlos S. Efraimidis, Paul G. Spirakis | |
* # Weighted random sampling with a reservoir | |
* # Information Processing Letters | |
* # Volume 97, Issue 5 (16 March 2006) | |
* def wsample(n) | |
* self.max_by(n) {|v| rand ** (1.0/yield(v)) } | |
* end | |
* end | |
* e = (-20..20).to_a*10000 | |
* a = e.wsample(20000) {|x| | |
* Math.exp(-(x/5.0)**2) # normal distribution | |
* } | |
* # a is 20000 samples from e. | |
* p a.length #=> 20000 | |
* h = a.group_by {|x| x } | |
* -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] } | |
* #=> * | |
* # *** | |
* # ****** | |
* # *********** | |
* # ****************** | |
* # ***************************** | |
* # ***************************************** | |
* # **************************************************** | |
* # *************************************************************** | |
* # ******************************************************************** | |
* # *********************************************************************** | |
* # *********************************************************************** | |
* # ************************************************************** | |
* # **************************************************** | |
* # *************************************** | |
* # *************************** | |
* # ****************** | |
* # *********** | |
* # ******* | |
* # *** | |
* # * | |
* | |
*/ | |
static VALUE | |
enum_max_by(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
VALUE num; | |
rb_check_arity(argc, 0, 1); | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); | |
if (argc && !NIL_P(num = argv[0])) | |
return rb_nmin_run(obj, num, 1, 1, 0); | |
memo = MEMO_NEW(Qundef, Qnil, 0); | |
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); | |
return memo->v2; | |
} | |
struct minmax_by_t { | |
VALUE min_bv; | |
VALUE max_bv; | |
VALUE min; | |
VALUE max; | |
VALUE last_bv; | |
VALUE last; | |
}; | |
static void | |
minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
if (memo->min_bv == Qundef) { | |
memo->min_bv = v1; | |
memo->max_bv = v2; | |
memo->min = i1; | |
memo->max = i2; | |
} | |
else { | |
if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) { | |
memo->min_bv = v1; | |
memo->min = i1; | |
} | |
if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) { | |
memo->max_bv = v2; | |
memo->max = i2; | |
} | |
} | |
} | |
static VALUE | |
minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo); | |
VALUE vi, vj, j; | |
int n; | |
ENUM_WANT_SVALUE(); | |
vi = enum_yield(argc, i); | |
if (memo->last_bv == Qundef) { | |
memo->last_bv = vi; | |
memo->last = i; | |
return Qnil; | |
} | |
vj = memo->last_bv; | |
j = memo->last; | |
memo->last_bv = Qundef; | |
n = OPTIMIZED_CMP(vj, vi, cmp_opt); | |
if (n == 0) { | |
i = j; | |
vi = vj; | |
} | |
else if (n < 0) { | |
VALUE tmp; | |
tmp = i; | |
i = j; | |
j = tmp; | |
tmp = vi; | |
vi = vj; | |
vj = tmp; | |
} | |
minmax_by_i_update(vi, vj, i, j, memo); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.minmax_by { |obj| block } -> [min, max] | |
* enum.minmax_by -> an_enumerator | |
* | |
* Returns a two element array containing the objects in | |
* <i>enum</i> that correspond to the minimum and maximum values respectively | |
* from the given block. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = %w(albatross dog horse) | |
* a.minmax_by { |x| x.length } #=> ["dog", "albatross"] | |
*/ | |
static VALUE | |
enum_minmax_by(VALUE obj) | |
{ | |
VALUE memo; | |
struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo); | |
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); | |
m->min_bv = Qundef; | |
m->max_bv = Qundef; | |
m->min = Qnil; | |
m->max = Qnil; | |
m->last_bv = Qundef; | |
m->last = Qundef; | |
rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo); | |
if (m->last_bv != Qundef) | |
minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m); | |
m = MEMO_FOR(struct minmax_by_t, memo); | |
return rb_assoc_new(m->min, m->max); | |
} | |
static VALUE | |
member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) { | |
MEMO_V2_SET(memo, Qtrue); | |
rb_iter_break(); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.include?(obj) -> true or false | |
* enum.member?(obj) -> true or false | |
* | |
* Returns <code>true</code> if any member of <i>enum</i> equals | |
* <i>obj</i>. Equality is tested using <code>==</code>. | |
* | |
* (1..10).include? 5 #=> true | |
* (1..10).include? 15 #=> false | |
* (1..10).member? 5 #=> true | |
* (1..10).member? 15 #=> false | |
* | |
*/ | |
static VALUE | |
enum_member(VALUE obj, VALUE val) | |
{ | |
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0); | |
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo); | |
return memo->v2; | |
} | |
static VALUE | |
each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) | |
{ | |
struct MEMO *m = MEMO_CAST(memo); | |
VALUE n = imemo_count_value(m); | |
imemo_count_up(m); | |
return rb_yield_values(2, rb_enum_values_pack(argc, argv), n); | |
} | |
/* | |
* call-seq: | |
* enum.each_with_index(*args) { |obj, i| block } -> enum | |
* enum.each_with_index(*args) -> an_enumerator | |
* | |
* Calls <em>block</em> with two arguments, the item and its index, | |
* for each item in <i>enum</i>. Given arguments are passed through | |
* to #each(). | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* hash = Hash.new | |
* %w(cat dog wombat).each_with_index { |item, index| | |
* hash[item] = index | |
* } | |
* hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2} | |
* | |
*/ | |
static VALUE | |
enum_each_with_index(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct MEMO *memo; | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); | |
memo = MEMO_NEW(0, 0, 0); | |
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo); | |
return obj; | |
} | |
/* | |
* call-seq: | |
* enum.reverse_each(*args) { |item| block } -> enum | |
* enum.reverse_each(*args) -> an_enumerator | |
* | |
* Builds a temporary array and traverses that array in reverse order. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* (1..3).reverse_each { |v| p v } | |
* | |
* produces: | |
* | |
* 3 | |
* 2 | |
* 1 | |
*/ | |
static VALUE | |
enum_reverse_each(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE ary; | |
long len; | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); | |
ary = enum_to_a(argc, argv, obj); | |
len = RARRAY_LEN(ary); | |
while (len--) { | |
long nlen; | |
rb_yield(RARRAY_AREF(ary, len)); | |
nlen = RARRAY_LEN(ary); | |
if (nlen < len) { | |
len = nlen; | |
} | |
} | |
return obj; | |
} | |
static VALUE | |
each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) | |
{ | |
ENUM_WANT_SVALUE(); | |
enum_yield(argc, i); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.each_entry { |obj| block } -> enum | |
* enum.each_entry -> an_enumerator | |
* | |
* Calls <i>block</i> once for each element in +self+, passing that | |
* element as a parameter, converting multiple values from yield to an | |
* array. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* class Foo | |
* include Enumerable | |
* def each | |
* yield 1 | |
* yield 1, 2 | |
* yield | |
* end | |
* end | |
* Foo.new.each_entry{ |o| p o } | |
* | |
* produces: | |
* | |
* 1 | |
* [1, 2] | |
* nil | |
* | |
*/ | |
static VALUE | |
enum_each_entry(int argc, VALUE *argv, VALUE obj) | |
{ | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); | |
rb_block_call(obj, id_each, argc, argv, each_val_i, 0); | |
return obj; | |
} | |
static VALUE | |
add_int(VALUE x, long n) | |
{ | |
const VALUE y = LONG2NUM(n); | |
if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y); | |
return rb_funcallv(x, '+', 1, &y); | |
} | |
static VALUE | |
div_int(VALUE x, long n) | |
{ | |
const VALUE y = LONG2NUM(n); | |
if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y); | |
return rb_funcallv(x, id_div, 1, &y); | |
} | |
#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0) | |
static VALUE | |
each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m)) | |
{ | |
struct MEMO *memo = MEMO_CAST(m); | |
VALUE ary = memo->v1; | |
VALUE v = Qnil; | |
long size = memo->u3.cnt; | |
ENUM_WANT_SVALUE(); | |
rb_ary_push(ary, i); | |
if (RARRAY_LEN(ary) == size) { | |
v = rb_yield(ary); | |
if (memo->v2) { | |
MEMO_V1_SET(memo, rb_ary_new2(size)); | |
} | |
else { | |
rb_ary_clear(ary); | |
} | |
} | |
return v; | |
} | |
static VALUE | |
enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
VALUE n, size; | |
long slice_size = NUM2LONG(RARRAY_AREF(args, 0)); | |
ID infinite_p; | |
CONST_ID(infinite_p, "infinite?"); | |
if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size"); | |
size = enum_size(obj, 0, 0); | |
if (size == Qnil) return Qnil; | |
if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) { | |
return size; | |
} | |
n = add_int(size, slice_size-1); | |
return div_int(n, slice_size); | |
} | |
/* | |
* call-seq: | |
* enum.each_slice(n) { ... } -> nil | |
* enum.each_slice(n) -> an_enumerator | |
* | |
* Iterates the given block for each slice of <n> elements. If no | |
* block is given, returns an enumerator. | |
* | |
* (1..10).each_slice(3) { |a| p a } | |
* # outputs below | |
* [1, 2, 3] | |
* [4, 5, 6] | |
* [7, 8, 9] | |
* [10] | |
* | |
*/ | |
static VALUE | |
enum_each_slice(VALUE obj, VALUE n) | |
{ | |
long size = NUM2LONG(n); | |
VALUE ary; | |
struct MEMO *memo; | |
int arity; | |
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size"); | |
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size); | |
size = limit_by_enum_size(obj, size); | |
ary = rb_ary_new2(size); | |
arity = rb_block_arity(); | |
memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size); | |
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo); | |
ary = memo->v1; | |
if (RARRAY_LEN(ary) > 0) rb_yield(ary); | |
return Qnil; | |
} | |
static VALUE | |
each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
VALUE ary = memo->v1; | |
VALUE v = Qnil; | |
long size = memo->u3.cnt; | |
ENUM_WANT_SVALUE(); | |
if (RARRAY_LEN(ary) == size) { | |
rb_ary_shift(ary); | |
} | |
rb_ary_push(ary, i); | |
if (RARRAY_LEN(ary) == size) { | |
if (memo->v2) { | |
ary = rb_ary_dup(ary); | |
} | |
v = rb_yield(ary); | |
} | |
return v; | |
} | |
static VALUE | |
enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
struct cmp_opt_data cmp_opt = { 0, 0 }; | |
const VALUE zero = LONG2FIX(0); | |
VALUE n, size; | |
long cons_size = NUM2LONG(RARRAY_AREF(args, 0)); | |
if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size"); | |
size = enum_size(obj, 0, 0); | |
if (size == Qnil) return Qnil; | |
n = add_int(size, 1 - cons_size); | |
return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n; | |
} | |
/* | |
* call-seq: | |
* enum.each_cons(n) { ... } -> nil | |
* enum.each_cons(n) -> an_enumerator | |
* | |
* Iterates the given block for each array of consecutive <n> | |
* elements. If no block is given, returns an enumerator. | |
* | |
* e.g.: | |
* (1..10).each_cons(3) { |a| p a } | |
* # outputs below | |
* [1, 2, 3] | |
* [2, 3, 4] | |
* [3, 4, 5] | |
* [4, 5, 6] | |
* [5, 6, 7] | |
* [6, 7, 8] | |
* [7, 8, 9] | |
* [8, 9, 10] | |
* | |
*/ | |
static VALUE | |
enum_each_cons(VALUE obj, VALUE n) | |
{ | |
long size = NUM2LONG(n); | |
struct MEMO *memo; | |
int arity; | |
if (size <= 0) rb_raise(rb_eArgError, "invalid size"); | |
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size); | |
arity = rb_block_arity(); | |
if (enum_size_over_p(obj, size)) return Qnil; | |
memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size); | |
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo); | |
return Qnil; | |
} | |
static VALUE | |
each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) | |
{ | |
ENUM_WANT_SVALUE(); | |
return rb_yield_values(2, i, memo); | |
} | |
/* | |
* call-seq: | |
* enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj | |
* enum.each_with_object(obj) -> an_enumerator | |
* | |
* Iterates the given block for each element with an arbitrary | |
* object given, and returns the initially given object. | |
* | |
* If no block is given, returns an enumerator. | |
* | |
* evens = (1..10).each_with_object([]) { |i, a| a << i*2 } | |
* #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] | |
* | |
*/ | |
static VALUE | |
enum_each_with_object(VALUE obj, VALUE memo) | |
{ | |
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size); | |
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo); | |
return memo; | |
} | |
static VALUE | |
zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) | |
{ | |
struct MEMO *memo = (struct MEMO *)memoval; | |
VALUE result = memo->v1; | |
VALUE args = memo->v2; | |
long n = memo->u3.cnt++; | |
VALUE tmp; | |
int i; | |
tmp = rb_ary_new2(RARRAY_LEN(args) + 1); | |
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); | |
for (i=0; i<RARRAY_LEN(args); i++) { | |
VALUE e = RARRAY_AREF(args, i); | |
if (RARRAY_LEN(e) <= n) { | |
rb_ary_push(tmp, Qnil); | |
} | |
else { | |
rb_ary_push(tmp, RARRAY_AREF(e, n)); | |
} | |
} | |
if (NIL_P(result)) { | |
enum_yield_array(tmp); | |
} | |
else { | |
rb_ary_push(result, tmp); | |
} | |
RB_GC_GUARD(args); | |
return Qnil; | |
} | |
static VALUE | |
call_next(VALUE w) | |
{ | |
VALUE *v = (VALUE *)w; | |
return v[0] = rb_funcallv(v[1], id_next, 0, 0); | |
} | |
static VALUE | |
call_stop(VALUE w, VALUE _) | |
{ | |
VALUE *v = (VALUE *)w; | |
return v[0] = Qundef; | |
} | |
static VALUE | |
zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) | |
{ | |
struct MEMO *memo = (struct MEMO *)memoval; | |
VALUE result = memo->v1; | |
VALUE args = memo->v2; | |
VALUE tmp; | |
int i; | |
tmp = rb_ary_new2(RARRAY_LEN(args) + 1); | |
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); | |
for (i=0; i<RARRAY_LEN(args); i++) { | |
if (NIL_P(RARRAY_AREF(args, i))) { | |
rb_ary_push(tmp, Qnil); | |
} | |
else { | |
VALUE v[2]; | |
v[1] = RARRAY_AREF(args, i); | |
rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0); | |
if (v[0] == Qundef) { | |
RARRAY_ASET(args, i, Qnil); | |
v[0] = Qnil; | |
} | |
rb_ary_push(tmp, v[0]); | |
} | |
} | |
if (NIL_P(result)) { | |
enum_yield_array(tmp); | |
} | |
else { | |
rb_ary_push(result, tmp); | |
} | |
RB_GC_GUARD(args); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.zip(arg, ...) -> an_array_of_array | |
* enum.zip(arg, ...) { |arr| block } -> nil | |
* | |
* Takes one element from <i>enum</i> and merges corresponding | |
* elements from each <i>args</i>. This generates a sequence of | |
* <em>n</em>-element arrays, where <em>n</em> is one more than the | |
* count of arguments. The length of the resulting sequence will be | |
* <code>enum#size</code>. If the size of any argument is less than | |
* <code>enum#size</code>, <code>nil</code> values are supplied. If | |
* a block is given, it is invoked for each output array, otherwise | |
* an array of arrays is returned. | |
* | |
* a = [ 4, 5, 6 ] | |
* b = [ 7, 8, 9 ] | |
* | |
* a.zip(b) #=> [[4, 7], [5, 8], [6, 9]] | |
* [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] | |
* [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]] | |
* a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]] | |
* | |
* c = [] | |
* a.zip(b) { |x, y| c << x + y } #=> nil | |
* c #=> [11, 13, 15] | |
* | |
*/ | |
static VALUE | |
enum_zip(int argc, VALUE *argv, VALUE obj) | |
{ | |
int i; | |
ID conv; | |
struct MEMO *memo; | |
VALUE result = Qnil; | |
VALUE args = rb_ary_new4(argc, argv); | |
int allary = TRUE; | |
argv = RARRAY_PTR(args); | |
for (i=0; i<argc; i++) { | |
VALUE ary = rb_check_array_type(argv[i]); | |
if (NIL_P(ary)) { | |
allary = FALSE; | |
break; | |
} | |
argv[i] = ary; | |
} | |
if (!allary) { | |
static const VALUE sym_each = STATIC_ID2SYM(id_each); | |
CONST_ID(conv, "to_enum"); | |
for (i=0; i<argc; i++) { | |
if (!rb_respond_to(argv[i], id_each)) { | |
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", | |
rb_obj_class(argv[i])); | |
} | |
argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each); | |
} | |
} | |
if (!rb_block_given_p()) { | |
result = rb_ary_new(); | |
} | |
/* TODO: use NODE_DOT2 as memo(v, v, -) */ | |
memo = MEMO_NEW(result, args, 0); | |
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo); | |
return result; | |
} | |
static VALUE | |
take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); | |
if (--memo->u3.cnt == 0) rb_iter_break(); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.take(n) -> array | |
* | |
* Returns first n elements from <i>enum</i>. | |
* | |
* a = [1, 2, 3, 4, 5, 0] | |
* a.take(3) #=> [1, 2, 3] | |
* a.take(30) #=> [1, 2, 3, 4, 5, 0] | |
* | |
*/ | |
static VALUE | |
enum_take(VALUE obj, VALUE n) | |
{ | |
struct MEMO *memo; | |
VALUE result; | |
long len = NUM2LONG(n); | |
if (len < 0) { | |
rb_raise(rb_eArgError, "attempt to take negative size"); | |
} | |
if (len == 0) return rb_ary_new2(0); | |
result = rb_ary_new2(len); | |
memo = MEMO_NEW(result, 0, len); | |
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo); | |
return result; | |
} | |
static VALUE | |
take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break(); | |
rb_ary_push(ary, rb_enum_values_pack(argc, argv)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.take_while { |obj| block } -> array | |
* enum.take_while -> an_enumerator | |
* | |
* Passes elements to the block until the block returns +nil+ or +false+, | |
* then stops iterating and returns an array of all prior elements. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = [1, 2, 3, 4, 5, 0] | |
* a.take_while { |i| i < 3 } #=> [1, 2] | |
* | |
*/ | |
static VALUE | |
enum_take_while(VALUE obj) | |
{ | |
VALUE ary; | |
RETURN_ENUMERATOR(obj, 0, 0); | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, take_while_i, ary); | |
return ary; | |
} | |
static VALUE | |
drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
if (memo->u3.cnt == 0) { | |
rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); | |
} | |
else { | |
memo->u3.cnt--; | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.drop(n) -> array | |
* | |
* Drops first n elements from <i>enum</i>, and returns rest elements | |
* in an array. | |
* | |
* a = [1, 2, 3, 4, 5, 0] | |
* a.drop(3) #=> [4, 5, 0] | |
* | |
*/ | |
static VALUE | |
enum_drop(VALUE obj, VALUE n) | |
{ | |
VALUE result; | |
struct MEMO *memo; | |
long len = NUM2LONG(n); | |
if (len < 0) { | |
rb_raise(rb_eArgError, "attempt to drop negative size"); | |
} | |
result = rb_ary_new(); | |
memo = MEMO_NEW(result, 0, len); | |
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo); | |
return result; | |
} | |
static VALUE | |
drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
struct MEMO *memo = MEMO_CAST(args); | |
ENUM_WANT_SVALUE(); | |
if (!memo->u3.state && !RTEST(enum_yield(argc, i))) { | |
memo->u3.state = TRUE; | |
} | |
if (memo->u3.state) { | |
rb_ary_push(memo->v1, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.drop_while { |obj| block } -> array | |
* enum.drop_while -> an_enumerator | |
* | |
* Drops elements up to, but not including, the first element for | |
* which the block returns +nil+ or +false+ and returns an array | |
* containing the remaining elements. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = [1, 2, 3, 4, 5, 0] | |
* a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0] | |
* | |
*/ | |
static VALUE | |
enum_drop_while(VALUE obj) | |
{ | |
VALUE result; | |
struct MEMO *memo; | |
RETURN_ENUMERATOR(obj, 0, 0); | |
result = rb_ary_new(); | |
memo = MEMO_NEW(result, 0, FALSE); | |
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo); | |
return result; | |
} | |
static VALUE | |
cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
ENUM_WANT_SVALUE(); | |
rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv)); | |
enum_yield(argc, i); | |
return Qnil; | |
} | |
static VALUE | |
enum_cycle_size(VALUE self, VALUE args, VALUE eobj) | |
{ | |
long mul = 0; | |
VALUE n = Qnil; | |
VALUE size; | |
if (args && (RARRAY_LEN(args) > 0)) { | |
n = RARRAY_AREF(args, 0); | |
if (!NIL_P(n)) mul = NUM2LONG(n); | |
} | |
size = enum_size(self, args, 0); | |
if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size; | |
if (NIL_P(n)) return DBL2NUM(HUGE_VAL); | |
if (mul <= 0) return INT2FIX(0); | |
n = LONG2FIX(mul); | |
return rb_funcallv(size, '*', 1, &n); | |
} | |
/* | |
* call-seq: | |
* enum.cycle(n=nil) { |obj| block } -> nil | |
* enum.cycle(n=nil) -> an_enumerator | |
* | |
* Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_ | |
* times or forever if none or +nil+ is given. If a non-positive | |
* number is given or the collection is empty, does nothing. Returns | |
* +nil+ if the loop has finished without getting interrupted. | |
* | |
* Enumerable#cycle saves elements in an internal array so changes | |
* to <i>enum</i> after the first pass have no effect. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = ["a", "b", "c"] | |
* a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever. | |
* a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c. | |
* | |
*/ | |
static VALUE | |
enum_cycle(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE ary; | |
VALUE nv = Qnil; | |
long n, i, len; | |
rb_check_arity(argc, 0, 1); | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size); | |
if (!argc || NIL_P(nv = argv[0])) { | |
n = -1; | |
} | |
else { | |
n = NUM2LONG(nv); | |
if (n <= 0) return Qnil; | |
} | |
ary = rb_ary_new(); | |
RBASIC_CLEAR_CLASS(ary); | |
rb_block_call(obj, id_each, 0, 0, cycle_i, ary); | |
len = RARRAY_LEN(ary); | |
if (len == 0) return Qnil; | |
while (n < 0 || 0 < --n) { | |
for (i=0; i<len; i++) { | |
enum_yield_array(RARRAY_AREF(ary, i)); | |
} | |
} | |
return Qnil; | |
} | |
struct chunk_arg { | |
VALUE categorize; | |
VALUE prev_value; | |
VALUE prev_elts; | |
VALUE yielder; | |
}; | |
static VALUE | |
chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) | |
{ | |
struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp); | |
VALUE v, s; | |
VALUE alone = ID2SYM(id__alone); | |
VALUE separator = ID2SYM(id__separator); | |
ENUM_WANT_SVALUE(); | |
v = rb_funcallv(argp->categorize, id_call, 1, &i); | |
if (v == alone) { | |
if (!NIL_P(argp->prev_value)) { | |
s = rb_assoc_new(argp->prev_value, argp->prev_elts); | |
rb_funcallv(argp->yielder, id_lshift, 1, &s); | |
argp->prev_value = argp->prev_elts = Qnil; | |
} | |
v = rb_assoc_new(v, rb_ary_new3(1, i)); | |
rb_funcallv(argp->yielder, id_lshift, 1, &v); | |
} | |
else if (NIL_P(v) || v == separator) { | |
if (!NIL_P(argp->prev_value)) { | |
v = rb_assoc_new(argp->prev_value, argp->prev_elts); | |
rb_funcallv(argp->yielder, id_lshift, 1, &v); | |
argp->prev_value = argp->prev_elts = Qnil; | |
} | |
} | |
else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) { | |
rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved"); | |
} | |
else { | |
if (NIL_P(argp->prev_value)) { | |
argp->prev_value = v; | |
argp->prev_elts = rb_ary_new3(1, i); | |
} | |
else { | |
if (rb_equal(argp->prev_value, v)) { | |
rb_ary_push(argp->prev_elts, i); | |
} | |
else { | |
s = rb_assoc_new(argp->prev_value, argp->prev_elts); | |
rb_funcallv(argp->yielder, id_lshift, 1, &s); | |
argp->prev_value = v; | |
argp->prev_elts = rb_ary_new3(1, i); | |
} | |
} | |
} | |
return Qnil; | |
} | |
static VALUE | |
chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) | |
{ | |
VALUE enumerable; | |
VALUE arg; | |
struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg); | |
enumerable = rb_ivar_get(enumerator, id_chunk_enumerable); | |
memo->categorize = rb_ivar_get(enumerator, id_chunk_categorize); | |
memo->prev_value = Qnil; | |
memo->prev_elts = Qnil; | |
memo->yielder = yielder; | |
rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg); | |
memo = MEMO_FOR(struct chunk_arg, arg); | |
if (!NIL_P(memo->prev_elts)) { | |
arg = rb_assoc_new(memo->prev_value, memo->prev_elts); | |
rb_funcallv(memo->yielder, id_lshift, 1, &arg); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.chunk { |elt| ... } -> an_enumerator | |
* | |
* Enumerates over the items, chunking them together based on the return | |
* value of the block. | |
* | |
* Consecutive elements which return the same block value are chunked together. | |
* | |
* For example, consecutive even numbers and odd numbers can be | |
* chunked as follows. | |
* | |
* [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n| | |
* n.even? | |
* }.each { |even, ary| | |
* p [even, ary] | |
* } | |
* #=> [false, [3, 1]] | |
* # [true, [4]] | |
* # [false, [1, 5, 9]] | |
* # [true, [2, 6]] | |
* # [false, [5, 3, 5]] | |
* | |
* This method is especially useful for sorted series of elements. | |
* The following example counts words for each initial letter. | |
* | |
* open("/usr/share/dict/words", "r:iso-8859-1") { |f| | |
* f.chunk { |line| line.upcase.ord }.each { |ch, lines| p [ch.chr, lines.length] } | |
* } | |
* #=> ["\n", 1] | |
* # ["A", 1327] | |
* # ["B", 1372] | |
* # ["C", 1507] | |
* # ["D", 791] | |
* # ... | |
* | |
* The following key values have special meaning: | |
* - +nil+ and +:_separator+ specifies that the elements should be dropped. | |
* - +:_alone+ specifies that the element should be chunked by itself. | |
* | |
* Any other symbols that begin with an underscore will raise an error: | |
* | |
* items.chunk { |item| :_underscore } | |
* #=> RuntimeError: symbols beginning with an underscore are reserved | |
* | |
* +nil+ and +:_separator+ can be used to ignore some elements. | |
* | |
* For example, the sequence of hyphens in svn log can be eliminated as follows: | |
* | |
* sep = "-"*72 + "\n" | |
* IO.popen("svn log README") { |f| | |
* f.chunk { |line| | |
* line != sep || nil | |
* }.each { |_, lines| | |
* pp lines | |
* } | |
* } | |
* #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n", | |
* # "\n", | |
* # "* README, README.ja: Update the portability section.\n", | |
* # "\n"] | |
* # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n", | |
* # "\n", | |
* # "* README, README.ja: Add a note about default C flags.\n", | |
* # "\n"] | |
* # ... | |
* | |
* Paragraphs separated by empty lines can be parsed as follows: | |
* | |
* File.foreach("README").chunk { |line| | |
* /\A\s*\z/ !~ line || nil | |
* }.each { |_, lines| | |
* pp lines | |
* } | |
* | |
* +:_alone+ can be used to force items into their own chunk. | |
* For example, you can put lines that contain a URL by themselves, | |
* and chunk the rest of the lines together, like this: | |
* | |
* pattern = /http/ | |
* open(filename) { |f| | |
* f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines| | |
* pp lines | |
* } | |
* } | |
* | |
* If no block is given, an enumerator to `chunk` is returned instead. | |
*/ | |
static VALUE | |
enum_chunk(VALUE enumerable) | |
{ | |
VALUE enumerator; | |
RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size); | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_chunk_enumerable, enumerable); | |
rb_ivar_set(enumerator, id_chunk_categorize, rb_block_proc()); | |
rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator); | |
return enumerator; | |
} | |
struct slicebefore_arg { | |
VALUE sep_pred; | |
VALUE sep_pat; | |
VALUE prev_elts; | |
VALUE yielder; | |
}; | |
static VALUE | |
slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) | |
{ | |
struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp); | |
VALUE header_p; | |
ENUM_WANT_SVALUE(); | |
if (!NIL_P(argp->sep_pat)) | |
header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i); | |
else | |
header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i); | |
if (RTEST(header_p)) { | |
if (!NIL_P(argp->prev_elts)) | |
rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts); | |
argp->prev_elts = rb_ary_new3(1, i); | |
} | |
else { | |
if (NIL_P(argp->prev_elts)) | |
argp->prev_elts = rb_ary_new3(1, i); | |
else | |
rb_ary_push(argp->prev_elts, i); | |
} | |
return Qnil; | |
} | |
static VALUE | |
slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) | |
{ | |
VALUE enumerable; | |
VALUE arg; | |
struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg); | |
enumerable = rb_ivar_get(enumerator, id_slicebefore_enumerable); | |
memo->sep_pred = rb_attr_get(enumerator, id_slicebefore_sep_pred); | |
memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, id_slicebefore_sep_pat) : Qnil; | |
memo->prev_elts = Qnil; | |
memo->yielder = yielder; | |
rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg); | |
memo = MEMO_FOR(struct slicebefore_arg, arg); | |
if (!NIL_P(memo->prev_elts)) | |
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.slice_before(pattern) -> an_enumerator | |
* enum.slice_before { |elt| bool } -> an_enumerator | |
* | |
* Creates an enumerator for each chunked elements. | |
* The beginnings of chunks are defined by _pattern_ and the block. | |
* If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block | |
* returns <code>true</code> for the element, the element is beginning of a | |
* chunk. | |
* The <code>===</code> and _block_ is called from the first element to the last | |
* element of _enum_. The result for the first element is ignored. | |
* The result enumerator yields the chunked elements as an array. | |
* So +each+ method can be called as follows: | |
* | |
* enum.slice_before(pattern).each { |ary| ... } | |
* enum.slice_before { |elt| bool }.each { |ary| ... } | |
* | |
* Other methods of the Enumerator class and Enumerable module, | |
* such as +to_a+, +map+, etc., are also usable. | |
* | |
* For example, iteration over ChangeLog entries can be implemented as | |
* follows: | |
* | |
* # iterate over ChangeLog entries. | |
* open("ChangeLog") { |f| | |
* f.slice_before(/\A\S/).each { |e| pp e } | |
* } | |
* | |
* # same as above. block is used instead of pattern argument. | |
* open("ChangeLog") { |f| | |
* f.slice_before { |line| /\A\S/ === line }.each { |e| pp e } | |
* } | |
* | |
* | |
* "svn proplist -R" produces multiline output for each file. | |
* They can be chunked as follows: | |
* | |
* IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f| | |
* f.lines.slice_before(/\AProp/).each { |lines| p lines } | |
* } | |
* #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"] | |
* # ["Properties on 'goruby.c':\n", " svn:eol-style\n"] | |
* # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"] | |
* # ["Properties on 'regparse.c':\n", " svn:eol-style\n"] | |
* # ... | |
* | |
* If the block needs to maintain state over multiple elements, | |
* local variables can be used. | |
* For example, three or more consecutive increasing numbers can be squashed | |
* as follows (see +chunk_while+ for a better way): | |
* | |
* a = [0, 2, 3, 4, 6, 7, 9] | |
* prev = a[0] | |
* p a.slice_before { |e| | |
* prev, prev2 = e, prev | |
* prev2 + 1 != e | |
* }.map { |es| | |
* es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}" | |
* }.join(",") | |
* #=> "0,2-4,6,7,9" | |
* | |
* However local variables should be used carefully | |
* if the result enumerator is enumerated twice or more. | |
* The local variables should be initialized for each enumeration. | |
* Enumerator.new can be used to do it. | |
* | |
* # Word wrapping. This assumes all characters have same width. | |
* def wordwrap(words, maxwidth) | |
* Enumerator.new {|y| | |
* # cols is initialized in Enumerator.new. | |
* cols = 0 | |
* words.slice_before { |w| | |
* cols += 1 if cols != 0 | |
* cols += w.length | |
* if maxwidth < cols | |
* cols = w.length | |
* true | |
* else | |
* false | |
* end | |
* }.each {|ws| y.yield ws } | |
* } | |
* end | |
* text = (1..20).to_a.join(" ") | |
* enum = wordwrap(text.split(/\s+/), 10) | |
* puts "-"*10 | |
* enum.each { |ws| puts ws.join(" ") } # first enumeration. | |
* puts "-"*10 | |
* enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first. | |
* puts "-"*10 | |
* #=> ---------- | |
* # 1 2 3 4 5 | |
* # 6 7 8 9 10 | |
* # 11 12 13 | |
* # 14 15 16 | |
* # 17 18 19 | |
* # 20 | |
* # ---------- | |
* # 1 2 3 4 5 | |
* # 6 7 8 9 10 | |
* # 11 12 13 | |
* # 14 15 16 | |
* # 17 18 19 | |
* # 20 | |
* # ---------- | |
* | |
* mbox contains series of mails which start with Unix From line. | |
* So each mail can be extracted by slice before Unix From line. | |
* | |
* # parse mbox | |
* open("mbox") { |f| | |
* f.slice_before { |line| | |
* line.start_with? "From " | |
* }.each { |mail| | |
* unix_from = mail.shift | |
* i = mail.index("\n") | |
* header = mail[0...i] | |
* body = mail[(i+1)..-1] | |
* body.pop if body.last == "\n" | |
* fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a | |
* p unix_from | |
* pp fields | |
* pp body | |
* } | |
* } | |
* | |
* # split mails in mbox (slice before Unix From line after an empty line) | |
* open("mbox") { |f| | |
* emp = true | |
* f.slice_before { |line| | |
* prevemp = emp | |
* emp = line == "\n" | |
* prevemp && line.start_with?("From ") | |
* }.each { |mail| | |
* mail.pop if mail.last == "\n" | |
* pp mail | |
* } | |
* } | |
* | |
*/ | |
static VALUE | |
enum_slice_before(int argc, VALUE *argv, VALUE enumerable) | |
{ | |
VALUE enumerator; | |
if (rb_block_given_p()) { | |
if (argc != 0) | |
rb_error_arity(argc, 0, 0); | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_slicebefore_sep_pred, rb_block_proc()); | |
} | |
else { | |
VALUE sep_pat; | |
rb_scan_args(argc, argv, "1", &sep_pat); | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_slicebefore_sep_pat, sep_pat); | |
} | |
rb_ivar_set(enumerator, id_slicebefore_enumerable, enumerable); | |
rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator); | |
return enumerator; | |
} | |
struct sliceafter_arg { | |
VALUE pat; | |
VALUE pred; | |
VALUE prev_elts; | |
VALUE yielder; | |
}; | |
static VALUE | |
sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) | |
{ | |
#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo))) | |
struct sliceafter_arg *memo; | |
int split_p; | |
UPDATE_MEMO; | |
ENUM_WANT_SVALUE(); | |
if (NIL_P(memo->prev_elts)) { | |
memo->prev_elts = rb_ary_new3(1, i); | |
} | |
else { | |
rb_ary_push(memo->prev_elts, i); | |
} | |
if (NIL_P(memo->pred)) { | |
split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i)); | |
UPDATE_MEMO; | |
} | |
else { | |
split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i)); | |
UPDATE_MEMO; | |
} | |
if (split_p) { | |
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); | |
UPDATE_MEMO; | |
memo->prev_elts = Qnil; | |
} | |
return Qnil; | |
#undef UPDATE_MEMO | |
} | |
static VALUE | |
sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) | |
{ | |
VALUE enumerable; | |
VALUE arg; | |
struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg); | |
enumerable = rb_ivar_get(enumerator, id_sliceafter_enum); | |
memo->pat = rb_ivar_get(enumerator, id_sliceafter_pat); | |
memo->pred = rb_attr_get(enumerator, id_sliceafter_pred); | |
memo->prev_elts = Qnil; | |
memo->yielder = yielder; | |
rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg); | |
memo = MEMO_FOR(struct sliceafter_arg, arg); | |
if (!NIL_P(memo->prev_elts)) | |
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.slice_after(pattern) -> an_enumerator | |
* enum.slice_after { |elt| bool } -> an_enumerator | |
* | |
* Creates an enumerator for each chunked elements. | |
* The ends of chunks are defined by _pattern_ and the block. | |
* | |
* If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block | |
* returns <code>true</code> for the element, the element is end of a | |
* chunk. | |
* | |
* The <code>===</code> and _block_ is called from the first element to the last | |
* element of _enum_. | |
* | |
* The result enumerator yields the chunked elements as an array. | |
* So +each+ method can be called as follows: | |
* | |
* enum.slice_after(pattern).each { |ary| ... } | |
* enum.slice_after { |elt| bool }.each { |ary| ... } | |
* | |
* Other methods of the Enumerator class and Enumerable module, | |
* such as +map+, etc., are also usable. | |
* | |
* For example, continuation lines (lines end with backslash) can be | |
* concatenated as follows: | |
* | |
* lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"] | |
* e = lines.slice_after(/(?<!\\)\n\z/) | |
* p e.to_a | |
* #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]] | |
* p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last } | |
* #=>["foo\n", "barbaz\n", "\n", "qux\n"] | |
* | |
*/ | |
static VALUE | |
enum_slice_after(int argc, VALUE *argv, VALUE enumerable) | |
{ | |
VALUE enumerator; | |
VALUE pat = Qnil, pred = Qnil; | |
if (rb_block_given_p()) { | |
if (0 < argc) | |
rb_raise(rb_eArgError, "both pattern and block are given"); | |
pred = rb_block_proc(); | |
} | |
else { | |
rb_scan_args(argc, argv, "1", &pat); | |
} | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_sliceafter_enum, enumerable); | |
rb_ivar_set(enumerator, id_sliceafter_pat, pat); | |
rb_ivar_set(enumerator, id_sliceafter_pred, pred); | |
rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator); | |
return enumerator; | |
} | |
struct slicewhen_arg { | |
VALUE pred; | |
VALUE prev_elt; | |
VALUE prev_elts; | |
VALUE yielder; | |
int inverted; /* 0 for slice_when and 1 for chunk_while. */ | |
}; | |
static VALUE | |
slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) | |
{ | |
#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo))) | |
struct slicewhen_arg *memo; | |
int split_p; | |
UPDATE_MEMO; | |
ENUM_WANT_SVALUE(); | |
if (memo->prev_elt == Qundef) { | |
/* The first element */ | |
memo->prev_elt = i; | |
memo->prev_elts = rb_ary_new3(1, i); | |
} | |
else { | |
VALUE args[2]; | |
args[0] = memo->prev_elt; | |
args[1] = i; | |
split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args)); | |
UPDATE_MEMO; | |
if (memo->inverted) | |
split_p = !split_p; | |
if (split_p) { | |
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); | |
UPDATE_MEMO; | |
memo->prev_elts = rb_ary_new3(1, i); | |
} | |
else { | |
rb_ary_push(memo->prev_elts, i); | |
} | |
memo->prev_elt = i; | |
} | |
return Qnil; | |
#undef UPDATE_MEMO | |
} | |
static VALUE | |
slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) | |
{ | |
VALUE enumerable; | |
VALUE arg; | |
struct slicewhen_arg *memo = | |
NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted); | |
enumerable = rb_ivar_get(enumerator, id_slicewhen_enum); | |
memo->pred = rb_attr_get(enumerator, id_slicewhen_pred); | |
memo->prev_elt = Qundef; | |
memo->prev_elts = Qnil; | |
memo->yielder = yielder; | |
memo->inverted = RTEST(rb_attr_get(enumerator, id_slicewhen_inverted)); | |
rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg); | |
memo = MEMO_FOR(struct slicewhen_arg, arg); | |
if (!NIL_P(memo->prev_elts)) | |
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator | |
* | |
* Creates an enumerator for each chunked elements. | |
* The beginnings of chunks are defined by the block. | |
* | |
* This method splits each chunk using adjacent elements, | |
* _elt_before_ and _elt_after_, | |
* in the receiver enumerator. | |
* This method split chunks between _elt_before_ and _elt_after_ where | |
* the block returns <code>true</code>. | |
* | |
* The block is called the length of the receiver enumerator minus one. | |
* | |
* The result enumerator yields the chunked elements as an array. | |
* So +each+ method can be called as follows: | |
* | |
* enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... } | |
* | |
* Other methods of the Enumerator class and Enumerable module, | |
* such as +to_a+, +map+, etc., are also usable. | |
* | |
* For example, one-by-one increasing subsequence can be chunked as follows: | |
* | |
* a = [1,2,4,9,10,11,12,15,16,19,20,21] | |
* b = a.slice_when {|i, j| i+1 != j } | |
* p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] | |
* c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } | |
* p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] | |
* d = c.join(",") | |
* p d #=> "1,2,4,9-12,15,16,19-21" | |
* | |
* Near elements (threshold: 6) in sorted array can be chunked as follows: | |
* | |
* a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57] | |
* p a.slice_when {|i, j| 6 < j - i }.to_a | |
* #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]] | |
* | |
* Increasing (non-decreasing) subsequence can be chunked as follows: | |
* | |
* a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] | |
* p a.slice_when {|i, j| i > j }.to_a | |
* #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] | |
* | |
* Adjacent evens and odds can be chunked as follows: | |
* (Enumerable#chunk is another way to do it.) | |
* | |
* a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] | |
* p a.slice_when {|i, j| i.even? != j.even? }.to_a | |
* #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] | |
* | |
* Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: | |
* (See Enumerable#chunk to ignore empty lines.) | |
* | |
* lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"] | |
* p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a | |
* #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]] | |
* | |
* Enumerable#chunk_while does the same, except splitting when the block | |
* returns <code>false</code> instead of <code>true</code>. | |
*/ | |
static VALUE | |
enum_slice_when(VALUE enumerable) | |
{ | |
VALUE enumerator; | |
VALUE pred; | |
pred = rb_block_proc(); | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_slicewhen_enum, enumerable); | |
rb_ivar_set(enumerator, id_slicewhen_pred, pred); | |
rb_ivar_set(enumerator, id_slicewhen_inverted, Qfalse); | |
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); | |
return enumerator; | |
} | |
/* | |
* call-seq: | |
* enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator | |
* | |
* Creates an enumerator for each chunked elements. | |
* The beginnings of chunks are defined by the block. | |
* | |
* This method splits each chunk using adjacent elements, | |
* _elt_before_ and _elt_after_, | |
* in the receiver enumerator. | |
* This method split chunks between _elt_before_ and _elt_after_ where | |
* the block returns <code>false</code>. | |
* | |
* The block is called the length of the receiver enumerator minus one. | |
* | |
* The result enumerator yields the chunked elements as an array. | |
* So +each+ method can be called as follows: | |
* | |
* enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... } | |
* | |
* Other methods of the Enumerator class and Enumerable module, | |
* such as +to_a+, +map+, etc., are also usable. | |
* | |
* For example, one-by-one increasing subsequence can be chunked as follows: | |
* | |
* a = [1,2,4,9,10,11,12,15,16,19,20,21] | |
* b = a.chunk_while {|i, j| i+1 == j } | |
* p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] | |
* c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } | |
* p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] | |
* d = c.join(",") | |
* p d #=> "1,2,4,9-12,15,16,19-21" | |
* | |
* Increasing (non-decreasing) subsequence can be chunked as follows: | |
* | |
* a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] | |
* p a.chunk_while {|i, j| i <= j }.to_a | |
* #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] | |
* | |
* Adjacent evens and odds can be chunked as follows: | |
* (Enumerable#chunk is another way to do it.) | |
* | |
* a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] | |
* p a.chunk_while {|i, j| i.even? == j.even? }.to_a | |
* #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] | |
* | |
* Enumerable#slice_when does the same, except splitting when the block | |
* returns <code>true</code> instead of <code>false</code>. | |
*/ | |
static VALUE | |
enum_chunk_while(VALUE enumerable) | |
{ | |
VALUE enumerator; | |
VALUE pred; | |
pred = rb_block_proc(); | |
enumerator = rb_obj_alloc(rb_cEnumerator); | |
rb_ivar_set(enumerator, id_slicewhen_enum, enumerable); | |
rb_ivar_set(enumerator, id_slicewhen_pred, pred); | |
rb_ivar_set(enumerator, id_slicewhen_inverted, Qtrue); | |
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); | |
return enumerator; | |
} | |
struct enum_sum_memo { | |
VALUE v, r; | |
long n; | |
double f, c; | |
int block_given; | |
int float_value; | |
}; | |
static void | |
sum_iter_normalize_memo(struct enum_sum_memo *memo) | |
{ | |
assert(FIXABLE(memo->n)); | |
memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v); | |
memo->n = 0; | |
switch (TYPE(memo->r)) { | |
case T_RATIONAL: memo->v = rb_rational_plus(memo->r, memo->v); break; | |
case T_UNDEF: break; | |
default: UNREACHABLE; /* or ...? */ | |
} | |
memo->r = Qundef; | |
} | |
static void | |
sum_iter_fixnum(VALUE i, struct enum_sum_memo *memo) | |
{ | |
memo->n += FIX2LONG(i); /* should not overflow long type */ | |
if (! FIXABLE(memo->n)) { | |
memo->v = rb_big_plus(LONG2NUM(memo->n), memo->v); | |
memo->n = 0; | |
} | |
} | |
static void | |
sum_iter_bignum(VALUE i, struct enum_sum_memo *memo) | |
{ | |
memo->v = rb_big_plus(i, memo->v); | |
} | |
static void | |
sum_iter_rational(VALUE i, struct enum_sum_memo *memo) | |
{ | |
if (memo->r == Qundef) { | |
memo->r = i; | |
} | |
else { | |
memo->r = rb_rational_plus(memo->r, i); | |
} | |
} | |
static void | |
sum_iter_some_value(VALUE i, struct enum_sum_memo *memo) | |
{ | |
memo->v = rb_funcallv(memo->v, idPLUS, 1, &i); | |
} | |
static void | |
sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo) | |
{ | |
/* | |
* Kahan-Babuska balancing compensated summation algorithm | |
* See https://link.springer.com/article/10.1007/s00607-005-0139-x | |
*/ | |
double x; | |
switch (TYPE(i)) { | |
case T_FLOAT: x = RFLOAT_VALUE(i); break; | |
case T_FIXNUM: x = FIX2LONG(i); break; | |
case T_BIGNUM: x = rb_big2dbl(i); break; | |
case T_RATIONAL: x = rb_num2dbl(i); break; | |
default: | |
memo->v = DBL2NUM(memo->f); | |
memo->float_value = 0; | |
sum_iter_some_value(i, memo); | |
return; | |
} | |
double f = memo->f; | |
if (isnan(f)) { | |
return; | |
} | |
else if (! isfinite(x)) { | |
if (isinf(x) && isinf(f) && signbit(x) != signbit(f)) { | |
i = DBL2NUM(f); | |
x = nan(""); | |
} | |
memo->v = i; | |
memo->f = x; | |
return; | |
} | |
else if (isinf(f)) { | |
return; | |
} | |
double c = memo->c; | |
double t = f + x; | |
if (fabs(f) >= fabs(x)) { | |
c += ((f - t) + x); | |
} | |
else { | |
c += ((x - t) + f); | |
} | |
f = t; | |
memo->f = f; | |
memo->c = c; | |
} | |
static void | |
sum_iter(VALUE i, struct enum_sum_memo *memo) | |
{ | |
assert(memo != NULL); | |
if (memo->block_given) { | |
i = rb_yield(i); | |
} | |
if (memo->float_value) { | |
sum_iter_Kahan_Babuska(i, memo); | |
} | |
else switch (TYPE(memo->v)) { | |
default: sum_iter_some_value(i, memo); return; | |
case T_FLOAT: sum_iter_Kahan_Babuska(i, memo); return; | |
case T_FIXNUM: | |
case T_BIGNUM: | |
case T_RATIONAL: | |
switch (TYPE(i)) { | |
case T_FIXNUM: sum_iter_fixnum(i, memo); return; | |
case T_BIGNUM: sum_iter_bignum(i, memo); return; | |
case T_RATIONAL: sum_iter_rational(i, memo); return; | |
case T_FLOAT: | |
sum_iter_normalize_memo(memo); | |
memo->f = NUM2DBL(memo->v); | |
memo->c = 0.0; | |
memo->float_value = 1; | |
sum_iter_Kahan_Babuska(i, memo); | |
return; | |
default: | |
sum_iter_normalize_memo(memo); | |
sum_iter_some_value(i, memo); | |
return; | |
} | |
} | |
} | |
static VALUE | |
enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) | |
{ | |
ENUM_WANT_SVALUE(); | |
sum_iter(i, (struct enum_sum_memo *) args); | |
return Qnil; | |
} | |
static int | |
hash_sum_i(VALUE key, VALUE value, VALUE arg) | |
{ | |
sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg); | |
return ST_CONTINUE; | |
} | |
static void | |
hash_sum(VALUE hash, struct enum_sum_memo *memo) | |
{ | |
assert(RB_TYPE_P(hash, T_HASH)); | |
assert(memo != NULL); | |
rb_hash_foreach(hash, hash_sum_i, (VALUE)memo); | |
} | |
static VALUE | |
int_range_sum(VALUE beg, VALUE end, int excl, VALUE init) | |
{ | |
if (excl) { | |
if (FIXNUM_P(end)) | |
end = LONG2FIX(FIX2LONG(end) - 1); | |
else | |
end = rb_big_minus(end, LONG2FIX(1)); | |
} | |
if (rb_int_ge(end, beg)) { | |
VALUE a; | |
a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1)); | |
a = rb_int_mul(a, rb_int_plus(end, beg)); | |
a = rb_int_idiv(a, LONG2FIX(2)); | |
return rb_int_plus(init, a); | |
} | |
return init; | |
} | |
/* | |
* call-seq: | |
* enum.sum(init=0) -> number | |
* enum.sum(init=0) {|e| expr } -> number | |
* | |
* Returns the sum of elements in an Enumerable. | |
* | |
* If a block is given, the block is applied to each element | |
* before addition. | |
* | |
* If <i>enum</i> is empty, it returns <i>init</i>. | |
* | |
* For example: | |
* | |
* { 1 => 10, 2 => 20 }.sum {|k, v| k * v } #=> 50 | |
* (1..10).sum #=> 55 | |
* (1..10).sum {|v| v * 2 } #=> 110 | |
* ('a'..'z').sum #=> TypeError | |
* | |
* This method can be used for non-numeric objects by | |
* explicit <i>init</i> argument. | |
* | |
* { 1 => 10, 2 => 20 }.sum([]) #=> [1, 10, 2, 20] | |
* "a\nb\nc".each_line.lazy.map(&:chomp).sum("") #=> "abc" | |
* | |
* If the method is applied to an Integer range without a block, | |
* the sum is not done by iteration, but instead using Gauss's summation | |
* formula. | |
* | |
* Enumerable#sum method may not respect method redefinition of "+" | |
* methods such as Integer#+, or "each" methods such as Range#each. | |
*/ | |
static VALUE | |
enum_sum(int argc, VALUE* argv, VALUE obj) | |
{ | |
struct enum_sum_memo memo; | |
VALUE beg, end; | |
int excl; | |
memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0]; | |
memo.block_given = rb_block_given_p(); | |
memo.n = 0; | |
memo.r = Qundef; | |
if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) { | |
memo.f = RFLOAT_VALUE(memo.v); | |
memo.c = 0.0; | |
} | |
else { | |
memo.f = 0.0; | |
memo.c = 0.0; | |
} | |
if (RTEST(rb_range_values(obj, &beg, &end, &excl))) { | |
if (!memo.block_given && !memo.float_value && | |
(FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) && | |
(FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) { | |
return int_range_sum(beg, end, excl, memo.v); | |
} | |
} | |
if (RB_TYPE_P(obj, T_HASH) && | |
rb_method_basic_definition_p(CLASS_OF(obj), id_each)) | |
hash_sum(obj, &memo); | |
else | |
rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo); | |
if (memo.float_value) { | |
return DBL2NUM(memo.f + memo.c); | |
} | |
else { | |
if (memo.n != 0) | |
memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v); | |
if (memo.r != Qundef) { | |
memo.v = rb_rational_plus(memo.r, memo.v); | |
} | |
return memo.v; | |
} | |
} | |
static VALUE | |
uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
ENUM_WANT_SVALUE(); | |
rb_hash_add_new_element(hash, i, i); | |
return Qnil; | |
} | |
static VALUE | |
uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
{ | |
ENUM_WANT_SVALUE(); | |
rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.uniq -> new_ary | |
* enum.uniq { |item| ... } -> new_ary | |
* | |
* Returns a new array by removing duplicate values in +self+. | |
* | |
* See also Array#uniq. | |
*/ | |
static VALUE | |
enum_uniq(VALUE obj) | |
{ | |
VALUE hash, ret; | |
rb_block_call_func *const func = | |
rb_block_given_p() ? uniq_iter : uniq_func; | |
hash = rb_obj_hide(rb_hash_new()); | |
rb_block_call(obj, id_each, 0, 0, func, hash); | |
ret = rb_hash_values(hash); | |
rb_hash_clear(hash); | |
return ret; | |
} | |
static VALUE | |
compact_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
ENUM_WANT_SVALUE(); | |
if (!NIL_P(i)) { | |
rb_ary_push(ary, i); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* enum.compact -> array | |
* | |
* Returns an array of all non-+nil+ elements from enumeration. | |
* | |
* def with_nils | |
* yield 1 | |
* yield 2 | |
* yield nil | |
* yield 3 | |
* end | |
* | |
* to_enum(:with_nils).compact | |
* # => [1, 2, 3] | |
* | |
* See also Array#compact. | |
*/ | |
static VALUE | |
enum_compact(VALUE obj) | |
{ | |
VALUE ary; | |
ary = rb_ary_new(); | |
rb_block_call(obj, id_each, 0, 0, compact_i, ary); | |
return ary; | |
} | |
/* | |
* == What's Here | |
* | |
* \Module \Enumerable provides methods that are useful to a collection class for: | |
* - {Querying}[#module-Enumerable-label-Methods+for+Querying] | |
* - {Fetching}[#module-Enumerable-label-Methods+for+Fetching] | |
* - {Searching}[#module-Enumerable-label-Methods+for+Searching] | |
* - {Sorting}[#module-Enumerable-label-Methods+for+Sorting] | |
* - {Iterating}[#module-Enumerable-label-Methods+for+Iterating] | |
* - {And more....}[#module-Enumerable-label-Other+Methods] | |
* | |
* === Methods for Querying | |
* | |
* These methods return information about the \Enumerable other than the elements themselves: | |
* | |
* #include?, #member?:: Returns +true+ if self == object, +false+ otherwise. | |
* #all?:: Returns +true+ if all elements meet a specified criterion; +false+ otherwise. | |
* #any?:: Returns +true+ if any element meets a specified criterion; +false+ otherwise. | |
* #none?:: Returns +true+ if no element meets a specified criterion; +false+ otherwise. | |
* #one?:: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise. | |
* #count:: Returns the count of elements, | |
* based on an argument or block criterion, if given. | |
* #tally:: Returns a new \Hash containing the counts of occurrences of each element. | |
* | |
* === Methods for Fetching | |
* | |
* These methods return entries from the \Enumerable, without modifying it: | |
* | |
* <i>Leading, trailing, or all elements</i>: | |
* #entries, #to_a:: Returns all elements. | |
* #first:: Returns the first element or leading elements. | |
* #take:: Returns a specified number of leading elements. | |
* #drop:: Returns a specified number of trailing elements. | |
* #take_while:: Returns leading elements as specified by the given block. | |
* #drop_while:: Returns trailing elements as specified by the given block. | |
* | |
* <i>Minimum and maximum value elements</i>: | |
* #min:: Returns the elements whose values are smallest among the elements, | |
* as determined by <tt><=></tt> or a given block. | |
* #max:: Returns the elements whose values are largest among the elements, | |
* as determined by <tt><=></tt> or a given block. | |
* #minmax:: Returns a 2-element \Array containing the smallest and largest elements. | |
* #min_by:: Returns the smallest element, as determined by the given block. | |
* #max_by:: Returns the largest element, as determined by the given block. | |
* #minmax_by:: Returns the smallest and largest elements, as determined by the given block. | |
* | |
* <i>Groups, slices, and partitions</i>: | |
* #group_by:: Returns a \Hash that partitions the elements into groups. | |
* #partition:: Returns elements partitioned into two new Arrays, as determined by the given block. | |
* #slice_after:: Returns a new \Enumerator whose entries are a partition of +self+, | |
based either on a given +object+ or a given block. | |
* #slice_before:: Returns a new \Enumerator whose entries are a partition of +self+, | |
based either on a given +object+ or a given block. | |
* #slice_when:: Returns a new \Enumerator whose entries are a partition of +self+ | |
based on the given block. | |
* #chunk:: Returns elements organized into chunks as specified by the given block. | |
* #chunk_while:: Returns elements organized into chunks as specified by the given block. | |
* | |
* === Methods for Searching and Filtering | |
* | |
* These methods return elements that meet a specified criterion. | |
* | |
* #find, #detect:: Returns an element selected by the block. | |
* #find_all, #filter, #select:: Returns elements selected by the block. | |
* #find_index:: Returns the index of an element selected by a given object or block. | |
* #reject:: Returns elements not rejected by the block. | |
* #uniq:: Returns elements that are not duplicates. | |
* | |
* === Methods for Sorting | |
* | |
* These methods return elements in sorted order. | |
* | |
* #sort:: Returns the elements, sorted by <tt><=></tt> or the given block. | |
* #sort_by:: Returns the elements, sorted by the given block. | |
* | |
* === Methods for Iterating | |
* | |
* #each_entry:: Calls the block with each successive element | |
* (slightly different from #each). | |
* #each_with_index:: Calls the block with each successive element and its index. | |
* #each_with_object:: Calls the block with each successive element and a given object. | |
* #each_slice:: Calls the block with successive non-overlapping slices. | |
* #each_cons:: Calls the block with successive overlapping slices. | |
* (different from #each_slice). | |
* #reverse_each:: Calls the block with each successive element, in reverse order. | |
* | |
* === Other Methods | |
* | |
* #map, #collect:: Returns objects returned by the block. | |
* #filter_map:: Returns truthy objects returned by the block. | |
* #flat_map, #collect_concat:: Returns flattened objects returned by the block. | |
* #grep:: Returns elements selected by a given object | |
* or objects returned by a given block. | |
* #grep_v:: Returns elements selected by a given object | |
* or objects returned by a given block. | |
* #reduce, #inject:: Returns the object formed by combining all elements. | |
* #sum:: Returns the sum of the elements, using method +++. | |
* #zip:: Combines each element with elements from other enumerables; | |
* returns the n-tuples or calls the block with each. | |
* #cycle:: Calls the block with each element, cycling repeatedly. | |
* | |
* == Usage | |
* | |
* To use module \Enumerable in a collection class: | |
* - Include it: | |
* include Enumerable | |
* - Implement method <tt>#each</tt> | |
* which must yield successive elements of the collection. | |
* This method will be called by almost any \Enumerable method. | |
* | |
* == \Enumerable in Ruby Core Classes | |
* Some Ruby classes include \Enumerable: | |
* - Array | |
* - Dir | |
* - Hash | |
* - IO | |
* - Range | |
* - Set | |
* - Struct | |
* Virtually all methods in \Enumerable call method +#each+ in the including class: | |
* - <tt>Hash#each</tt> yields the next key-value pair as a 2-element \Array. | |
* - <tt>Struct#each</tt> yields the next name-value pair as a 2-element \Array. | |
* - For the other classes above, +#each+ yields the next object from the collection. | |
* | |
* == About the Examples | |
* The example code snippets for the \Enumerable methods: | |
* - Always show the use of one or more \Array-like classes (often \Array itself). | |
* - Sometimes show the use of a \Hash-like class. | |
* For some methods, though, the usage would not make sense, | |
* and so it is not shown. Example: #tally would find exactly one of each \Hash entry. | |
*/ | |
void | |
Init_Enumerable(void) | |
{ | |
rb_mEnumerable = rb_define_module("Enumerable"); | |
rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1); | |
rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1); | |
rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1); | |
rb_define_method(rb_mEnumerable, "sort", enum_sort, 0); | |
rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0); | |
rb_define_method(rb_mEnumerable, "grep", enum_grep, 1); | |
rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1); | |
rb_define_method(rb_mEnumerable, "count", enum_count, -1); | |
rb_define_method(rb_mEnumerable, "find", enum_find, -1); | |
rb_define_method(rb_mEnumerable, "detect", enum_find, -1); | |
rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1); | |
rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0); | |
rb_define_method(rb_mEnumerable, "select", enum_find_all, 0); | |
rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0); | |
rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0); | |
rb_define_method(rb_mEnumerable, "reject", enum_reject, 0); | |
rb_define_method(rb_mEnumerable, "collect", enum_collect, 0); | |
rb_define_method(rb_mEnumerable, "map", enum_collect, 0); | |
rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0); | |
rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0); | |
rb_define_method(rb_mEnumerable, "inject", enum_inject, -1); | |
rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1); | |
rb_define_method(rb_mEnumerable, "partition", enum_partition, 0); | |
rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0); | |
rb_define_method(rb_mEnumerable, "tally", enum_tally, -1); | |
rb_define_method(rb_mEnumerable, "first", enum_first, -1); | |
rb_define_method(rb_mEnumerable, "all?", enum_all, -1); | |
rb_define_method(rb_mEnumerable, "any?", enum_any, -1); | |
rb_define_method(rb_mEnumerable, "one?", enum_one, -1); | |
rb_define_method(rb_mEnumerable, "none?", enum_none, -1); | |
rb_define_method(rb_mEnumerable, "min", enum_min, -1); | |
rb_define_method(rb_mEnumerable, "max", enum_max, -1); | |
rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0); | |
rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1); | |
rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1); | |
rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0); | |
rb_define_method(rb_mEnumerable, "member?", enum_member, 1); | |
rb_define_method(rb_mEnumerable, "include?", enum_member, 1); | |
rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1); | |
rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1); | |
rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1); | |
rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1); | |
rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1); | |
rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1); | |
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1); | |
rb_define_method(rb_mEnumerable, "take", enum_take, 1); | |
rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0); | |
rb_define_method(rb_mEnumerable, "drop", enum_drop, 1); | |
rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0); | |
rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1); | |
rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0); | |
rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1); | |
rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1); | |
rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0); | |
rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0); | |
rb_define_method(rb_mEnumerable, "sum", enum_sum, -1); | |
rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0); | |
rb_define_method(rb_mEnumerable, "compact", enum_compact, 0); | |
id__alone = rb_intern_const("_alone"); | |
id__separator = rb_intern_const("_separator"); | |
id_chunk_categorize = rb_intern_const("chunk_categorize"); | |
id_chunk_enumerable = rb_intern_const("chunk_enumerable"); | |
id_next = rb_intern_const("next"); | |
id_sliceafter_enum = rb_intern_const("sliceafter_enum"); | |
id_sliceafter_pat = rb_intern_const("sliceafter_pat"); | |
id_sliceafter_pred = rb_intern_const("sliceafter_pred"); | |
id_slicebefore_enumerable = rb_intern_const("slicebefore_enumerable"); | |
id_slicebefore_sep_pat = rb_intern_const("slicebefore_sep_pat"); | |
id_slicebefore_sep_pred = rb_intern_const("slicebefore_sep_pred"); | |
id_slicewhen_enum = rb_intern_const("slicewhen_enum"); | |
id_slicewhen_inverted = rb_intern_const("slicewhen_inverted"); | |
id_slicewhen_pred = rb_intern_const("slicewhen_pred"); | |
} |