Permalink
Cannot retrieve contributors at this time
4261 lines (3707 sloc)
107 KB
/************************************************ | |
enumerator.c - provides Enumerator class | |
$Author$ | |
Copyright (C) 2001-2003 Akinori MUSHA | |
$Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $ | |
$RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $ | |
$Id$ | |
************************************************/ | |
#include "ruby/internal/config.h" | |
#ifdef HAVE_FLOAT_H | |
#include <float.h> | |
#endif | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/enumerator.h" | |
#include "internal/error.h" | |
#include "internal/hash.h" | |
#include "internal/imemo.h" | |
#include "internal/numeric.h" | |
#include "internal/range.h" | |
#include "internal/rational.h" | |
#include "ruby/ruby.h" | |
/* | |
* Document-class: Enumerator | |
* | |
* A class which allows both internal and external iteration. | |
* | |
* An Enumerator can be created by the following methods. | |
* - Object#to_enum | |
* - Object#enum_for | |
* - Enumerator.new | |
* | |
* Most methods have two forms: a block form where the contents | |
* are evaluated for each item in the enumeration, and a non-block form | |
* which returns a new Enumerator wrapping the iteration. | |
* | |
* enumerator = %w(one two three).each | |
* puts enumerator.class # => Enumerator | |
* | |
* enumerator.each_with_object("foo") do |item, obj| | |
* puts "#{obj}: #{item}" | |
* end | |
* | |
* # foo: one | |
* # foo: two | |
* # foo: three | |
* | |
* enum_with_obj = enumerator.each_with_object("foo") | |
* puts enum_with_obj.class # => Enumerator | |
* | |
* enum_with_obj.each do |item, obj| | |
* puts "#{obj}: #{item}" | |
* end | |
* | |
* # foo: one | |
* # foo: two | |
* # foo: three | |
* | |
* This allows you to chain Enumerators together. For example, you | |
* can map a list's elements to strings containing the index | |
* and the element as a string via: | |
* | |
* puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" } | |
* # => ["0:foo", "1:bar", "2:baz"] | |
* | |
* An Enumerator can also be used as an external iterator. | |
* For example, Enumerator#next returns the next value of the iterator | |
* or raises StopIteration if the Enumerator is at the end. | |
* | |
* e = [1,2,3].each # returns an enumerator object. | |
* puts e.next # => 1 | |
* puts e.next # => 2 | |
* puts e.next # => 3 | |
* puts e.next # raises StopIteration | |
* | |
* Note that enumeration sequence by +next+, +next_values+, +peek+ and | |
* +peek_values+ do not affect other non-external | |
* enumeration methods, unless the underlying iteration method itself has | |
* side-effect, e.g. IO#each_line. | |
* | |
* Moreover, implementation typically uses fibers so performance could be | |
* slower and exception stacktraces different than expected. | |
* | |
* You can use this to implement an internal iterator as follows: | |
* | |
* def ext_each(e) | |
* while true | |
* begin | |
* vs = e.next_values | |
* rescue StopIteration | |
* return $!.result | |
* end | |
* y = yield(*vs) | |
* e.feed y | |
* end | |
* end | |
* | |
* o = Object.new | |
* | |
* def o.each | |
* puts yield | |
* puts yield(1) | |
* puts yield(1, 2) | |
* 3 | |
* end | |
* | |
* # use o.each as an internal iterator directly. | |
* puts o.each {|*x| puts x; [:b, *x] } | |
* # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 | |
* | |
* # convert o.each to an external iterator for | |
* # implementing an internal iterator. | |
* puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] } | |
* # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 | |
* | |
*/ | |
VALUE rb_cEnumerator; | |
static VALUE rb_cLazy; | |
static ID id_rewind, id_new, id_to_enum; | |
static ID id_next, id_result, id_receiver, id_arguments, id_memo, id_method, id_force; | |
static ID id_begin, id_end, id_step, id_exclude_end; | |
static VALUE sym_each, sym_cycle, sym_yield; | |
static VALUE lazy_use_super_method; | |
#define id_call idCall | |
#define id_each idEach | |
#define id_eqq idEqq | |
#define id_initialize idInitialize | |
#define id_size idSize | |
VALUE rb_eStopIteration; | |
struct enumerator { | |
VALUE obj; | |
ID meth; | |
VALUE args; | |
VALUE fib; | |
VALUE dst; | |
VALUE lookahead; | |
VALUE feedvalue; | |
VALUE stop_exc; | |
VALUE size; | |
VALUE procs; | |
rb_enumerator_size_func *size_fn; | |
int kw_splat; | |
}; | |
static VALUE rb_cGenerator, rb_cYielder, rb_cEnumProducer; | |
struct generator { | |
VALUE proc; | |
VALUE obj; | |
}; | |
struct yielder { | |
VALUE proc; | |
}; | |
struct producer { | |
VALUE init; | |
VALUE proc; | |
}; | |
typedef struct MEMO *lazyenum_proc_func(VALUE, struct MEMO *, VALUE, long); | |
typedef VALUE lazyenum_size_func(VALUE, VALUE); | |
typedef struct { | |
lazyenum_proc_func *proc; | |
lazyenum_size_func *size; | |
} lazyenum_funcs; | |
struct proc_entry { | |
VALUE proc; | |
VALUE memo; | |
const lazyenum_funcs *fn; | |
}; | |
static VALUE generator_allocate(VALUE klass); | |
static VALUE generator_init(VALUE obj, VALUE proc); | |
static VALUE rb_cEnumChain; | |
struct enum_chain { | |
VALUE enums; | |
long pos; | |
}; | |
VALUE rb_cArithSeq; | |
/* | |
* Enumerator | |
*/ | |
static void | |
enumerator_mark(void *p) | |
{ | |
struct enumerator *ptr = p; | |
rb_gc_mark_movable(ptr->obj); | |
rb_gc_mark_movable(ptr->args); | |
rb_gc_mark_movable(ptr->fib); | |
rb_gc_mark_movable(ptr->dst); | |
rb_gc_mark_movable(ptr->lookahead); | |
rb_gc_mark_movable(ptr->feedvalue); | |
rb_gc_mark_movable(ptr->stop_exc); | |
rb_gc_mark_movable(ptr->size); | |
rb_gc_mark_movable(ptr->procs); | |
} | |
static void | |
enumerator_compact(void *p) | |
{ | |
struct enumerator *ptr = p; | |
ptr->obj = rb_gc_location(ptr->obj); | |
ptr->args = rb_gc_location(ptr->args); | |
ptr->fib = rb_gc_location(ptr->fib); | |
ptr->dst = rb_gc_location(ptr->dst); | |
ptr->lookahead = rb_gc_location(ptr->lookahead); | |
ptr->feedvalue = rb_gc_location(ptr->feedvalue); | |
ptr->stop_exc = rb_gc_location(ptr->stop_exc); | |
ptr->size = rb_gc_location(ptr->size); | |
ptr->procs = rb_gc_location(ptr->procs); | |
} | |
#define enumerator_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
enumerator_memsize(const void *p) | |
{ | |
return sizeof(struct enumerator); | |
} | |
static const rb_data_type_t enumerator_data_type = { | |
"enumerator", | |
{ | |
enumerator_mark, | |
enumerator_free, | |
enumerator_memsize, | |
enumerator_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static struct enumerator * | |
enumerator_ptr(VALUE obj) | |
{ | |
struct enumerator *ptr; | |
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr); | |
if (!ptr || ptr->obj == Qundef) { | |
rb_raise(rb_eArgError, "uninitialized enumerator"); | |
} | |
return ptr; | |
} | |
static void | |
proc_entry_mark(void *p) | |
{ | |
struct proc_entry *ptr = p; | |
rb_gc_mark_movable(ptr->proc); | |
rb_gc_mark_movable(ptr->memo); | |
} | |
static void | |
proc_entry_compact(void *p) | |
{ | |
struct proc_entry *ptr = p; | |
ptr->proc = rb_gc_location(ptr->proc); | |
ptr->memo = rb_gc_location(ptr->memo); | |
} | |
#define proc_entry_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
proc_entry_memsize(const void *p) | |
{ | |
return p ? sizeof(struct proc_entry) : 0; | |
} | |
static const rb_data_type_t proc_entry_data_type = { | |
"proc_entry", | |
{ | |
proc_entry_mark, | |
proc_entry_free, | |
proc_entry_memsize, | |
proc_entry_compact, | |
}, | |
}; | |
static struct proc_entry * | |
proc_entry_ptr(VALUE proc_entry) | |
{ | |
struct proc_entry *ptr; | |
TypedData_Get_Struct(proc_entry, struct proc_entry, &proc_entry_data_type, ptr); | |
return ptr; | |
} | |
/* | |
* call-seq: | |
* obj.to_enum(method = :each, *args) -> enum | |
* obj.enum_for(method = :each, *args) -> enum | |
* obj.to_enum(method = :each, *args) {|*args| block} -> enum | |
* obj.enum_for(method = :each, *args){|*args| block} -> enum | |
* | |
* Creates a new Enumerator which will enumerate by calling +method+ on | |
* +obj+, passing +args+ if any. What was _yielded_ by method becomes | |
* values of enumerator. | |
* | |
* If a block is given, it will be used to calculate the size of | |
* the enumerator without the need to iterate it (see Enumerator#size). | |
* | |
* === Examples | |
* | |
* str = "xyz" | |
* | |
* enum = str.enum_for(:each_byte) | |
* enum.each { |b| puts b } | |
* # => 120 | |
* # => 121 | |
* # => 122 | |
* | |
* # protect an array from being modified by some_method | |
* a = [1, 2, 3] | |
* some_method(a.to_enum) | |
* | |
* # String#split in block form is more memory-effective: | |
* very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') } | |
* # This could be rewritten more idiomatically with to_enum: | |
* very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first | |
* | |
* It is typical to call to_enum when defining methods for | |
* a generic Enumerable, in case no block is passed. | |
* | |
* Here is such an example, with parameter passing and a sizing block: | |
* | |
* module Enumerable | |
* # a generic method to repeat the values of any enumerable | |
* def repeat(n) | |
* raise ArgumentError, "#{n} is negative!" if n < 0 | |
* unless block_given? | |
* return to_enum(__method__, n) do # __method__ is :repeat here | |
* sz = size # Call size and multiply by n... | |
* sz * n if sz # but return nil if size itself is nil | |
* end | |
* end | |
* each do |*val| | |
* n.times { yield *val } | |
* end | |
* end | |
* end | |
* | |
* %i[hello world].repeat(2) { |w| puts w } | |
* # => Prints 'hello', 'hello', 'world', 'world' | |
* enum = (1..14).repeat(3) | |
* # => returns an Enumerator when called without a block | |
* enum.first(4) # => [1, 1, 1, 2] | |
* enum.size # => 42 | |
*/ | |
static VALUE | |
obj_to_enum(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE enumerator, meth = sym_each; | |
if (argc > 0) { | |
--argc; | |
meth = *argv++; | |
} | |
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0); | |
if (rb_block_given_p()) { | |
enumerator_ptr(enumerator)->size = rb_block_proc(); | |
} | |
return enumerator; | |
} | |
static VALUE | |
enumerator_allocate(VALUE klass) | |
{ | |
struct enumerator *ptr; | |
VALUE enum_obj; | |
enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr); | |
ptr->obj = Qundef; | |
return enum_obj; | |
} | |
static VALUE | |
enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, VALUE size, int kw_splat) | |
{ | |
struct enumerator *ptr; | |
rb_check_frozen(enum_obj); | |
TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr); | |
if (!ptr) { | |
rb_raise(rb_eArgError, "unallocated enumerator"); | |
} | |
ptr->obj = obj; | |
ptr->meth = rb_to_id(meth); | |
if (argc) ptr->args = rb_ary_new4(argc, argv); | |
ptr->fib = 0; | |
ptr->dst = Qnil; | |
ptr->lookahead = Qundef; | |
ptr->feedvalue = Qundef; | |
ptr->stop_exc = Qfalse; | |
ptr->size = size; | |
ptr->size_fn = size_fn; | |
ptr->kw_splat = kw_splat; | |
return enum_obj; | |
} | |
static VALUE | |
convert_to_feasible_size_value(VALUE obj) | |
{ | |
if (NIL_P(obj)) { | |
return obj; | |
} | |
else if (rb_respond_to(obj, id_call)) { | |
return obj; | |
} | |
else if (RB_FLOAT_TYPE_P(obj) && RFLOAT_VALUE(obj) == HUGE_VAL) { | |
return obj; | |
} | |
else { | |
return rb_to_int(obj); | |
} | |
} | |
/* | |
* call-seq: | |
* Enumerator.new(size = nil) { |yielder| ... } | |
* | |
* Creates a new Enumerator object, which can be used as an | |
* Enumerable. | |
* | |
* Iteration is defined by the given block, in | |
* which a "yielder" object, given as block parameter, can be used to | |
* yield a value by calling the +yield+ method (aliased as <code><<</code>): | |
* | |
* fib = Enumerator.new do |y| | |
* a = b = 1 | |
* loop do | |
* y << a | |
* a, b = b, a + b | |
* end | |
* end | |
* | |
* fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] | |
* | |
* The optional parameter can be used to specify how to calculate the size | |
* in a lazy fashion (see Enumerator#size). It can either be a value or | |
* a callable object. | |
*/ | |
static VALUE | |
enumerator_initialize(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE iter = rb_block_proc(); | |
VALUE recv = generator_init(generator_allocate(rb_cGenerator), iter); | |
VALUE arg0 = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; | |
VALUE size = convert_to_feasible_size_value(arg0); | |
return enumerator_init(obj, recv, sym_each, 0, 0, 0, size, false); | |
} | |
/* :nodoc: */ | |
static VALUE | |
enumerator_init_copy(VALUE obj, VALUE orig) | |
{ | |
struct enumerator *ptr0, *ptr1; | |
if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
ptr0 = enumerator_ptr(orig); | |
if (ptr0->fib) { | |
/* Fibers cannot be copied */ | |
rb_raise(rb_eTypeError, "can't copy execution context"); | |
} | |
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1); | |
if (!ptr1) { | |
rb_raise(rb_eArgError, "unallocated enumerator"); | |
} | |
ptr1->obj = ptr0->obj; | |
ptr1->meth = ptr0->meth; | |
ptr1->args = ptr0->args; | |
ptr1->fib = 0; | |
ptr1->lookahead = Qundef; | |
ptr1->feedvalue = Qundef; | |
ptr1->size = ptr0->size; | |
ptr1->size_fn = ptr0->size_fn; | |
return obj; | |
} | |
/* | |
* For backwards compatibility; use rb_enumeratorize_with_size | |
*/ | |
VALUE | |
rb_enumeratorize(VALUE obj, VALUE meth, int argc, const VALUE *argv) | |
{ | |
return rb_enumeratorize_with_size(obj, meth, argc, argv, 0); | |
} | |
static VALUE | |
lazy_to_enum_i(VALUE self, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat); | |
VALUE | |
rb_enumeratorize_with_size_kw(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat) | |
{ | |
VALUE base_class = rb_cEnumerator; | |
if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy))) { | |
base_class = rb_cLazy; | |
} | |
else if (RTEST(rb_obj_is_kind_of(obj, rb_cEnumChain))) { | |
obj = enumerator_init(enumerator_allocate(rb_cEnumerator), obj, sym_each, 0, 0, 0, Qnil, false); | |
} | |
return enumerator_init(enumerator_allocate(base_class), | |
obj, meth, argc, argv, size_fn, Qnil, kw_splat); | |
} | |
VALUE | |
rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn) | |
{ | |
return rb_enumeratorize_with_size_kw(obj, meth, argc, argv, size_fn, rb_keyword_given_p()); | |
} | |
static VALUE | |
enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg) | |
{ | |
int argc = 0; | |
const VALUE *argv = 0; | |
const struct enumerator *e = enumerator_ptr(obj); | |
ID meth = e->meth; | |
if (e->args) { | |
argc = RARRAY_LENINT(e->args); | |
argv = RARRAY_CONST_PTR(e->args); | |
} | |
return rb_block_call_kw(e->obj, meth, argc, argv, func, arg, e->kw_splat); | |
} | |
/* | |
* call-seq: | |
* enum.each { |elm| block } -> obj | |
* enum.each -> enum | |
* enum.each(*appending_args) { |elm| block } -> obj | |
* enum.each(*appending_args) -> an_enumerator | |
* | |
* Iterates over the block according to how this Enumerator was constructed. | |
* If no block and no arguments are given, returns self. | |
* | |
* === Examples | |
* | |
* "Hello, world!".scan(/\w+/) #=> ["Hello", "world"] | |
* "Hello, world!".to_enum(:scan, /\w+/).to_a #=> ["Hello", "world"] | |
* "Hello, world!".to_enum(:scan).each(/\w+/).to_a #=> ["Hello", "world"] | |
* | |
* obj = Object.new | |
* | |
* def obj.each_arg(a, b=:b, *rest) | |
* yield a | |
* yield b | |
* yield rest | |
* :method_returned | |
* end | |
* | |
* enum = obj.to_enum :each_arg, :a, :x | |
* | |
* enum.each.to_a #=> [:a, :x, []] | |
* enum.each.equal?(enum) #=> true | |
* enum.each { |elm| elm } #=> :method_returned | |
* | |
* enum.each(:y, :z).to_a #=> [:a, :x, [:y, :z]] | |
* enum.each(:y, :z).equal?(enum) #=> false | |
* enum.each(:y, :z) { |elm| elm } #=> :method_returned | |
* | |
*/ | |
static VALUE | |
enumerator_each(int argc, VALUE *argv, VALUE obj) | |
{ | |
if (argc > 0) { | |
struct enumerator *e = enumerator_ptr(obj = rb_obj_dup(obj)); | |
VALUE args = e->args; | |
if (args) { | |
#if SIZEOF_INT < SIZEOF_LONG | |
/* check int range overflow */ | |
rb_long2int(RARRAY_LEN(args) + argc); | |
#endif | |
args = rb_ary_dup(args); | |
rb_ary_cat(args, argv, argc); | |
} | |
else { | |
args = rb_ary_new4(argc, argv); | |
} | |
e->args = args; | |
e->size = Qnil; | |
e->size_fn = 0; | |
} | |
if (!rb_block_given_p()) return obj; | |
return enumerator_block_call(obj, 0, obj); | |
} | |
static VALUE | |
enumerator_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
{ | |
struct MEMO *memo = (struct MEMO *)m; | |
VALUE idx = memo->v1; | |
MEMO_V1_SET(memo, rb_int_succ(idx)); | |
if (argc <= 1) | |
return rb_yield_values(2, val, idx); | |
return rb_yield_values(2, rb_ary_new4(argc, argv), idx); | |
} | |
static VALUE | |
enumerator_size(VALUE obj); | |
static VALUE | |
enumerator_enum_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
return enumerator_size(obj); | |
} | |
/* | |
* call-seq: | |
* e.with_index(offset = 0) {|(*args), idx| ... } | |
* e.with_index(offset = 0) | |
* | |
* Iterates the given block for each element with an index, which | |
* starts from +offset+. If no block is given, returns a new Enumerator | |
* that includes the index, starting from +offset+ | |
* | |
* +offset+:: the starting index to use | |
* | |
*/ | |
static VALUE | |
enumerator_with_index(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE memo; | |
rb_check_arity(argc, 0, 1); | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size); | |
memo = (!argc || NIL_P(memo = argv[0])) ? INT2FIX(0) : rb_to_int(memo); | |
return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)MEMO_NEW(memo, 0, 0)); | |
} | |
/* | |
* call-seq: | |
* e.each_with_index {|(*args), idx| ... } | |
* e.each_with_index | |
* | |
* Same as Enumerator#with_index(0), i.e. there is no starting offset. | |
* | |
* If no block is given, a new Enumerator is returned that includes the index. | |
* | |
*/ | |
static VALUE | |
enumerator_each_with_index(VALUE obj) | |
{ | |
return enumerator_with_index(0, NULL, obj); | |
} | |
static VALUE | |
enumerator_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memo)) | |
{ | |
if (argc <= 1) | |
return rb_yield_values(2, val, memo); | |
return rb_yield_values(2, rb_ary_new4(argc, argv), memo); | |
} | |
/* | |
* call-seq: | |
* e.each_with_object(obj) {|(*args), obj| ... } | |
* e.each_with_object(obj) | |
* e.with_object(obj) {|(*args), obj| ... } | |
* e.with_object(obj) | |
* | |
* Iterates the given block for each element with an arbitrary object, +obj+, | |
* and returns +obj+ | |
* | |
* If no block is given, returns a new Enumerator. | |
* | |
* === Example | |
* | |
* to_three = Enumerator.new do |y| | |
* 3.times do |x| | |
* y << x | |
* end | |
* end | |
* | |
* to_three_with_string = to_three.with_object("foo") | |
* to_three_with_string.each do |x,string| | |
* puts "#{string}: #{x}" | |
* end | |
* | |
* # => foo: 0 | |
* # => foo: 1 | |
* # => foo: 2 | |
*/ | |
static VALUE | |
enumerator_with_object(VALUE obj, VALUE memo) | |
{ | |
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size); | |
enumerator_block_call(obj, enumerator_with_object_i, memo); | |
return memo; | |
} | |
static VALUE | |
next_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, obj)) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
VALUE feedvalue = Qnil; | |
VALUE args = rb_ary_new4(argc, argv); | |
rb_fiber_yield(1, &args); | |
if (e->feedvalue != Qundef) { | |
feedvalue = e->feedvalue; | |
e->feedvalue = Qundef; | |
} | |
return feedvalue; | |
} | |
static VALUE | |
next_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, obj)) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
VALUE nil = Qnil; | |
VALUE result; | |
result = rb_block_call(obj, id_each, 0, 0, next_ii, obj); | |
e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached an end"); | |
rb_ivar_set(e->stop_exc, id_result, result); | |
return rb_fiber_yield(1, &nil); | |
} | |
static void | |
next_init(VALUE obj, struct enumerator *e) | |
{ | |
VALUE curr = rb_fiber_current(); | |
e->dst = curr; | |
e->fib = rb_fiber_new(next_i, obj); | |
e->lookahead = Qundef; | |
} | |
static VALUE | |
get_next_values(VALUE obj, struct enumerator *e) | |
{ | |
VALUE curr, vs; | |
if (e->stop_exc) | |
rb_exc_raise(e->stop_exc); | |
curr = rb_fiber_current(); | |
if (!e->fib || !rb_fiber_alive_p(e->fib)) { | |
next_init(obj, e); | |
} | |
vs = rb_fiber_resume(e->fib, 1, &curr); | |
if (e->stop_exc) { | |
e->fib = 0; | |
e->dst = Qnil; | |
e->lookahead = Qundef; | |
e->feedvalue = Qundef; | |
rb_exc_raise(e->stop_exc); | |
} | |
return vs; | |
} | |
/* | |
* call-seq: | |
* e.next_values -> array | |
* | |
* Returns the next object as an array in the enumerator, and move the | |
* internal position forward. When the position reached at the end, | |
* StopIteration is raised. | |
* | |
* See class-level notes about external iterators. | |
* | |
* This method can be used to distinguish <code>yield</code> and <code>yield | |
* nil</code>. | |
* | |
* === Example | |
* | |
* o = Object.new | |
* def o.each | |
* yield | |
* yield 1 | |
* yield 1, 2 | |
* yield nil | |
* yield [1, 2] | |
* end | |
* e = o.to_enum | |
* p e.next_values | |
* p e.next_values | |
* p e.next_values | |
* p e.next_values | |
* p e.next_values | |
* e = o.to_enum | |
* p e.next | |
* p e.next | |
* p e.next | |
* p e.next | |
* p e.next | |
* | |
* ## yield args next_values next | |
* # yield [] nil | |
* # yield 1 [1] 1 | |
* # yield 1, 2 [1, 2] [1, 2] | |
* # yield nil [nil] nil | |
* # yield [1, 2] [[1, 2]] [1, 2] | |
* | |
*/ | |
static VALUE | |
enumerator_next_values(VALUE obj) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
VALUE vs; | |
if (e->lookahead != Qundef) { | |
vs = e->lookahead; | |
e->lookahead = Qundef; | |
return vs; | |
} | |
return get_next_values(obj, e); | |
} | |
static VALUE | |
ary2sv(VALUE args, int dup) | |
{ | |
if (!RB_TYPE_P(args, T_ARRAY)) | |
return args; | |
switch (RARRAY_LEN(args)) { | |
case 0: | |
return Qnil; | |
case 1: | |
return RARRAY_AREF(args, 0); | |
default: | |
if (dup) | |
return rb_ary_dup(args); | |
return args; | |
} | |
} | |
/* | |
* call-seq: | |
* e.next -> object | |
* | |
* Returns the next object in the enumerator, and move the internal position | |
* forward. When the position reached at the end, StopIteration is raised. | |
* | |
* === Example | |
* | |
* a = [1,2,3] | |
* e = a.to_enum | |
* p e.next #=> 1 | |
* p e.next #=> 2 | |
* p e.next #=> 3 | |
* p e.next #raises StopIteration | |
* | |
* See class-level notes about external iterators. | |
* | |
*/ | |
static VALUE | |
enumerator_next(VALUE obj) | |
{ | |
VALUE vs = enumerator_next_values(obj); | |
return ary2sv(vs, 0); | |
} | |
static VALUE | |
enumerator_peek_values(VALUE obj) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
if (e->lookahead == Qundef) { | |
e->lookahead = get_next_values(obj, e); | |
} | |
return e->lookahead; | |
} | |
/* | |
* call-seq: | |
* e.peek_values -> array | |
* | |
* Returns the next object as an array, similar to Enumerator#next_values, but | |
* doesn't move the internal position forward. If the position is already at | |
* the end, StopIteration is raised. | |
* | |
* See class-level notes about external iterators. | |
* | |
* === Example | |
* | |
* o = Object.new | |
* def o.each | |
* yield | |
* yield 1 | |
* yield 1, 2 | |
* end | |
* e = o.to_enum | |
* p e.peek_values #=> [] | |
* e.next | |
* p e.peek_values #=> [1] | |
* p e.peek_values #=> [1] | |
* e.next | |
* p e.peek_values #=> [1, 2] | |
* e.next | |
* p e.peek_values # raises StopIteration | |
* | |
*/ | |
static VALUE | |
enumerator_peek_values_m(VALUE obj) | |
{ | |
return rb_ary_dup(enumerator_peek_values(obj)); | |
} | |
/* | |
* call-seq: | |
* e.peek -> object | |
* | |
* Returns the next object in the enumerator, but doesn't move the internal | |
* position forward. If the position is already at the end, StopIteration | |
* is raised. | |
* | |
* See class-level notes about external iterators. | |
* | |
* === Example | |
* | |
* a = [1,2,3] | |
* e = a.to_enum | |
* p e.next #=> 1 | |
* p e.peek #=> 2 | |
* p e.peek #=> 2 | |
* p e.peek #=> 2 | |
* p e.next #=> 2 | |
* p e.next #=> 3 | |
* p e.peek #raises StopIteration | |
* | |
*/ | |
static VALUE | |
enumerator_peek(VALUE obj) | |
{ | |
VALUE vs = enumerator_peek_values(obj); | |
return ary2sv(vs, 1); | |
} | |
/* | |
* call-seq: | |
* e.feed obj -> nil | |
* | |
* Sets the value to be returned by the next yield inside +e+. | |
* | |
* If the value is not set, the yield returns nil. | |
* | |
* This value is cleared after being yielded. | |
* | |
* # Array#map passes the array's elements to "yield" and collects the | |
* # results of "yield" as an array. | |
* # Following example shows that "next" returns the passed elements and | |
* # values passed to "feed" are collected as an array which can be | |
* # obtained by StopIteration#result. | |
* e = [1,2,3].map | |
* p e.next #=> 1 | |
* e.feed "a" | |
* p e.next #=> 2 | |
* e.feed "b" | |
* p e.next #=> 3 | |
* e.feed "c" | |
* begin | |
* e.next | |
* rescue StopIteration | |
* p $!.result #=> ["a", "b", "c"] | |
* end | |
* | |
* o = Object.new | |
* def o.each | |
* x = yield # (2) blocks | |
* p x # (5) => "foo" | |
* x = yield # (6) blocks | |
* p x # (8) => nil | |
* x = yield # (9) blocks | |
* p x # not reached w/o another e.next | |
* end | |
* | |
* e = o.to_enum | |
* e.next # (1) | |
* e.feed "foo" # (3) | |
* e.next # (4) | |
* e.next # (7) | |
* # (10) | |
*/ | |
static VALUE | |
enumerator_feed(VALUE obj, VALUE v) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
if (e->feedvalue != Qundef) { | |
rb_raise(rb_eTypeError, "feed value already set"); | |
} | |
e->feedvalue = v; | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* e.rewind -> e | |
* | |
* Rewinds the enumeration sequence to the beginning. | |
* | |
* If the enclosed object responds to a "rewind" method, it is called. | |
*/ | |
static VALUE | |
enumerator_rewind(VALUE obj) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
rb_check_funcall(e->obj, id_rewind, 0, 0); | |
e->fib = 0; | |
e->dst = Qnil; | |
e->lookahead = Qundef; | |
e->feedvalue = Qundef; | |
e->stop_exc = Qfalse; | |
return obj; | |
} | |
static struct generator *generator_ptr(VALUE obj); | |
static VALUE append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args); | |
static VALUE | |
inspect_enumerator(VALUE obj, VALUE dummy, int recur) | |
{ | |
struct enumerator *e; | |
VALUE eobj, str, cname; | |
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e); | |
cname = rb_obj_class(obj); | |
if (!e || e->obj == Qundef) { | |
return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(cname)); | |
} | |
if (recur) { | |
str = rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(cname)); | |
return str; | |
} | |
if (e->procs) { | |
long i; | |
eobj = generator_ptr(e->obj)->obj; | |
/* In case procs chained enumerator traversing all proc entries manually */ | |
if (rb_obj_class(eobj) == cname) { | |
str = rb_inspect(eobj); | |
} | |
else { | |
str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(cname), eobj); | |
} | |
for (i = 0; i < RARRAY_LEN(e->procs); i++) { | |
str = rb_sprintf("#<%"PRIsVALUE": %"PRIsVALUE, cname, str); | |
append_method(RARRAY_AREF(e->procs, i), str, e->meth, e->args); | |
rb_str_buf_cat2(str, ">"); | |
} | |
return str; | |
} | |
eobj = rb_attr_get(obj, id_receiver); | |
if (NIL_P(eobj)) { | |
eobj = e->obj; | |
} | |
/* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */ | |
str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE, rb_class_path(cname), eobj); | |
append_method(obj, str, e->meth, e->args); | |
rb_str_buf_cat2(str, ">"); | |
return str; | |
} | |
static int | |
key_symbol_p(VALUE key, VALUE val, VALUE arg) | |
{ | |
if (SYMBOL_P(key)) return ST_CONTINUE; | |
*(int *)arg = FALSE; | |
return ST_STOP; | |
} | |
static int | |
kwd_append(VALUE key, VALUE val, VALUE str) | |
{ | |
if (!SYMBOL_P(key)) rb_raise(rb_eRuntimeError, "non-symbol key inserted"); | |
rb_str_catf(str, "% "PRIsVALUE": %"PRIsVALUE", ", key, val); | |
return ST_CONTINUE; | |
} | |
static VALUE | |
append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args) | |
{ | |
VALUE method, eargs; | |
method = rb_attr_get(obj, id_method); | |
if (method != Qfalse) { | |
if (!NIL_P(method)) { | |
Check_Type(method, T_SYMBOL); | |
method = rb_sym2str(method); | |
} | |
else { | |
method = rb_id2str(default_method); | |
} | |
rb_str_buf_cat2(str, ":"); | |
rb_str_buf_append(str, method); | |
} | |
eargs = rb_attr_get(obj, id_arguments); | |
if (NIL_P(eargs)) { | |
eargs = default_args; | |
} | |
if (eargs != Qfalse) { | |
long argc = RARRAY_LEN(eargs); | |
const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */ | |
if (argc > 0) { | |
VALUE kwds = Qnil; | |
rb_str_buf_cat2(str, "("); | |
if (RB_TYPE_P(argv[argc-1], T_HASH) && !RHASH_EMPTY_P(argv[argc-1])) { | |
int all_key = TRUE; | |
rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key); | |
if (all_key) kwds = argv[--argc]; | |
} | |
while (argc--) { | |
VALUE arg = *argv++; | |
rb_str_append(str, rb_inspect(arg)); | |
rb_str_buf_cat2(str, ", "); | |
} | |
if (!NIL_P(kwds)) { | |
rb_hash_foreach(kwds, kwd_append, str); | |
} | |
rb_str_set_len(str, RSTRING_LEN(str)-2); | |
rb_str_buf_cat2(str, ")"); | |
} | |
} | |
return str; | |
} | |
/* | |
* call-seq: | |
* e.inspect -> string | |
* | |
* Creates a printable version of <i>e</i>. | |
*/ | |
static VALUE | |
enumerator_inspect(VALUE obj) | |
{ | |
return rb_exec_recursive(inspect_enumerator, obj, 0); | |
} | |
/* | |
* call-seq: | |
* e.size -> int, Float::INFINITY or nil | |
* | |
* Returns the size of the enumerator, or +nil+ if it can't be calculated lazily. | |
* | |
* (1..100).to_a.permutation(4).size # => 94109400 | |
* loop.size # => Float::INFINITY | |
* (1..100).drop_while.size # => nil | |
*/ | |
static VALUE | |
enumerator_size(VALUE obj) | |
{ | |
struct enumerator *e = enumerator_ptr(obj); | |
int argc = 0; | |
const VALUE *argv = NULL; | |
VALUE size; | |
if (e->procs) { | |
struct generator *g = generator_ptr(e->obj); | |
VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0); | |
long i = 0; | |
for (i = 0; i < RARRAY_LEN(e->procs); i++) { | |
VALUE proc = RARRAY_AREF(e->procs, i); | |
struct proc_entry *entry = proc_entry_ptr(proc); | |
lazyenum_size_func *size_fn = entry->fn->size; | |
if (!size_fn) { | |
return Qnil; | |
} | |
receiver = (*size_fn)(proc, receiver); | |
} | |
return receiver; | |
} | |
if (e->size_fn) { | |
return (*e->size_fn)(e->obj, e->args, obj); | |
} | |
if (e->args) { | |
argc = (int)RARRAY_LEN(e->args); | |
argv = RARRAY_CONST_PTR(e->args); | |
} | |
size = rb_check_funcall_kw(e->size, id_call, argc, argv, e->kw_splat); | |
if (size != Qundef) return size; | |
return e->size; | |
} | |
/* | |
* Yielder | |
*/ | |
static void | |
yielder_mark(void *p) | |
{ | |
struct yielder *ptr = p; | |
rb_gc_mark_movable(ptr->proc); | |
} | |
static void | |
yielder_compact(void *p) | |
{ | |
struct yielder *ptr = p; | |
ptr->proc = rb_gc_location(ptr->proc); | |
} | |
#define yielder_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
yielder_memsize(const void *p) | |
{ | |
return sizeof(struct yielder); | |
} | |
static const rb_data_type_t yielder_data_type = { | |
"yielder", | |
{ | |
yielder_mark, | |
yielder_free, | |
yielder_memsize, | |
yielder_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static struct yielder * | |
yielder_ptr(VALUE obj) | |
{ | |
struct yielder *ptr; | |
TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); | |
if (!ptr || ptr->proc == Qundef) { | |
rb_raise(rb_eArgError, "uninitialized yielder"); | |
} | |
return ptr; | |
} | |
/* :nodoc: */ | |
static VALUE | |
yielder_allocate(VALUE klass) | |
{ | |
struct yielder *ptr; | |
VALUE obj; | |
obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr); | |
ptr->proc = Qundef; | |
return obj; | |
} | |
static VALUE | |
yielder_init(VALUE obj, VALUE proc) | |
{ | |
struct yielder *ptr; | |
TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); | |
if (!ptr) { | |
rb_raise(rb_eArgError, "unallocated yielder"); | |
} | |
ptr->proc = proc; | |
return obj; | |
} | |
/* :nodoc: */ | |
static VALUE | |
yielder_initialize(VALUE obj) | |
{ | |
rb_need_block(); | |
return yielder_init(obj, rb_block_proc()); | |
} | |
/* :nodoc: */ | |
static VALUE | |
yielder_yield(VALUE obj, VALUE args) | |
{ | |
struct yielder *ptr = yielder_ptr(obj); | |
return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS); | |
} | |
/* :nodoc: */ | |
static VALUE | |
yielder_yield_push(VALUE obj, VALUE arg) | |
{ | |
struct yielder *ptr = yielder_ptr(obj); | |
rb_proc_call_with_block(ptr->proc, 1, &arg, Qnil); | |
return obj; | |
} | |
/* | |
* Returns a Proc object that takes arguments and yields them. | |
* | |
* This method is implemented so that a Yielder object can be directly | |
* passed to another method as a block argument. | |
* | |
* enum = Enumerator.new { |y| | |
* Dir.glob("*.rb") { |file| | |
* File.open(file) { |f| f.each_line(&y) } | |
* } | |
* } | |
*/ | |
static VALUE | |
yielder_to_proc(VALUE obj) | |
{ | |
VALUE method = rb_obj_method(obj, sym_yield); | |
return rb_funcall(method, idTo_proc, 0); | |
} | |
static VALUE | |
yielder_yield_i(RB_BLOCK_CALL_FUNC_ARGLIST(obj, memo)) | |
{ | |
return rb_yield_values_kw(argc, argv, RB_PASS_CALLED_KEYWORDS); | |
} | |
static VALUE | |
yielder_new(void) | |
{ | |
return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0)); | |
} | |
/* | |
* Generator | |
*/ | |
static void | |
generator_mark(void *p) | |
{ | |
struct generator *ptr = p; | |
rb_gc_mark_movable(ptr->proc); | |
rb_gc_mark_movable(ptr->obj); | |
} | |
static void | |
generator_compact(void *p) | |
{ | |
struct generator *ptr = p; | |
ptr->proc = rb_gc_location(ptr->proc); | |
ptr->obj = rb_gc_location(ptr->obj); | |
} | |
#define generator_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
generator_memsize(const void *p) | |
{ | |
return sizeof(struct generator); | |
} | |
static const rb_data_type_t generator_data_type = { | |
"generator", | |
{ | |
generator_mark, | |
generator_free, | |
generator_memsize, | |
generator_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static struct generator * | |
generator_ptr(VALUE obj) | |
{ | |
struct generator *ptr; | |
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); | |
if (!ptr || ptr->proc == Qundef) { | |
rb_raise(rb_eArgError, "uninitialized generator"); | |
} | |
return ptr; | |
} | |
/* :nodoc: */ | |
static VALUE | |
generator_allocate(VALUE klass) | |
{ | |
struct generator *ptr; | |
VALUE obj; | |
obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr); | |
ptr->proc = Qundef; | |
return obj; | |
} | |
static VALUE | |
generator_init(VALUE obj, VALUE proc) | |
{ | |
struct generator *ptr; | |
rb_check_frozen(obj); | |
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); | |
if (!ptr) { | |
rb_raise(rb_eArgError, "unallocated generator"); | |
} | |
ptr->proc = proc; | |
return obj; | |
} | |
/* :nodoc: */ | |
static VALUE | |
generator_initialize(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE proc; | |
if (argc == 0) { | |
rb_need_block(); | |
proc = rb_block_proc(); | |
} | |
else { | |
rb_scan_args(argc, argv, "1", &proc); | |
if (!rb_obj_is_proc(proc)) | |
rb_raise(rb_eTypeError, | |
"wrong argument type %"PRIsVALUE" (expected Proc)", | |
rb_obj_class(proc)); | |
if (rb_block_given_p()) { | |
rb_warn("given block not used"); | |
} | |
} | |
return generator_init(obj, proc); | |
} | |
/* :nodoc: */ | |
static VALUE | |
generator_init_copy(VALUE obj, VALUE orig) | |
{ | |
struct generator *ptr0, *ptr1; | |
if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
ptr0 = generator_ptr(orig); | |
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1); | |
if (!ptr1) { | |
rb_raise(rb_eArgError, "unallocated generator"); | |
} | |
ptr1->proc = ptr0->proc; | |
return obj; | |
} | |
/* :nodoc: */ | |
static VALUE | |
generator_each(int argc, VALUE *argv, VALUE obj) | |
{ | |
struct generator *ptr = generator_ptr(obj); | |
VALUE args = rb_ary_new2(argc + 1); | |
rb_ary_push(args, yielder_new()); | |
if (argc > 0) { | |
rb_ary_cat(args, argv, argc); | |
} | |
return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS); | |
} | |
/* Lazy Enumerator methods */ | |
static VALUE | |
enum_size(VALUE self) | |
{ | |
VALUE r = rb_check_funcall(self, id_size, 0, 0); | |
return (r == Qundef) ? Qnil : r; | |
} | |
static VALUE | |
lazyenum_size(VALUE self, VALUE args, VALUE eobj) | |
{ | |
return enum_size(self); | |
} | |
#define lazy_receiver_size lazy_map_size | |
static VALUE | |
lazy_init_iterator(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
{ | |
VALUE result; | |
if (argc == 1) { | |
VALUE args[2]; | |
args[0] = m; | |
args[1] = val; | |
result = rb_yield_values2(2, args); | |
} | |
else { | |
VALUE args; | |
int len = rb_long2int((long)argc + 1); | |
VALUE *nargv = ALLOCV_N(VALUE, args, len); | |
nargv[0] = m; | |
if (argc > 0) { | |
MEMCPY(nargv + 1, argv, VALUE, argc); | |
} | |
result = rb_yield_values2(len, nargv); | |
ALLOCV_END(args); | |
} | |
if (result == Qundef) rb_iter_break(); | |
return Qnil; | |
} | |
static VALUE | |
lazy_init_block_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
{ | |
rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val); | |
return Qnil; | |
} | |
#define memo_value v2 | |
#define memo_flags u3.state | |
#define LAZY_MEMO_BREAK 1 | |
#define LAZY_MEMO_PACKED 2 | |
#define LAZY_MEMO_BREAK_P(memo) ((memo)->memo_flags & LAZY_MEMO_BREAK) | |
#define LAZY_MEMO_PACKED_P(memo) ((memo)->memo_flags & LAZY_MEMO_PACKED) | |
#define LAZY_MEMO_SET_BREAK(memo) ((memo)->memo_flags |= LAZY_MEMO_BREAK) | |
#define LAZY_MEMO_RESET_BREAK(memo) ((memo)->memo_flags &= ~LAZY_MEMO_BREAK) | |
#define LAZY_MEMO_SET_VALUE(memo, value) MEMO_V2_SET(memo, value) | |
#define LAZY_MEMO_SET_PACKED(memo) ((memo)->memo_flags |= LAZY_MEMO_PACKED) | |
#define LAZY_MEMO_RESET_PACKED(memo) ((memo)->memo_flags &= ~LAZY_MEMO_PACKED) | |
static VALUE lazy_yielder_result(struct MEMO *result, VALUE yielder, VALUE procs_array, VALUE memos, long i); | |
static VALUE | |
lazy_init_yielder(RB_BLOCK_CALL_FUNC_ARGLIST(_, m)) | |
{ | |
VALUE yielder = RARRAY_AREF(m, 0); | |
VALUE procs_array = RARRAY_AREF(m, 1); | |
VALUE memos = rb_attr_get(yielder, id_memo); | |
struct MEMO *result; | |
result = MEMO_NEW(m, rb_enum_values_pack(argc, argv), | |
argc > 1 ? LAZY_MEMO_PACKED : 0); | |
return lazy_yielder_result(result, yielder, procs_array, memos, 0); | |
} | |
static VALUE | |
lazy_yielder_yield(struct MEMO *result, long memo_index, int argc, const VALUE *argv) | |
{ | |
VALUE m = result->v1; | |
VALUE yielder = RARRAY_AREF(m, 0); | |
VALUE procs_array = RARRAY_AREF(m, 1); | |
VALUE memos = rb_attr_get(yielder, id_memo); | |
LAZY_MEMO_SET_VALUE(result, rb_enum_values_pack(argc, argv)); | |
if (argc > 1) | |
LAZY_MEMO_SET_PACKED(result); | |
else | |
LAZY_MEMO_RESET_PACKED(result); | |
return lazy_yielder_result(result, yielder, procs_array, memos, memo_index); | |
} | |
static VALUE | |
lazy_yielder_result(struct MEMO *result, VALUE yielder, VALUE procs_array, VALUE memos, long i) | |
{ | |
int cont = 1; | |
for (; i < RARRAY_LEN(procs_array); i++) { | |
VALUE proc = RARRAY_AREF(procs_array, i); | |
struct proc_entry *entry = proc_entry_ptr(proc); | |
if (!(*entry->fn->proc)(proc, result, memos, i)) { | |
cont = 0; | |
break; | |
} | |
} | |
if (cont) { | |
rb_funcall2(yielder, idLTLT, 1, &(result->memo_value)); | |
} | |
if (LAZY_MEMO_BREAK_P(result)) { | |
rb_iter_break(); | |
} | |
return result->memo_value; | |
} | |
static VALUE | |
lazy_init_block(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
{ | |
VALUE procs = RARRAY_AREF(m, 1); | |
rb_ivar_set(val, id_memo, rb_ary_new2(RARRAY_LEN(procs))); | |
rb_block_call(RARRAY_AREF(m, 0), id_each, 0, 0, | |
lazy_init_yielder, rb_ary_new3(2, val, procs)); | |
return Qnil; | |
} | |
static VALUE | |
lazy_generator_init(VALUE enumerator, VALUE procs) | |
{ | |
VALUE generator; | |
VALUE obj; | |
struct generator *gen_ptr; | |
struct enumerator *e = enumerator_ptr(enumerator); | |
if (RARRAY_LEN(procs) > 0) { | |
struct generator *old_gen_ptr = generator_ptr(e->obj); | |
obj = old_gen_ptr->obj; | |
} | |
else { | |
obj = enumerator; | |
} | |
generator = generator_allocate(rb_cGenerator); | |
rb_block_call(generator, id_initialize, 0, 0, | |
lazy_init_block, rb_ary_new3(2, obj, procs)); | |
gen_ptr = generator_ptr(generator); | |
gen_ptr->obj = obj; | |
return generator; | |
} | |
/* | |
* Document-class: Enumerator::Lazy | |
* | |
* Enumerator::Lazy is a special type of Enumerator, that allows constructing | |
* chains of operations without evaluating them immediately, and evaluating | |
* values on as-needed basis. In order to do so it redefines most of Enumerable | |
* methods so that they just construct another lazy enumerator. | |
* | |
* Enumerator::Lazy can be constructed from any Enumerable with the | |
* Enumerable#lazy method. | |
* | |
* lazy = (1..Float::INFINITY).lazy.select(&:odd?).drop(10).take_while { |i| i < 30 } | |
* # => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:select>:drop(10)>:take_while> | |
* | |
* The real enumeration is performed when any non-redefined Enumerable method | |
* is called, like Enumerable#first or Enumerable#to_a (the latter is aliased | |
* as #force for more semantic code): | |
* | |
* lazy.first(2) | |
* #=> [21, 23] | |
* | |
* lazy.force | |
* #=> [21, 23, 25, 27, 29] | |
* | |
* Note that most Enumerable methods that could be called with or without | |
* a block, on Enumerator::Lazy will always require a block: | |
* | |
* [1, 2, 3].map #=> #<Enumerator: [1, 2, 3]:map> | |
* [1, 2, 3].lazy.map # ArgumentError: tried to call lazy map without a block | |
* | |
* This class allows idiomatic calculations on long or infinite sequences, as well | |
* as chaining of calculations without constructing intermediate arrays. | |
* | |
* Example for working with a slowly calculated sequence: | |
* | |
* require 'open-uri' | |
* | |
* # This will fetch all URLs before selecting | |
* # necessary data | |
* URLS.map { |u| JSON.parse(URI.open(u).read) } | |
* .select { |data| data.key?('stats') } | |
* .first(5) | |
* | |
* # This will fetch URLs one-by-one, only till | |
* # there is enough data to satisfy the condition | |
* URLS.lazy.map { |u| JSON.parse(URI.open(u).read) } | |
* .select { |data| data.key?('stats') } | |
* .first(5) | |
* | |
* Ending a chain with ".eager" generates a non-lazy enumerator, which | |
* is suitable for returning or passing to another method that expects | |
* a normal enumerator. | |
* | |
* def active_items | |
* groups | |
* .lazy | |
* .flat_map(&:items) | |
* .reject(&:disabled) | |
* .eager | |
* end | |
* | |
* # This works lazily; if a checked item is found, it stops | |
* # iteration and does not look into remaining groups. | |
* first_checked = active_items.find(&:checked) | |
* | |
* # This returns an array of items like a normal enumerator does. | |
* all_checked = active_items.select(&:checked) | |
* | |
*/ | |
/* | |
* call-seq: | |
* Lazy.new(obj, size=nil) { |yielder, *values| block } | |
* | |
* Creates a new Lazy enumerator. When the enumerator is actually enumerated | |
* (e.g. by calling #force), +obj+ will be enumerated and each value passed | |
* to the given block. The block can yield values back using +yielder+. | |
* For example, to create a "filter+map" enumerator: | |
* | |
* def filter_map(sequence) | |
* Lazy.new(sequence) do |yielder, *values| | |
* result = yield *values | |
* yielder << result if result | |
* end | |
* end | |
* | |
* filter_map(1..Float::INFINITY) {|i| i*i if i.even?}.first(5) | |
* #=> [4, 16, 36, 64, 100] | |
*/ | |
static VALUE | |
lazy_initialize(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE obj, size = Qnil; | |
VALUE generator; | |
rb_check_arity(argc, 1, 2); | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy new without a block"); | |
} | |
obj = argv[0]; | |
if (argc > 1) { | |
size = argv[1]; | |
} | |
generator = generator_allocate(rb_cGenerator); | |
rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj); | |
enumerator_init(self, generator, sym_each, 0, 0, 0, size, 0); | |
rb_ivar_set(self, id_receiver, obj); | |
return self; | |
} | |
#if 0 /* for RDoc */ | |
/* | |
* call-seq: | |
* lazy.to_a -> array | |
* lazy.force -> array | |
* | |
* Expands +lazy+ enumerator to an array. | |
* See Enumerable#to_a. | |
*/ | |
static VALUE lazy_to_a(VALUE self) | |
{ | |
} | |
#endif | |
static void | |
lazy_set_args(VALUE lazy, VALUE args) | |
{ | |
ID id = rb_frame_this_func(); | |
rb_ivar_set(lazy, id_method, ID2SYM(id)); | |
if (NIL_P(args)) { | |
/* Qfalse indicates that the arguments are empty */ | |
rb_ivar_set(lazy, id_arguments, Qfalse); | |
} | |
else { | |
rb_ivar_set(lazy, id_arguments, args); | |
} | |
} | |
#if 0 | |
static VALUE | |
lazy_set_method(VALUE lazy, VALUE args, rb_enumerator_size_func *size_fn) | |
{ | |
struct enumerator *e = enumerator_ptr(lazy); | |
lazy_set_args(lazy, args); | |
e->size_fn = size_fn; | |
return lazy; | |
} | |
#endif | |
static VALUE | |
lazy_add_method(VALUE obj, int argc, VALUE *argv, VALUE args, VALUE memo, | |
const lazyenum_funcs *fn) | |
{ | |
struct enumerator *new_e; | |
VALUE new_obj; | |
VALUE new_generator; | |
VALUE new_procs; | |
struct enumerator *e = enumerator_ptr(obj); | |
struct proc_entry *entry; | |
VALUE entry_obj = TypedData_Make_Struct(rb_cObject, struct proc_entry, | |
&proc_entry_data_type, entry); | |
if (rb_block_given_p()) { | |
entry->proc = rb_block_proc(); | |
} | |
entry->fn = fn; | |
entry->memo = args; | |
lazy_set_args(entry_obj, memo); | |
new_procs = RTEST(e->procs) ? rb_ary_dup(e->procs) : rb_ary_new(); | |
new_generator = lazy_generator_init(obj, new_procs); | |
rb_ary_push(new_procs, entry_obj); | |
new_obj = enumerator_init_copy(enumerator_allocate(rb_cLazy), obj); | |
new_e = DATA_PTR(new_obj); | |
new_e->obj = new_generator; | |
new_e->procs = new_procs; | |
if (argc > 0) { | |
new_e->meth = rb_to_id(*argv++); | |
--argc; | |
} | |
else { | |
new_e->meth = id_each; | |
} | |
new_e->args = rb_ary_new4(argc, argv); | |
return new_obj; | |
} | |
/* | |
* call-seq: | |
* e.lazy -> lazy_enumerator | |
* | |
* Returns an Enumerator::Lazy, which redefines most Enumerable | |
* methods to postpone enumeration and enumerate values only on an | |
* as-needed basis. | |
* | |
* === Example | |
* | |
* The following program finds pythagorean triples: | |
* | |
* def pythagorean_triples | |
* (1..Float::INFINITY).lazy.flat_map {|z| | |
* (1..z).flat_map {|x| | |
* (x..z).select {|y| | |
* x**2 + y**2 == z**2 | |
* }.map {|y| | |
* [x, y, z] | |
* } | |
* } | |
* } | |
* end | |
* # show first ten pythagorean triples | |
* p pythagorean_triples.take(10).force # take is lazy, so force is needed | |
* p pythagorean_triples.first(10) # first is eager | |
* # show pythagorean triples less than 100 | |
* p pythagorean_triples.take_while { |*, z| z < 100 }.force | |
*/ | |
static VALUE | |
enumerable_lazy(VALUE obj) | |
{ | |
VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size, rb_keyword_given_p()); | |
/* Qfalse indicates that the Enumerator::Lazy has no method name */ | |
rb_ivar_set(result, id_method, Qfalse); | |
return result; | |
} | |
static VALUE | |
lazy_to_enum_i(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat) | |
{ | |
return enumerator_init(enumerator_allocate(rb_cLazy), | |
obj, meth, argc, argv, size_fn, Qnil, kw_splat); | |
} | |
/* | |
* call-seq: | |
* lzy.to_enum(method = :each, *args) -> lazy_enum | |
* lzy.enum_for(method = :each, *args) -> lazy_enum | |
* lzy.to_enum(method = :each, *args) {|*args| block } -> lazy_enum | |
* lzy.enum_for(method = :each, *args) {|*args| block } -> lazy_enum | |
* | |
* Similar to Object#to_enum, except it returns a lazy enumerator. | |
* This makes it easy to define Enumerable methods that will | |
* naturally remain lazy if called from a lazy enumerator. | |
* | |
* For example, continuing from the example in Object#to_enum: | |
* | |
* # See Object#to_enum for the definition of repeat | |
* r = 1..Float::INFINITY | |
* r.repeat(2).first(5) # => [1, 1, 2, 2, 3] | |
* r.repeat(2).class # => Enumerator | |
* r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop! | |
* # works naturally on lazy enumerator: | |
* r.lazy.repeat(2).class # => Enumerator::Lazy | |
* r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9] | |
*/ | |
static VALUE | |
lazy_to_enum(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE lazy, meth = sym_each, super_meth; | |
if (argc > 0) { | |
--argc; | |
meth = *argv++; | |
} | |
if (RTEST((super_meth = rb_hash_aref(lazy_use_super_method, meth)))) { | |
meth = super_meth; | |
} | |
lazy = lazy_to_enum_i(self, meth, argc, argv, 0, rb_keyword_given_p()); | |
if (rb_block_given_p()) { | |
enumerator_ptr(lazy)->size = rb_block_proc(); | |
} | |
return lazy; | |
} | |
static VALUE | |
lazy_eager_size(VALUE self, VALUE args, VALUE eobj) | |
{ | |
return enum_size(self); | |
} | |
/* | |
* call-seq: | |
* lzy.eager -> enum | |
* | |
* Returns a non-lazy Enumerator converted from the lazy enumerator. | |
*/ | |
static VALUE | |
lazy_eager(VALUE self) | |
{ | |
return enumerator_init(enumerator_allocate(rb_cEnumerator), | |
self, sym_each, 0, 0, lazy_eager_size, Qnil, 0); | |
} | |
static VALUE | |
lazyenum_yield(VALUE proc_entry, struct MEMO *result) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
return rb_proc_call_with_block(entry->proc, 1, &result->memo_value, Qnil); | |
} | |
static VALUE | |
lazyenum_yield_values(VALUE proc_entry, struct MEMO *result) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
int argc = 1; | |
const VALUE *argv = &result->memo_value; | |
if (LAZY_MEMO_PACKED_P(result)) { | |
const VALUE args = *argv; | |
argc = RARRAY_LENINT(args); | |
argv = RARRAY_CONST_PTR(args); | |
} | |
return rb_proc_call_with_block(entry->proc, argc, argv, Qnil); | |
} | |
static struct MEMO * | |
lazy_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE value = lazyenum_yield_values(proc_entry, result); | |
LAZY_MEMO_SET_VALUE(result, value); | |
LAZY_MEMO_RESET_PACKED(result); | |
return result; | |
} | |
static VALUE | |
lazy_map_size(VALUE entry, VALUE receiver) | |
{ | |
return receiver; | |
} | |
static const lazyenum_funcs lazy_map_funcs = { | |
lazy_map_proc, lazy_map_size, | |
}; | |
/* | |
* call-seq: | |
* lazy.collect { |obj| block } -> lazy_enumerator | |
* lazy.map { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#map, but chains operation to be lazy-evaluated. | |
* | |
* (1..Float::INFINITY).lazy.map {|i| i**2 } | |
* #=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map> | |
* (1..Float::INFINITY).lazy.map {|i| i**2 }.first(3) | |
* #=> [1, 4, 9] | |
*/ | |
static VALUE | |
lazy_map(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy map without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_map_funcs); | |
} | |
struct flat_map_i_arg { | |
struct MEMO *result; | |
long index; | |
}; | |
static VALUE | |
lazy_flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, y)) | |
{ | |
struct flat_map_i_arg *arg = (struct flat_map_i_arg *)y; | |
return lazy_yielder_yield(arg->result, arg->index, argc, argv); | |
} | |
static struct MEMO * | |
lazy_flat_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE value = lazyenum_yield_values(proc_entry, result); | |
VALUE ary = 0; | |
const long proc_index = memo_index + 1; | |
int break_p = LAZY_MEMO_BREAK_P(result); | |
if (RB_TYPE_P(value, T_ARRAY)) { | |
ary = value; | |
} | |
else if (rb_respond_to(value, id_force) && rb_respond_to(value, id_each)) { | |
struct flat_map_i_arg arg = {.result = result, .index = proc_index}; | |
LAZY_MEMO_RESET_BREAK(result); | |
rb_block_call(value, id_each, 0, 0, lazy_flat_map_i, (VALUE)&arg); | |
if (break_p) LAZY_MEMO_SET_BREAK(result); | |
return 0; | |
} | |
if (ary || !NIL_P(ary = rb_check_array_type(value))) { | |
long i; | |
LAZY_MEMO_RESET_BREAK(result); | |
for (i = 0; i + 1 < RARRAY_LEN(ary); i++) { | |
const VALUE argv = RARRAY_AREF(ary, i); | |
lazy_yielder_yield(result, proc_index, 1, &argv); | |
} | |
if (break_p) LAZY_MEMO_SET_BREAK(result); | |
if (i >= RARRAY_LEN(ary)) return 0; | |
value = RARRAY_AREF(ary, i); | |
} | |
LAZY_MEMO_SET_VALUE(result, value); | |
LAZY_MEMO_RESET_PACKED(result); | |
return result; | |
} | |
static const lazyenum_funcs lazy_flat_map_funcs = { | |
lazy_flat_map_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.collect_concat { |obj| block } -> a_lazy_enumerator | |
* lazy.flat_map { |obj| block } -> a_lazy_enumerator | |
* | |
* Returns a new lazy enumerator with the concatenated results of running | |
* +block+ once for every element in the lazy enumerator. | |
* | |
* ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force | |
* #=> ["f", "o", "o", "b", "a", "r"] | |
* | |
* A value +x+ returned by +block+ is decomposed if either of | |
* the following conditions is true: | |
* | |
* * +x+ responds to both each and force, which means that | |
* +x+ is a lazy enumerator. | |
* * +x+ is an array or responds to to_ary. | |
* | |
* Otherwise, +x+ is contained as-is in the return value. | |
* | |
* [{a:1}, {b:2}].lazy.flat_map {|i| i}.force | |
* #=> [{:a=>1}, {:b=>2}] | |
*/ | |
static VALUE | |
lazy_flat_map(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy flat_map without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_flat_map_funcs); | |
} | |
static struct MEMO * | |
lazy_select_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE chain = lazyenum_yield(proc_entry, result); | |
if (!RTEST(chain)) return 0; | |
return result; | |
} | |
static const lazyenum_funcs lazy_select_funcs = { | |
lazy_select_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.find_all { |obj| block } -> lazy_enumerator | |
* lazy.select { |obj| block } -> lazy_enumerator | |
* lazy.filter { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#select, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_select(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy select without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_select_funcs); | |
} | |
static struct MEMO * | |
lazy_filter_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE value = lazyenum_yield_values(proc_entry, result); | |
if (!RTEST(value)) return 0; | |
LAZY_MEMO_SET_VALUE(result, value); | |
LAZY_MEMO_RESET_PACKED(result); | |
return result; | |
} | |
static const lazyenum_funcs lazy_filter_map_funcs = { | |
lazy_filter_map_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.filter_map { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#filter_map, but chains operation to be lazy-evaluated. | |
* | |
* (1..).lazy.filter_map { |i| i * 2 if i.even? }.first(5) | |
* #=> [4, 8, 12, 16, 20] | |
*/ | |
static VALUE | |
lazy_filter_map(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy filter_map without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_filter_map_funcs); | |
} | |
static struct MEMO * | |
lazy_reject_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE chain = lazyenum_yield(proc_entry, result); | |
if (RTEST(chain)) return 0; | |
return result; | |
} | |
static const lazyenum_funcs lazy_reject_funcs = { | |
lazy_reject_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.reject { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#reject, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_reject(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy reject without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_reject_funcs); | |
} | |
static struct MEMO * | |
lazy_grep_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
if (!RTEST(chain)) return 0; | |
return result; | |
} | |
static struct MEMO * | |
lazy_grep_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
if (!RTEST(chain)) return 0; | |
value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil); | |
LAZY_MEMO_SET_VALUE(result, value); | |
LAZY_MEMO_RESET_PACKED(result); | |
return result; | |
} | |
static const lazyenum_funcs lazy_grep_iter_funcs = { | |
lazy_grep_iter_proc, 0, | |
}; | |
static const lazyenum_funcs lazy_grep_funcs = { | |
lazy_grep_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.grep(pattern) -> lazy_enumerator | |
* lazy.grep(pattern) { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#grep, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_grep(VALUE obj, VALUE pattern) | |
{ | |
const lazyenum_funcs *const funcs = rb_block_given_p() ? | |
&lazy_grep_iter_funcs : &lazy_grep_funcs; | |
return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs); | |
} | |
static struct MEMO * | |
lazy_grep_v_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
if (RTEST(chain)) return 0; | |
return result; | |
} | |
static struct MEMO * | |
lazy_grep_v_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
if (RTEST(chain)) return 0; | |
value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil); | |
LAZY_MEMO_SET_VALUE(result, value); | |
LAZY_MEMO_RESET_PACKED(result); | |
return result; | |
} | |
static const lazyenum_funcs lazy_grep_v_iter_funcs = { | |
lazy_grep_v_iter_proc, 0, | |
}; | |
static const lazyenum_funcs lazy_grep_v_funcs = { | |
lazy_grep_v_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.grep_v(pattern) -> lazy_enumerator | |
* lazy.grep_v(pattern) { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#grep_v, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_grep_v(VALUE obj, VALUE pattern) | |
{ | |
const lazyenum_funcs *const funcs = rb_block_given_p() ? | |
&lazy_grep_v_iter_funcs : &lazy_grep_v_funcs; | |
return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs); | |
} | |
static VALUE | |
call_next(VALUE obj) | |
{ | |
return rb_funcall(obj, id_next, 0); | |
} | |
static VALUE | |
next_stopped(VALUE obj, VALUE _) | |
{ | |
return Qnil; | |
} | |
static struct MEMO * | |
lazy_zip_arrays_func(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE ary, arrays = entry->memo; | |
VALUE memo = rb_ary_entry(memos, memo_index); | |
long i, count = NIL_P(memo) ? 0 : NUM2LONG(memo); | |
ary = rb_ary_new2(RARRAY_LEN(arrays) + 1); | |
rb_ary_push(ary, result->memo_value); | |
for (i = 0; i < RARRAY_LEN(arrays); i++) { | |
rb_ary_push(ary, rb_ary_entry(RARRAY_AREF(arrays, i), count)); | |
} | |
LAZY_MEMO_SET_VALUE(result, ary); | |
LAZY_MEMO_SET_PACKED(result); | |
rb_ary_store(memos, memo_index, LONG2NUM(++count)); | |
return result; | |
} | |
static struct MEMO * | |
lazy_zip_func(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE arg = rb_ary_entry(memos, memo_index); | |
VALUE zip_args = entry->memo; | |
VALUE ary, v; | |
long i; | |
if (NIL_P(arg)) { | |
arg = rb_ary_new2(RARRAY_LEN(zip_args)); | |
for (i = 0; i < RARRAY_LEN(zip_args); i++) { | |
rb_ary_push(arg, rb_funcall(RARRAY_AREF(zip_args, i), id_to_enum, 0)); | |
} | |
rb_ary_store(memos, memo_index, arg); | |
} | |
ary = rb_ary_new2(RARRAY_LEN(arg) + 1); | |
rb_ary_push(ary, result->memo_value); | |
for (i = 0; i < RARRAY_LEN(arg); i++) { | |
v = rb_rescue2(call_next, RARRAY_AREF(arg, i), next_stopped, 0, | |
rb_eStopIteration, (VALUE)0); | |
rb_ary_push(ary, v); | |
} | |
LAZY_MEMO_SET_VALUE(result, ary); | |
LAZY_MEMO_SET_PACKED(result); | |
return result; | |
} | |
static const lazyenum_funcs lazy_zip_funcs[] = { | |
{lazy_zip_func, lazy_receiver_size,}, | |
{lazy_zip_arrays_func, lazy_receiver_size,}, | |
}; | |
/* | |
* call-seq: | |
* lazy.zip(arg, ...) -> lazy_enumerator | |
* lazy.zip(arg, ...) { |arr| block } -> nil | |
* | |
* Like Enumerable#zip, but chains operation to be lazy-evaluated. | |
* However, if a block is given to zip, values are enumerated immediately. | |
*/ | |
static VALUE | |
lazy_zip(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE ary, v; | |
long i; | |
const lazyenum_funcs *funcs = &lazy_zip_funcs[1]; | |
if (rb_block_given_p()) { | |
return rb_call_super(argc, argv); | |
} | |
ary = rb_ary_new2(argc); | |
for (i = 0; i < argc; i++) { | |
v = rb_check_array_type(argv[i]); | |
if (NIL_P(v)) { | |
for (; i < argc; i++) { | |
if (!rb_respond_to(argv[i], id_each)) { | |
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", | |
rb_obj_class(argv[i])); | |
} | |
} | |
ary = rb_ary_new4(argc, argv); | |
funcs = &lazy_zip_funcs[0]; | |
break; | |
} | |
rb_ary_push(ary, v); | |
} | |
return lazy_add_method(obj, 0, 0, ary, ary, funcs); | |
} | |
static struct MEMO * | |
lazy_take_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
long remain; | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE memo = rb_ary_entry(memos, memo_index); | |
if (NIL_P(memo)) { | |
memo = entry->memo; | |
} | |
remain = NUM2LONG(memo); | |
if (remain == 0) { | |
LAZY_MEMO_SET_BREAK(result); | |
} | |
else { | |
if (--remain == 0) LAZY_MEMO_SET_BREAK(result); | |
rb_ary_store(memos, memo_index, LONG2NUM(remain)); | |
} | |
return result; | |
} | |
static VALUE | |
lazy_take_size(VALUE entry, VALUE receiver) | |
{ | |
long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(entry, id_arguments), 0)); | |
if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len)) | |
return receiver; | |
return LONG2NUM(len); | |
} | |
static const lazyenum_funcs lazy_take_funcs = { | |
lazy_take_proc, lazy_take_size, | |
}; | |
/* | |
* call-seq: | |
* lazy.take(n) -> lazy_enumerator | |
* | |
* Like Enumerable#take, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_take(VALUE obj, VALUE n) | |
{ | |
long len = NUM2LONG(n); | |
int argc = 0; | |
VALUE argv[2]; | |
if (len < 0) { | |
rb_raise(rb_eArgError, "attempt to take negative size"); | |
} | |
if (len == 0) { | |
argv[0] = sym_cycle; | |
argv[1] = INT2NUM(0); | |
argc = 2; | |
} | |
return lazy_add_method(obj, argc, argv, n, rb_ary_new3(1, n), &lazy_take_funcs); | |
} | |
static struct MEMO * | |
lazy_take_while_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE take = lazyenum_yield_values(proc_entry, result); | |
if (!RTEST(take)) { | |
LAZY_MEMO_SET_BREAK(result); | |
return 0; | |
} | |
return result; | |
} | |
static const lazyenum_funcs lazy_take_while_funcs = { | |
lazy_take_while_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.take_while { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#take_while, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_take_while(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy take_while without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_take_while_funcs); | |
} | |
static VALUE | |
lazy_drop_size(VALUE proc_entry, VALUE receiver) | |
{ | |
long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(proc_entry, id_arguments), 0)); | |
if (NIL_P(receiver)) | |
return receiver; | |
if (FIXNUM_P(receiver)) { | |
len = FIX2LONG(receiver) - len; | |
return LONG2FIX(len < 0 ? 0 : len); | |
} | |
return rb_funcall(receiver, '-', 1, LONG2NUM(len)); | |
} | |
static struct MEMO * | |
lazy_drop_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
long remain; | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE memo = rb_ary_entry(memos, memo_index); | |
if (NIL_P(memo)) { | |
memo = entry->memo; | |
} | |
remain = NUM2LONG(memo); | |
if (remain > 0) { | |
--remain; | |
rb_ary_store(memos, memo_index, LONG2NUM(remain)); | |
return 0; | |
} | |
return result; | |
} | |
static const lazyenum_funcs lazy_drop_funcs = { | |
lazy_drop_proc, lazy_drop_size, | |
}; | |
/* | |
* call-seq: | |
* lazy.drop(n) -> lazy_enumerator | |
* | |
* Like Enumerable#drop, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_drop(VALUE obj, VALUE n) | |
{ | |
long len = NUM2LONG(n); | |
VALUE argv[2]; | |
argv[0] = sym_each; | |
argv[1] = n; | |
if (len < 0) { | |
rb_raise(rb_eArgError, "attempt to drop negative size"); | |
} | |
return lazy_add_method(obj, 2, argv, n, rb_ary_new3(1, n), &lazy_drop_funcs); | |
} | |
static struct MEMO * | |
lazy_drop_while_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE memo = rb_ary_entry(memos, memo_index); | |
if (NIL_P(memo)) { | |
memo = entry->memo; | |
} | |
if (!RTEST(memo)) { | |
VALUE drop = lazyenum_yield_values(proc_entry, result); | |
if (RTEST(drop)) return 0; | |
rb_ary_store(memos, memo_index, Qtrue); | |
} | |
return result; | |
} | |
static const lazyenum_funcs lazy_drop_while_funcs = { | |
lazy_drop_while_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.drop_while { |obj| block } -> lazy_enumerator | |
* | |
* Like Enumerable#drop_while, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_drop_while(VALUE obj) | |
{ | |
if (!rb_block_given_p()) { | |
rb_raise(rb_eArgError, "tried to call lazy drop_while without a block"); | |
} | |
return lazy_add_method(obj, 0, 0, Qfalse, Qnil, &lazy_drop_while_funcs); | |
} | |
static int | |
lazy_uniq_check(VALUE chain, VALUE memos, long memo_index) | |
{ | |
VALUE hash = rb_ary_entry(memos, memo_index); | |
if (NIL_P(hash)) { | |
hash = rb_obj_hide(rb_hash_new()); | |
rb_ary_store(memos, memo_index, hash); | |
} | |
return rb_hash_add_new_element(hash, chain, Qfalse); | |
} | |
static struct MEMO * | |
lazy_uniq_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
if (lazy_uniq_check(result->memo_value, memos, memo_index)) return 0; | |
return result; | |
} | |
static struct MEMO * | |
lazy_uniq_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
VALUE chain = lazyenum_yield(proc_entry, result); | |
if (lazy_uniq_check(chain, memos, memo_index)) return 0; | |
return result; | |
} | |
static const lazyenum_funcs lazy_uniq_iter_funcs = { | |
lazy_uniq_iter_proc, 0, | |
}; | |
static const lazyenum_funcs lazy_uniq_funcs = { | |
lazy_uniq_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.uniq -> lazy_enumerator | |
* lazy.uniq { |item| block } -> lazy_enumerator | |
* | |
* Like Enumerable#uniq, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_uniq(VALUE obj) | |
{ | |
const lazyenum_funcs *const funcs = | |
rb_block_given_p() ? &lazy_uniq_iter_funcs : &lazy_uniq_funcs; | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, funcs); | |
} | |
static struct MEMO * | |
lazy_compact_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
{ | |
if (NIL_P(result->memo_value)) return 0; | |
return result; | |
} | |
static const lazyenum_funcs lazy_compact_funcs = { | |
lazy_compact_proc, 0, | |
}; | |
/* | |
* call-seq: | |
* lazy.compact -> lazy_enumerator | |
* | |
* Like Enumerable#compact, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE | |
lazy_compact(VALUE obj) | |
{ | |
return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_compact_funcs); | |
} | |
static struct MEMO * | |
lazy_with_index_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index) | |
{ | |
struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
VALUE memo = rb_ary_entry(memos, memo_index); | |
VALUE argv[2]; | |
if (NIL_P(memo)) { | |
memo = entry->memo; | |
} | |
argv[0] = result->memo_value; | |
argv[1] = memo; | |
if (entry->proc) { | |
rb_proc_call_with_block(entry->proc, 2, argv, Qnil); | |
LAZY_MEMO_RESET_PACKED(result); | |
} | |
else { | |
LAZY_MEMO_SET_VALUE(result, rb_ary_new_from_values(2, argv)); | |
LAZY_MEMO_SET_PACKED(result); | |
} | |
rb_ary_store(memos, memo_index, LONG2NUM(NUM2LONG(memo) + 1)); | |
return result; | |
} | |
static VALUE | |
lazy_with_index_size(VALUE proc, VALUE receiver) | |
{ | |
return receiver; | |
} | |
static const lazyenum_funcs lazy_with_index_funcs = { | |
lazy_with_index_proc, lazy_with_index_size, | |
}; | |
/* | |
* call-seq: | |
* lazy.with_index(offset = 0) {|(*args), idx| block } | |
* lazy.with_index(offset = 0) | |
* | |
* If a block is given, returns a lazy enumerator that will | |
* iterate over the given block for each element | |
* with an index, which starts from +offset+, and returns a | |
* lazy enumerator that yields the same values (without the index). | |
* | |
* If a block is not given, returns a new lazy enumerator that | |
* includes the index, starting from +offset+. | |
* | |
* +offset+:: the starting index to use | |
* | |
* See Enumerator#with_index. | |
*/ | |
static VALUE | |
lazy_with_index(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE memo; | |
rb_scan_args(argc, argv, "01", &memo); | |
if (NIL_P(memo)) | |
memo = LONG2NUM(0); | |
return lazy_add_method(obj, 0, 0, memo, rb_ary_new_from_values(1, &memo), &lazy_with_index_funcs); | |
} | |
#if 0 /* for RDoc */ | |
/* | |
* call-seq: | |
* lazy.chunk { |elt| ... } -> lazy_enumerator | |
* | |
* Like Enumerable#chunk, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE lazy_chunk(VALUE self) | |
{ | |
} | |
/* | |
* call-seq: | |
* lazy.chunk_while {|elt_before, elt_after| bool } -> lazy_enumerator | |
* | |
* Like Enumerable#chunk_while, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE lazy_chunk_while(VALUE self) | |
{ | |
} | |
/* | |
* call-seq: | |
* lazy.slice_after(pattern) -> lazy_enumerator | |
* lazy.slice_after { |elt| bool } -> lazy_enumerator | |
* | |
* Like Enumerable#slice_after, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE lazy_slice_after(VALUE self) | |
{ | |
} | |
/* | |
* call-seq: | |
* lazy.slice_before(pattern) -> lazy_enumerator | |
* lazy.slice_before { |elt| bool } -> lazy_enumerator | |
* | |
* Like Enumerable#slice_before, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE lazy_slice_before(VALUE self) | |
{ | |
} | |
/* | |
* call-seq: | |
* lazy.slice_when {|elt_before, elt_after| bool } -> lazy_enumerator | |
* | |
* Like Enumerable#slice_when, but chains operation to be lazy-evaluated. | |
*/ | |
static VALUE lazy_slice_when(VALUE self) | |
{ | |
} | |
# endif | |
static VALUE | |
lazy_super(int argc, VALUE *argv, VALUE lazy) | |
{ | |
return enumerable_lazy(rb_call_super(argc, argv)); | |
} | |
/* | |
* call-seq: | |
* enum.lazy -> lazy_enumerator | |
* | |
* Returns self. | |
*/ | |
static VALUE | |
lazy_lazy(VALUE obj) | |
{ | |
return obj; | |
} | |
/* | |
* Document-class: StopIteration | |
* | |
* Raised to stop the iteration, in particular by Enumerator#next. It is | |
* rescued by Kernel#loop. | |
* | |
* loop do | |
* puts "Hello" | |
* raise StopIteration | |
* puts "World" | |
* end | |
* puts "Done!" | |
* | |
* <em>produces:</em> | |
* | |
* Hello | |
* Done! | |
*/ | |
/* | |
* call-seq: | |
* result -> value | |
* | |
* Returns the return value of the iterator. | |
* | |
* o = Object.new | |
* def o.each | |
* yield 1 | |
* yield 2 | |
* yield 3 | |
* 100 | |
* end | |
* | |
* e = o.to_enum | |
* | |
* puts e.next #=> 1 | |
* puts e.next #=> 2 | |
* puts e.next #=> 3 | |
* | |
* begin | |
* e.next | |
* rescue StopIteration => ex | |
* puts ex.result #=> 100 | |
* end | |
* | |
*/ | |
static VALUE | |
stop_result(VALUE self) | |
{ | |
return rb_attr_get(self, id_result); | |
} | |
/* | |
* Producer | |
*/ | |
static void | |
producer_mark(void *p) | |
{ | |
struct producer *ptr = p; | |
rb_gc_mark_movable(ptr->init); | |
rb_gc_mark_movable(ptr->proc); | |
} | |
static void | |
producer_compact(void *p) | |
{ | |
struct producer *ptr = p; | |
ptr->init = rb_gc_location(ptr->init); | |
ptr->proc = rb_gc_location(ptr->proc); | |
} | |
#define producer_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
producer_memsize(const void *p) | |
{ | |
return sizeof(struct producer); | |
} | |
static const rb_data_type_t producer_data_type = { | |
"producer", | |
{ | |
producer_mark, | |
producer_free, | |
producer_memsize, | |
producer_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static struct producer * | |
producer_ptr(VALUE obj) | |
{ | |
struct producer *ptr; | |
TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr); | |
if (!ptr || ptr->proc == Qundef) { | |
rb_raise(rb_eArgError, "uninitialized producer"); | |
} | |
return ptr; | |
} | |
/* :nodoc: */ | |
static VALUE | |
producer_allocate(VALUE klass) | |
{ | |
struct producer *ptr; | |
VALUE obj; | |
obj = TypedData_Make_Struct(klass, struct producer, &producer_data_type, ptr); | |
ptr->init = Qundef; | |
ptr->proc = Qundef; | |
return obj; | |
} | |
static VALUE | |
producer_init(VALUE obj, VALUE init, VALUE proc) | |
{ | |
struct producer *ptr; | |
TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr); | |
if (!ptr) { | |
rb_raise(rb_eArgError, "unallocated producer"); | |
} | |
ptr->init = init; | |
ptr->proc = proc; | |
return obj; | |
} | |
static VALUE | |
producer_each_stop(VALUE dummy, VALUE exc) | |
{ | |
return rb_attr_get(exc, id_result); | |
} | |
NORETURN(static VALUE producer_each_i(VALUE obj)); | |
static VALUE | |
producer_each_i(VALUE obj) | |
{ | |
struct producer *ptr; | |
VALUE init, proc, curr; | |
ptr = producer_ptr(obj); | |
init = ptr->init; | |
proc = ptr->proc; | |
if (init == Qundef) { | |
curr = Qnil; | |
} | |
else { | |
rb_yield(init); | |
curr = init; | |
} | |
for (;;) { | |
curr = rb_funcall(proc, id_call, 1, curr); | |
rb_yield(curr); | |
} | |
UNREACHABLE_RETURN(Qnil); | |
} | |
/* :nodoc: */ | |
static VALUE | |
producer_each(VALUE obj) | |
{ | |
rb_need_block(); | |
return rb_rescue2(producer_each_i, obj, producer_each_stop, (VALUE)0, rb_eStopIteration, (VALUE)0); | |
} | |
static VALUE | |
producer_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
return DBL2NUM(HUGE_VAL); | |
} | |
/* | |
* call-seq: | |
* Enumerator.produce(initial = nil) { |prev| block } -> enumerator | |
* | |
* Creates an infinite enumerator from any block, just called over and | |
* over. The result of the previous iteration is passed to the next one. | |
* If +initial+ is provided, it is passed to the first iteration, and | |
* becomes the first element of the enumerator; if it is not provided, | |
* the first iteration receives +nil+, and its result becomes the first | |
* element of the iterator. | |
* | |
* Raising StopIteration from the block stops an iteration. | |
* | |
* Enumerator.produce(1, &:succ) # => enumerator of 1, 2, 3, 4, .... | |
* | |
* Enumerator.produce { rand(10) } # => infinite random number sequence | |
* | |
* ancestors = Enumerator.produce(node) { |prev| node = prev.parent or raise StopIteration } | |
* enclosing_section = ancestors.find { |n| n.type == :section } | |
* | |
* Using ::produce together with Enumerable methods like Enumerable#detect, | |
* Enumerable#slice_after, Enumerable#take_while can provide Enumerator-based alternatives | |
* for +while+ and +until+ cycles: | |
* | |
* # Find next Tuesday | |
* require "date" | |
* Enumerator.produce(Date.today, &:succ).detect(&:tuesday?) | |
* | |
* # Simple lexer: | |
* require "strscan" | |
* scanner = StringScanner.new("7+38/6") | |
* PATTERN = %r{\d+|[-/+*]} | |
* Enumerator.produce { scanner.scan(PATTERN) }.slice_after { scanner.eos? }.first | |
* # => ["7", "+", "38", "/", "6"] | |
*/ | |
static VALUE | |
enumerator_s_produce(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE init, producer; | |
if (!rb_block_given_p()) rb_raise(rb_eArgError, "no block given"); | |
if (rb_scan_args(argc, argv, "01", &init) == 0) { | |
init = Qundef; | |
} | |
producer = producer_init(producer_allocate(rb_cEnumProducer), init, rb_block_proc()); | |
return rb_enumeratorize_with_size_kw(producer, sym_each, 0, 0, producer_size, RB_NO_KEYWORDS); | |
} | |
/* | |
* Document-class: Enumerator::Chain | |
* | |
* Enumerator::Chain is a subclass of Enumerator, which represents a | |
* chain of enumerables that works as a single enumerator. | |
* | |
* This type of objects can be created by Enumerable#chain and | |
* Enumerator#+. | |
*/ | |
static void | |
enum_chain_mark(void *p) | |
{ | |
struct enum_chain *ptr = p; | |
rb_gc_mark_movable(ptr->enums); | |
} | |
static void | |
enum_chain_compact(void *p) | |
{ | |
struct enum_chain *ptr = p; | |
ptr->enums = rb_gc_location(ptr->enums); | |
} | |
#define enum_chain_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
enum_chain_memsize(const void *p) | |
{ | |
return sizeof(struct enum_chain); | |
} | |
static const rb_data_type_t enum_chain_data_type = { | |
"chain", | |
{ | |
enum_chain_mark, | |
enum_chain_free, | |
enum_chain_memsize, | |
enum_chain_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static struct enum_chain * | |
enum_chain_ptr(VALUE obj) | |
{ | |
struct enum_chain *ptr; | |
TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr); | |
if (!ptr || ptr->enums == Qundef) { | |
rb_raise(rb_eArgError, "uninitialized chain"); | |
} | |
return ptr; | |
} | |
/* :nodoc: */ | |
static VALUE | |
enum_chain_allocate(VALUE klass) | |
{ | |
struct enum_chain *ptr; | |
VALUE obj; | |
obj = TypedData_Make_Struct(klass, struct enum_chain, &enum_chain_data_type, ptr); | |
ptr->enums = Qundef; | |
ptr->pos = -1; | |
return obj; | |
} | |
/* | |
* call-seq: | |
* Enumerator::Chain.new(*enums) -> enum | |
* | |
* Generates a new enumerator object that iterates over the elements | |
* of given enumerable objects in sequence. | |
* | |
* e = Enumerator::Chain.new(1..3, [4, 5]) | |
* e.to_a #=> [1, 2, 3, 4, 5] | |
* e.size #=> 5 | |
*/ | |
static VALUE | |
enum_chain_initialize(VALUE obj, VALUE enums) | |
{ | |
struct enum_chain *ptr; | |
rb_check_frozen(obj); | |
TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr); | |
if (!ptr) rb_raise(rb_eArgError, "unallocated chain"); | |
ptr->enums = rb_obj_freeze(enums); | |
ptr->pos = -1; | |
return obj; | |
} | |
static VALUE | |
new_enum_chain(VALUE enums) | |
{ | |
long i; | |
VALUE obj = enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums); | |
for (i = 0; i < RARRAY_LEN(enums); i++) { | |
if (RTEST(rb_obj_is_kind_of(RARRAY_AREF(enums, i), rb_cLazy))) { | |
return enumerable_lazy(obj); | |
} | |
} | |
return obj; | |
} | |
/* :nodoc: */ | |
static VALUE | |
enum_chain_init_copy(VALUE obj, VALUE orig) | |
{ | |
struct enum_chain *ptr0, *ptr1; | |
if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
ptr0 = enum_chain_ptr(orig); | |
TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr1); | |
if (!ptr1) rb_raise(rb_eArgError, "unallocated chain"); | |
ptr1->enums = ptr0->enums; | |
ptr1->pos = ptr0->pos; | |
return obj; | |
} | |
static VALUE | |
enum_chain_total_size(VALUE enums) | |
{ | |
VALUE total = INT2FIX(0); | |
long i; | |
for (i = 0; i < RARRAY_LEN(enums); i++) { | |
VALUE size = enum_size(RARRAY_AREF(enums, i)); | |
if (NIL_P(size) || (RB_TYPE_P(size, T_FLOAT) && isinf(NUM2DBL(size)))) { | |
return size; | |
} | |
if (!RB_INTEGER_TYPE_P(size)) { | |
return Qnil; | |
} | |
total = rb_funcall(total, '+', 1, size); | |
} | |
return total; | |
} | |
/* | |
* call-seq: | |
* obj.size -> int, Float::INFINITY or nil | |
* | |
* Returns the total size of the enumerator chain calculated by | |
* summing up the size of each enumerable in the chain. If any of the | |
* enumerables reports its size as nil or Float::INFINITY, that value | |
* is returned as the total size. | |
*/ | |
static VALUE | |
enum_chain_size(VALUE obj) | |
{ | |
return enum_chain_total_size(enum_chain_ptr(obj)->enums); | |
} | |
static VALUE | |
enum_chain_enum_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
return enum_chain_size(obj); | |
} | |
static VALUE | |
enum_chain_enum_no_size(VALUE obj, VALUE args, VALUE eobj) | |
{ | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* obj.each(*args) { |...| ... } -> obj | |
* obj.each(*args) -> enumerator | |
* | |
* Iterates over the elements of the first enumerable by calling the | |
* "each" method on it with the given arguments, then proceeds to the | |
* following enumerables in sequence until all of the enumerables are | |
* exhausted. | |
* | |
* If no block is given, returns an enumerator. | |
*/ | |
static VALUE | |
enum_chain_each(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE enums, block; | |
struct enum_chain *objptr; | |
long i; | |
RETURN_SIZED_ENUMERATOR(obj, argc, argv, argc > 0 ? enum_chain_enum_no_size : enum_chain_enum_size); | |
objptr = enum_chain_ptr(obj); | |
enums = objptr->enums; | |
block = rb_block_proc(); | |
for (i = 0; i < RARRAY_LEN(enums); i++) { | |
objptr->pos = i; | |
rb_funcall_with_block(RARRAY_AREF(enums, i), id_each, argc, argv, block); | |
} | |
return obj; | |
} | |
/* | |
* call-seq: | |
* obj.rewind -> obj | |
* | |
* Rewinds the enumerator chain by calling the "rewind" method on each | |
* enumerable in reverse order. Each call is performed only if the | |
* enumerable responds to the method. | |
*/ | |
static VALUE | |
enum_chain_rewind(VALUE obj) | |
{ | |
struct enum_chain *objptr = enum_chain_ptr(obj); | |
VALUE enums = objptr->enums; | |
long i; | |
for (i = objptr->pos; 0 <= i && i < RARRAY_LEN(enums); objptr->pos = --i) { | |
rb_check_funcall(RARRAY_AREF(enums, i), id_rewind, 0, 0); | |
} | |
return obj; | |
} | |
static VALUE | |
inspect_enum_chain(VALUE obj, VALUE dummy, int recur) | |
{ | |
VALUE klass = rb_obj_class(obj); | |
struct enum_chain *ptr; | |
TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr); | |
if (!ptr || ptr->enums == Qundef) { | |
return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(klass)); | |
} | |
if (recur) { | |
return rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(klass)); | |
} | |
return rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(klass), ptr->enums); | |
} | |
/* | |
* call-seq: | |
* obj.inspect -> string | |
* | |
* Returns a printable version of the enumerator chain. | |
*/ | |
static VALUE | |
enum_chain_inspect(VALUE obj) | |
{ | |
return rb_exec_recursive(inspect_enum_chain, obj, 0); | |
} | |
/* | |
* call-seq: | |
* e.chain(*enums) -> enumerator | |
* | |
* Returns an enumerator object generated from this enumerator and | |
* given enumerables. | |
* | |
* e = (1..3).chain([4, 5]) | |
* e.to_a #=> [1, 2, 3, 4, 5] | |
*/ | |
static VALUE | |
enum_chain(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE enums = rb_ary_new_from_values(1, &obj); | |
rb_ary_cat(enums, argv, argc); | |
return new_enum_chain(enums); | |
} | |
/* | |
* call-seq: | |
* e + enum -> enumerator | |
* | |
* Returns an enumerator object generated from this enumerator and a | |
* given enumerable. | |
* | |
* e = (1..3).each + [4, 5] | |
* e.to_a #=> [1, 2, 3, 4, 5] | |
*/ | |
static VALUE | |
enumerator_plus(VALUE obj, VALUE eobj) | |
{ | |
return new_enum_chain(rb_ary_new_from_args(2, obj, eobj)); | |
} | |
/* | |
* Document-class: Enumerator::ArithmeticSequence | |
* | |
* Enumerator::ArithmeticSequence is a subclass of Enumerator, | |
* that is a representation of sequences of numbers with common difference. | |
* Instances of this class can be generated by the Range#step and Numeric#step | |
* methods. | |
* | |
* The class can be used for slicing Array (see Array#slice) or custom | |
* collections. | |
*/ | |
VALUE | |
rb_arith_seq_new(VALUE obj, VALUE meth, int argc, VALUE const *argv, | |
rb_enumerator_size_func *size_fn, | |
VALUE beg, VALUE end, VALUE step, int excl) | |
{ | |
VALUE aseq = enumerator_init(enumerator_allocate(rb_cArithSeq), | |
obj, meth, argc, argv, size_fn, Qnil, rb_keyword_given_p()); | |
rb_ivar_set(aseq, id_begin, beg); | |
rb_ivar_set(aseq, id_end, end); | |
rb_ivar_set(aseq, id_step, step); | |
rb_ivar_set(aseq, id_exclude_end, excl ? Qtrue : Qfalse); | |
return aseq; | |
} | |
/* | |
* call-seq: aseq.begin -> num or nil | |
* | |
* Returns the number that defines the first element of this arithmetic | |
* sequence. | |
*/ | |
static inline VALUE | |
arith_seq_begin(VALUE self) | |
{ | |
return rb_ivar_get(self, id_begin); | |
} | |
/* | |
* call-seq: aseq.end -> num or nil | |
* | |
* Returns the number that defines the end of this arithmetic sequence. | |
*/ | |
static inline VALUE | |
arith_seq_end(VALUE self) | |
{ | |
return rb_ivar_get(self, id_end); | |
} | |
/* | |
* call-seq: aseq.step -> num | |
* | |
* Returns the number that defines the common difference between | |
* two adjacent elements in this arithmetic sequence. | |
*/ | |
static inline VALUE | |
arith_seq_step(VALUE self) | |
{ | |
return rb_ivar_get(self, id_step); | |
} | |
/* | |
* call-seq: aseq.exclude_end? -> true or false | |
* | |
* Returns <code>true</code> if this arithmetic sequence excludes its end value. | |
*/ | |
static inline VALUE | |
arith_seq_exclude_end(VALUE self) | |
{ | |
return rb_ivar_get(self, id_exclude_end); | |
} | |
static inline int | |
arith_seq_exclude_end_p(VALUE self) | |
{ | |
return RTEST(arith_seq_exclude_end(self)); | |
} | |
int | |
rb_arithmetic_sequence_extract(VALUE obj, rb_arithmetic_sequence_components_t *component) | |
{ | |
if (rb_obj_is_kind_of(obj, rb_cArithSeq)) { | |
component->begin = arith_seq_begin(obj); | |
component->end = arith_seq_end(obj); | |
component->step = arith_seq_step(obj); | |
component->exclude_end = arith_seq_exclude_end_p(obj); | |
return 1; | |
} | |
else if (rb_range_values(obj, &component->begin, &component->end, &component->exclude_end)) { | |
component->step = INT2FIX(1); | |
return 1; | |
} | |
return 0; | |
} | |
VALUE | |
rb_arithmetic_sequence_beg_len_step(VALUE obj, long *begp, long *lenp, long *stepp, long len, int err) | |
{ | |
RUBY_ASSERT(begp != NULL); | |
RUBY_ASSERT(lenp != NULL); | |
RUBY_ASSERT(stepp != NULL); | |
rb_arithmetic_sequence_components_t aseq; | |
if (!rb_arithmetic_sequence_extract(obj, &aseq)) { | |
return Qfalse; | |
} | |
long step = NIL_P(aseq.step) ? 1 : NUM2LONG(aseq.step); | |
*stepp = step; | |
if (step < 0) { | |
VALUE tmp = aseq.begin; | |
aseq.begin = aseq.end; | |
aseq.end = tmp; | |
} | |
if (err == 0 && (step < -1 || step > 1)) { | |
if (rb_range_component_beg_len(aseq.begin, aseq.end, aseq.exclude_end, begp, lenp, len, 1) == Qtrue) { | |
if (*begp > len) | |
goto out_of_range; | |
if (*lenp > len) | |
goto out_of_range; | |
return Qtrue; | |
} | |
} | |
else { | |
return rb_range_component_beg_len(aseq.begin, aseq.end, aseq.exclude_end, begp, lenp, len, err); | |
} | |
out_of_range: | |
rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", obj); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* aseq.first -> num or nil | |
* aseq.first(n) -> an_array | |
* | |
* Returns the first number in this arithmetic sequence, | |
* or an array of the first +n+ elements. | |
*/ | |
static VALUE | |
arith_seq_first(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE b, e, s, ary; | |
long n; | |
int x; | |
rb_check_arity(argc, 0, 1); | |
b = arith_seq_begin(self); | |
e = arith_seq_end(self); | |
s = arith_seq_step(self); | |
if (argc == 0) { | |
if (NIL_P(b)) { | |
return Qnil; | |
} | |
if (!NIL_P(e)) { | |
VALUE zero = INT2FIX(0); | |
int r = rb_cmpint(rb_num_coerce_cmp(s, zero, idCmp), s, zero); | |
if (r > 0 && RTEST(rb_funcall(b, '>', 1, e))) { | |
return Qnil; | |
} | |
if (r < 0 && RTEST(rb_funcall(b, '<', 1, e))) { | |
return Qnil; | |
} | |
} | |
return b; | |
} | |
// TODO: the following code should be extracted as arith_seq_take | |
n = NUM2LONG(argv[0]); | |
if (n < 0) { | |
rb_raise(rb_eArgError, "attempt to take negative size"); | |
} | |
if (n == 0) { | |
return rb_ary_new_capa(0); | |
} | |
x = arith_seq_exclude_end_p(self); | |
if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(s)) { | |
long i = FIX2LONG(b), unit = FIX2LONG(s); | |
ary = rb_ary_new_capa(n); | |
while (n > 0 && FIXABLE(i)) { | |
rb_ary_push(ary, LONG2FIX(i)); | |
i += unit; // FIXABLE + FIXABLE never overflow; | |
--n; | |
} | |
if (n > 0) { | |
b = LONG2NUM(i); | |
while (n > 0) { | |
rb_ary_push(ary, b); | |
b = rb_big_plus(b, s); | |
--n; | |
} | |
} | |
return ary; | |
} | |
else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(s)) { | |
long i = FIX2LONG(b); | |
long end = FIX2LONG(e); | |
long unit = FIX2LONG(s); | |
long len; | |
if (unit >= 0) { | |
if (!x) end += 1; | |
len = end - i; | |
if (len < 0) len = 0; | |
ary = rb_ary_new_capa((n < len) ? n : len); | |
while (n > 0 && i < end) { | |
rb_ary_push(ary, LONG2FIX(i)); | |
if (i + unit < i) break; | |
i += unit; | |
--n; | |
} | |
} | |
else { | |
if (!x) end -= 1; | |
len = i - end; | |
if (len < 0) len = 0; | |
ary = rb_ary_new_capa((n < len) ? n : len); | |
while (n > 0 && i > end) { | |
rb_ary_push(ary, LONG2FIX(i)); | |
if (i + unit > i) break; | |
i += unit; | |
--n; | |
} | |
} | |
return ary; | |
} | |
else if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) { | |
/* generate values like ruby_float_step */ | |
double unit = NUM2DBL(s); | |
double beg = NUM2DBL(b); | |
double end = NIL_P(e) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(e); | |
double len = ruby_float_step_size(beg, end, unit, x); | |
long i; | |
if (n > len) | |
n = (long)len; | |
if (isinf(unit)) { | |
if (len > 0) { | |
ary = rb_ary_new_capa(1); | |
rb_ary_push(ary, DBL2NUM(beg)); | |
} | |
else { | |
ary = rb_ary_new_capa(0); | |
} | |
} | |
else if (unit == 0) { | |
VALUE val = DBL2NUM(beg); | |
ary = rb_ary_new_capa(n); | |
for (i = 0; i < len; ++i) { | |
rb_ary_push(ary, val); | |
} | |
} | |
else { | |
ary = rb_ary_new_capa(n); | |
for (i = 0; i < n; ++i) { | |
double d = i*unit+beg; | |
if (unit >= 0 ? end < d : d < end) d = end; | |
rb_ary_push(ary, DBL2NUM(d)); | |
} | |
} | |
return ary; | |
} | |
return rb_call_super(argc, argv); | |
} | |
static inline VALUE | |
num_plus(VALUE a, VALUE b) | |
{ | |
if (RB_INTEGER_TYPE_P(a)) { | |
return rb_int_plus(a, b); | |
} | |
else if (RB_FLOAT_TYPE_P(a)) { | |
return rb_float_plus(a, b); | |
} | |
else if (RB_TYPE_P(a, T_RATIONAL)) { | |
return rb_rational_plus(a, b); | |
} | |
else { | |
return rb_funcallv(a, '+', 1, &b); | |
} | |
} | |
static inline VALUE | |
num_minus(VALUE a, VALUE b) | |
{ | |
if (RB_INTEGER_TYPE_P(a)) { | |
return rb_int_minus(a, b); | |
} | |
else if (RB_FLOAT_TYPE_P(a)) { | |
return rb_float_minus(a, b); | |
} | |
else if (RB_TYPE_P(a, T_RATIONAL)) { | |
return rb_rational_minus(a, b); | |
} | |
else { | |
return rb_funcallv(a, '-', 1, &b); | |
} | |
} | |
static inline VALUE | |
num_mul(VALUE a, VALUE b) | |
{ | |
if (RB_INTEGER_TYPE_P(a)) { | |
return rb_int_mul(a, b); | |
} | |
else if (RB_FLOAT_TYPE_P(a)) { | |
return rb_float_mul(a, b); | |
} | |
else if (RB_TYPE_P(a, T_RATIONAL)) { | |
return rb_rational_mul(a, b); | |
} | |
else { | |
return rb_funcallv(a, '*', 1, &b); | |
} | |
} | |
static inline VALUE | |
num_idiv(VALUE a, VALUE b) | |
{ | |
VALUE q; | |
if (RB_INTEGER_TYPE_P(a)) { | |
q = rb_int_idiv(a, b); | |
} | |
else if (RB_FLOAT_TYPE_P(a)) { | |
q = rb_float_div(a, b); | |
} | |
else if (RB_TYPE_P(a, T_RATIONAL)) { | |
q = rb_rational_div(a, b); | |
} | |
else { | |
q = rb_funcallv(a, idDiv, 1, &b); | |
} | |
if (RB_INTEGER_TYPE_P(q)) { | |
return q; | |
} | |
else if (RB_FLOAT_TYPE_P(q)) { | |
return rb_float_floor(q, 0); | |
} | |
else if (RB_TYPE_P(q, T_RATIONAL)) { | |
return rb_rational_floor(q, 0); | |
} | |
else { | |
return rb_funcall(q, rb_intern("floor"), 0); | |
} | |
} | |
/* | |
* call-seq: | |
* aseq.last -> num or nil | |
* aseq.last(n) -> an_array | |
* | |
* Returns the last number in this arithmetic sequence, | |
* or an array of the last +n+ elements. | |
*/ | |
static VALUE | |
arith_seq_last(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE b, e, s, len_1, len, last, nv, ary; | |
int last_is_adjusted; | |
long n; | |
e = arith_seq_end(self); | |
if (NIL_P(e)) { | |
rb_raise(rb_eRangeError, | |
"cannot get the last element of endless arithmetic sequence"); | |
} | |
b = arith_seq_begin(self); | |
s = arith_seq_step(self); | |
len_1 = num_idiv(num_minus(e, b), s); | |
if (rb_num_negative_int_p(len_1)) { | |
if (argc == 0) { | |
return Qnil; | |
} | |
return rb_ary_new_capa(0); | |
} | |
last = num_plus(b, num_mul(s, len_1)); | |
if ((last_is_adjusted = arith_seq_exclude_end_p(self) && rb_equal(last, e))) { | |
last = num_minus(last, s); | |
} | |
if (argc == 0) { | |
return last; | |
} | |
if (last_is_adjusted) { | |
len = len_1; | |
} | |
else { | |
len = rb_int_plus(len_1, INT2FIX(1)); | |
} | |
rb_scan_args(argc, argv, "1", &nv); | |
if (!RB_INTEGER_TYPE_P(nv)) { | |
nv = rb_to_int(nv); | |
} | |
if (RTEST(rb_int_gt(nv, len))) { | |
nv = len; | |
} | |
n = NUM2LONG(nv); | |
if (n < 0) { | |
rb_raise(rb_eArgError, "negative array size"); | |
} | |
ary = rb_ary_new_capa(n); | |
b = rb_int_minus(last, rb_int_mul(s, nv)); | |
while (n) { | |
b = rb_int_plus(b, s); | |
rb_ary_push(ary, b); | |
--n; | |
} | |
return ary; | |
} | |
/* | |
* call-seq: | |
* aseq.inspect -> string | |
* | |
* Convert this arithmetic sequence to a printable form. | |
*/ | |
static VALUE | |
arith_seq_inspect(VALUE self) | |
{ | |
struct enumerator *e; | |
VALUE eobj, str, eargs; | |
int range_p; | |
TypedData_Get_Struct(self, struct enumerator, &enumerator_data_type, e); | |
eobj = rb_attr_get(self, id_receiver); | |
if (NIL_P(eobj)) { | |
eobj = e->obj; | |
} | |
range_p = RTEST(rb_obj_is_kind_of(eobj, rb_cRange)); | |
str = rb_sprintf("(%s%"PRIsVALUE"%s.", range_p ? "(" : "", eobj, range_p ? ")" : ""); | |
rb_str_buf_append(str, rb_id2str(e->meth)); | |
eargs = rb_attr_get(eobj, id_arguments); | |
if (NIL_P(eargs)) { | |
eargs = e->args; | |
} | |
if (eargs != Qfalse) { | |
long argc = RARRAY_LEN(eargs); | |
const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */ | |
if (argc > 0) { | |
VALUE kwds = Qnil; | |
rb_str_buf_cat2(str, "("); | |
if (RB_TYPE_P(argv[argc-1], T_HASH)) { | |
int all_key = TRUE; | |
rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key); | |
if (all_key) kwds = argv[--argc]; | |
} | |
while (argc--) { | |
VALUE arg = *argv++; | |
rb_str_append(str, rb_inspect(arg)); | |
rb_str_buf_cat2(str, ", "); | |
} | |
if (!NIL_P(kwds)) { | |
rb_hash_foreach(kwds, kwd_append, str); | |
} | |
rb_str_set_len(str, RSTRING_LEN(str)-2); /* drop the last ", " */ | |
rb_str_buf_cat2(str, ")"); | |
} | |
} | |
rb_str_buf_cat2(str, ")"); | |
return str; | |
} | |
/* | |
* call-seq: | |
* aseq == obj -> true or false | |
* | |
* Returns <code>true</code> only if +obj+ is an Enumerator::ArithmeticSequence, | |
* has equivalent begin, end, step, and exclude_end? settings. | |
*/ | |
static VALUE | |
arith_seq_eq(VALUE self, VALUE other) | |
{ | |
if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) { | |
return Qfalse; | |
} | |
if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) { | |
return Qfalse; | |
} | |
if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) { | |
return Qfalse; | |
} | |
if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) { | |
return Qfalse; | |
} | |
if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) { | |
return Qfalse; | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* aseq.hash -> integer | |
* | |
* Compute a hash-value for this arithmetic sequence. | |
* Two arithmetic sequences with same begin, end, step, and exclude_end? | |
* values will generate the same hash-value. | |
* | |
* See also Object#hash. | |
*/ | |
static VALUE | |
arith_seq_hash(VALUE self) | |
{ | |
st_index_t hash; | |
VALUE v; | |
hash = rb_hash_start(arith_seq_exclude_end_p(self)); | |
v = rb_hash(arith_seq_begin(self)); | |
hash = rb_hash_uint(hash, NUM2LONG(v)); | |
v = rb_hash(arith_seq_end(self)); | |
hash = rb_hash_uint(hash, NUM2LONG(v)); | |
v = rb_hash(arith_seq_step(self)); | |
hash = rb_hash_uint(hash, NUM2LONG(v)); | |
hash = rb_hash_end(hash); | |
return ST2FIX(hash); | |
} | |
#define NUM_GE(x, y) RTEST(rb_num_coerce_relop((x), (y), idGE)) | |
struct arith_seq_gen { | |
VALUE current; | |
VALUE end; | |
VALUE step; | |
int excl; | |
}; | |
/* | |
* call-seq: | |
* aseq.each {|i| block } -> aseq | |
* aseq.each -> aseq | |
*/ | |
static VALUE | |
arith_seq_each(VALUE self) | |
{ | |
VALUE c, e, s, len_1, last; | |
int x; | |
if (!rb_block_given_p()) return self; | |
c = arith_seq_begin(self); | |
e = arith_seq_end(self); | |
s = arith_seq_step(self); | |
x = arith_seq_exclude_end_p(self); | |
if (!RB_TYPE_P(s, T_COMPLEX) && ruby_float_step(c, e, s, x, TRUE)) { | |
return self; | |
} | |
if (NIL_P(e)) { | |
while (1) { | |
rb_yield(c); | |
c = rb_int_plus(c, s); | |
} | |
return self; | |
} | |
if (rb_equal(s, INT2FIX(0))) { | |
while (1) { | |
rb_yield(c); | |
} | |
return self; | |
} | |
len_1 = num_idiv(num_minus(e, c), s); | |
last = num_plus(c, num_mul(s, len_1)); | |
if (x && rb_equal(last, e)) { | |
last = num_minus(last, s); | |
} | |
if (rb_num_negative_int_p(s)) { | |
while (NUM_GE(c, last)) { | |
rb_yield(c); | |
c = num_plus(c, s); | |
} | |
} | |
else { | |
while (NUM_GE(last, c)) { | |
rb_yield(c); | |
c = num_plus(c, s); | |
} | |
} | |
return self; | |
} | |
/* | |
* call-seq: | |
* aseq.size -> num or nil | |
* | |
* Returns the number of elements in this arithmetic sequence if it is a finite | |
* sequence. Otherwise, returns <code>nil</code>. | |
*/ | |
static VALUE | |
arith_seq_size(VALUE self) | |
{ | |
VALUE b, e, s, len_1, len, last; | |
int x; | |
b = arith_seq_begin(self); | |
e = arith_seq_end(self); | |
s = arith_seq_step(self); | |
x = arith_seq_exclude_end_p(self); | |
if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) { | |
double ee, n; | |
if (NIL_P(e)) { | |
if (rb_num_negative_int_p(s)) { | |
ee = -HUGE_VAL; | |
} | |
else { | |
ee = HUGE_VAL; | |
} | |
} | |
else { | |
ee = NUM2DBL(e); | |
} | |
n = ruby_float_step_size(NUM2DBL(b), ee, NUM2DBL(s), x); | |
if (isinf(n)) return DBL2NUM(n); | |
if (POSFIXABLE(n)) return LONG2FIX((long)n); | |
return rb_dbl2big(n); | |
} | |
if (NIL_P(e)) { | |
return DBL2NUM(HUGE_VAL); | |
} | |
if (!rb_obj_is_kind_of(s, rb_cNumeric)) { | |
s = rb_to_int(s); | |
} | |
if (rb_equal(s, INT2FIX(0))) { | |
return DBL2NUM(HUGE_VAL); | |
} | |
len_1 = rb_int_idiv(rb_int_minus(e, b), s); | |
if (rb_num_negative_int_p(len_1)) { | |
return INT2FIX(0); | |
} | |
last = rb_int_plus(b, rb_int_mul(s, len_1)); | |
if (x && rb_equal(last, e)) { | |
len = len_1; | |
} | |
else { | |
len = rb_int_plus(len_1, INT2FIX(1)); | |
} | |
return len; | |
} | |
#define sym(name) ID2SYM(rb_intern_const(name)) | |
void | |
InitVM_Enumerator(void) | |
{ | |
ID id_private = rb_intern_const("private"); | |
rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1); | |
rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1); | |
rb_cEnumerator = rb_define_class("Enumerator", rb_cObject); | |
rb_include_module(rb_cEnumerator, rb_mEnumerable); | |
rb_define_alloc_func(rb_cEnumerator, enumerator_allocate); | |
rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1); | |
rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1); | |
rb_define_method(rb_cEnumerator, "each", enumerator_each, -1); | |
rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0); | |
rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1); | |
rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1); | |
rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1); | |
rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0); | |
rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0); | |
rb_define_method(rb_cEnumerator, "next", enumerator_next, 0); | |
rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0); | |
rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1); | |
rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0); | |
rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0); | |
rb_define_method(rb_cEnumerator, "size", enumerator_size, 0); | |
rb_define_method(rb_cEnumerator, "+", enumerator_plus, 1); | |
rb_define_method(rb_mEnumerable, "chain", enum_chain, -1); | |
/* Lazy */ | |
rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator); | |
rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0); | |
rb_define_alias(rb_cLazy, "_enumerable_map", "map"); | |
rb_define_alias(rb_cLazy, "_enumerable_collect", "collect"); | |
rb_define_alias(rb_cLazy, "_enumerable_flat_map", "flat_map"); | |
rb_define_alias(rb_cLazy, "_enumerable_collect_concat", "collect_concat"); | |
rb_define_alias(rb_cLazy, "_enumerable_select", "select"); | |
rb_define_alias(rb_cLazy, "_enumerable_find_all", "find_all"); | |
rb_define_alias(rb_cLazy, "_enumerable_filter", "filter"); | |
rb_define_alias(rb_cLazy, "_enumerable_filter_map", "filter_map"); | |
rb_define_alias(rb_cLazy, "_enumerable_reject", "reject"); | |
rb_define_alias(rb_cLazy, "_enumerable_grep", "grep"); | |
rb_define_alias(rb_cLazy, "_enumerable_grep_v", "grep_v"); | |
rb_define_alias(rb_cLazy, "_enumerable_zip", "zip"); | |
rb_define_alias(rb_cLazy, "_enumerable_take", "take"); | |
rb_define_alias(rb_cLazy, "_enumerable_take_while", "take_while"); | |
rb_define_alias(rb_cLazy, "_enumerable_drop", "drop"); | |
rb_define_alias(rb_cLazy, "_enumerable_drop_while", "drop_while"); | |
rb_define_alias(rb_cLazy, "_enumerable_uniq", "uniq"); | |
rb_define_private_method(rb_cLazy, "_enumerable_with_index", enumerator_with_index, -1); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_map")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_collect")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_flat_map")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_collect_concat")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_select")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_find_all")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_filter")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_filter_map")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_reject")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_grep")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_grep_v")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_zip")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_take")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_take_while")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_drop")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_drop_while")); | |
rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_uniq")); | |
rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1); | |
rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1); | |
rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1); | |
rb_define_method(rb_cLazy, "eager", lazy_eager, 0); | |
rb_define_method(rb_cLazy, "map", lazy_map, 0); | |
rb_define_method(rb_cLazy, "collect", lazy_map, 0); | |
rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0); | |
rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0); | |
rb_define_method(rb_cLazy, "select", lazy_select, 0); | |
rb_define_method(rb_cLazy, "find_all", lazy_select, 0); | |
rb_define_method(rb_cLazy, "filter", lazy_select, 0); | |
rb_define_method(rb_cLazy, "filter_map", lazy_filter_map, 0); | |
rb_define_method(rb_cLazy, "reject", lazy_reject, 0); | |
rb_define_method(rb_cLazy, "grep", lazy_grep, 1); | |
rb_define_method(rb_cLazy, "grep_v", lazy_grep_v, 1); | |
rb_define_method(rb_cLazy, "zip", lazy_zip, -1); | |
rb_define_method(rb_cLazy, "take", lazy_take, 1); | |
rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0); | |
rb_define_method(rb_cLazy, "drop", lazy_drop, 1); | |
rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0); | |
rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0); | |
rb_define_method(rb_cLazy, "chunk", lazy_super, -1); | |
rb_define_method(rb_cLazy, "slice_before", lazy_super, -1); | |
rb_define_method(rb_cLazy, "slice_after", lazy_super, -1); | |
rb_define_method(rb_cLazy, "slice_when", lazy_super, -1); | |
rb_define_method(rb_cLazy, "chunk_while", lazy_super, -1); | |
rb_define_method(rb_cLazy, "uniq", lazy_uniq, 0); | |
rb_define_method(rb_cLazy, "compact", lazy_compact, 0); | |
rb_define_method(rb_cLazy, "with_index", lazy_with_index, -1); | |
lazy_use_super_method = rb_hash_new_with_size(18); | |
rb_hash_aset(lazy_use_super_method, sym("map"), sym("_enumerable_map")); | |
rb_hash_aset(lazy_use_super_method, sym("collect"), sym("_enumerable_collect")); | |
rb_hash_aset(lazy_use_super_method, sym("flat_map"), sym("_enumerable_flat_map")); | |
rb_hash_aset(lazy_use_super_method, sym("collect_concat"), sym("_enumerable_collect_concat")); | |
rb_hash_aset(lazy_use_super_method, sym("select"), sym("_enumerable_select")); | |
rb_hash_aset(lazy_use_super_method, sym("find_all"), sym("_enumerable_find_all")); | |
rb_hash_aset(lazy_use_super_method, sym("filter"), sym("_enumerable_filter")); | |
rb_hash_aset(lazy_use_super_method, sym("filter_map"), sym("_enumerable_filter_map")); | |
rb_hash_aset(lazy_use_super_method, sym("reject"), sym("_enumerable_reject")); | |
rb_hash_aset(lazy_use_super_method, sym("grep"), sym("_enumerable_grep")); | |
rb_hash_aset(lazy_use_super_method, sym("grep_v"), sym("_enumerable_grep_v")); | |
rb_hash_aset(lazy_use_super_method, sym("zip"), sym("_enumerable_zip")); | |
rb_hash_aset(lazy_use_super_method, sym("take"), sym("_enumerable_take")); | |
rb_hash_aset(lazy_use_super_method, sym("take_while"), sym("_enumerable_take_while")); | |
rb_hash_aset(lazy_use_super_method, sym("drop"), sym("_enumerable_drop")); | |
rb_hash_aset(lazy_use_super_method, sym("drop_while"), sym("_enumerable_drop_while")); | |
rb_hash_aset(lazy_use_super_method, sym("uniq"), sym("_enumerable_uniq")); | |
rb_hash_aset(lazy_use_super_method, sym("with_index"), sym("_enumerable_with_index")); | |
rb_obj_freeze(lazy_use_super_method); | |
rb_gc_register_mark_object(lazy_use_super_method); | |
#if 0 /* for RDoc */ | |
rb_define_method(rb_cLazy, "to_a", lazy_to_a, 0); | |
rb_define_method(rb_cLazy, "chunk", lazy_chunk, 0); | |
rb_define_method(rb_cLazy, "chunk_while", lazy_chunk_while, 0); | |
rb_define_method(rb_cLazy, "slice_after", lazy_slice_after, 0); | |
rb_define_method(rb_cLazy, "slice_before", lazy_slice_before, 0); | |
rb_define_method(rb_cLazy, "slice_when", lazy_slice_when, 0); | |
#endif | |
rb_define_alias(rb_cLazy, "force", "to_a"); | |
rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError); | |
rb_define_method(rb_eStopIteration, "result", stop_result, 0); | |
/* Generator */ | |
rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject); | |
rb_include_module(rb_cGenerator, rb_mEnumerable); | |
rb_define_alloc_func(rb_cGenerator, generator_allocate); | |
rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1); | |
rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1); | |
rb_define_method(rb_cGenerator, "each", generator_each, -1); | |
/* Yielder */ | |
rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject); | |
rb_define_alloc_func(rb_cYielder, yielder_allocate); | |
rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0); | |
rb_define_method(rb_cYielder, "yield", yielder_yield, -2); | |
rb_define_method(rb_cYielder, "<<", yielder_yield_push, 1); | |
rb_define_method(rb_cYielder, "to_proc", yielder_to_proc, 0); | |
/* Producer */ | |
rb_cEnumProducer = rb_define_class_under(rb_cEnumerator, "Producer", rb_cObject); | |
rb_define_alloc_func(rb_cEnumProducer, producer_allocate); | |
rb_define_method(rb_cEnumProducer, "each", producer_each, 0); | |
rb_define_singleton_method(rb_cEnumerator, "produce", enumerator_s_produce, -1); | |
/* Chain */ | |
rb_cEnumChain = rb_define_class_under(rb_cEnumerator, "Chain", rb_cEnumerator); | |
rb_define_alloc_func(rb_cEnumChain, enum_chain_allocate); | |
rb_define_method(rb_cEnumChain, "initialize", enum_chain_initialize, -2); | |
rb_define_method(rb_cEnumChain, "initialize_copy", enum_chain_init_copy, 1); | |
rb_define_method(rb_cEnumChain, "each", enum_chain_each, -1); | |
rb_define_method(rb_cEnumChain, "size", enum_chain_size, 0); | |
rb_define_method(rb_cEnumChain, "rewind", enum_chain_rewind, 0); | |
rb_define_method(rb_cEnumChain, "inspect", enum_chain_inspect, 0); | |
rb_undef_method(rb_cEnumChain, "feed"); | |
rb_undef_method(rb_cEnumChain, "next"); | |
rb_undef_method(rb_cEnumChain, "next_values"); | |
rb_undef_method(rb_cEnumChain, "peek"); | |
rb_undef_method(rb_cEnumChain, "peek_values"); | |
/* ArithmeticSequence */ | |
rb_cArithSeq = rb_define_class_under(rb_cEnumerator, "ArithmeticSequence", rb_cEnumerator); | |
rb_undef_alloc_func(rb_cArithSeq); | |
rb_undef_method(CLASS_OF(rb_cArithSeq), "new"); | |
rb_define_method(rb_cArithSeq, "begin", arith_seq_begin, 0); | |
rb_define_method(rb_cArithSeq, "end", arith_seq_end, 0); | |
rb_define_method(rb_cArithSeq, "exclude_end?", arith_seq_exclude_end, 0); | |
rb_define_method(rb_cArithSeq, "step", arith_seq_step, 0); | |
rb_define_method(rb_cArithSeq, "first", arith_seq_first, -1); | |
rb_define_method(rb_cArithSeq, "last", arith_seq_last, -1); | |
rb_define_method(rb_cArithSeq, "inspect", arith_seq_inspect, 0); | |
rb_define_method(rb_cArithSeq, "==", arith_seq_eq, 1); | |
rb_define_method(rb_cArithSeq, "===", arith_seq_eq, 1); | |
rb_define_method(rb_cArithSeq, "eql?", arith_seq_eq, 1); | |
rb_define_method(rb_cArithSeq, "hash", arith_seq_hash, 0); | |
rb_define_method(rb_cArithSeq, "each", arith_seq_each, 0); | |
rb_define_method(rb_cArithSeq, "size", arith_seq_size, 0); | |
rb_provide("enumerator.so"); /* for backward compatibility */ | |
} | |
#undef sym | |
void | |
Init_Enumerator(void) | |
{ | |
id_rewind = rb_intern_const("rewind"); | |
id_new = rb_intern_const("new"); | |
id_next = rb_intern_const("next"); | |
id_result = rb_intern_const("result"); | |
id_receiver = rb_intern_const("receiver"); | |
id_arguments = rb_intern_const("arguments"); | |
id_memo = rb_intern_const("memo"); | |
id_method = rb_intern_const("method"); | |
id_force = rb_intern_const("force"); | |
id_to_enum = rb_intern_const("to_enum"); | |
id_begin = rb_intern_const("begin"); | |
id_end = rb_intern_const("end"); | |
id_step = rb_intern_const("step"); | |
id_exclude_end = rb_intern_const("exclude_end"); | |
sym_each = ID2SYM(id_each); | |
sym_cycle = ID2SYM(rb_intern_const("cycle")); | |
sym_yield = ID2SYM(rb_intern_const("yield")); | |
InitVM(Enumerator); | |
} |