Permalink
Cannot retrieve contributors at this time
9087 lines (8141 sloc)
243 KB
/********************************************************************** | |
process.c - | |
$Author$ | |
created at: Tue Aug 10 14:30:50 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
Copyright (C) 2000 Network Applied Communication Laboratory, Inc. | |
Copyright (C) 2000 Information-technology Promotion Agency, Japan | |
**********************************************************************/ | |
#include "ruby/internal/config.h" | |
#include "ruby/fiber/scheduler.h" | |
#include <ctype.h> | |
#include <errno.h> | |
#include <signal.h> | |
#include <stdarg.h> | |
#include <stdio.h> | |
#include <time.h> | |
#ifdef HAVE_STDLIB_H | |
# include <stdlib.h> | |
#endif | |
#ifdef HAVE_UNISTD_H | |
# include <unistd.h> | |
#endif | |
#ifdef HAVE_FCNTL_H | |
# include <fcntl.h> | |
#endif | |
#ifdef HAVE_PROCESS_H | |
# include <process.h> | |
#endif | |
#ifndef EXIT_SUCCESS | |
# define EXIT_SUCCESS 0 | |
#endif | |
#ifndef EXIT_FAILURE | |
# define EXIT_FAILURE 1 | |
#endif | |
#ifdef HAVE_SYS_WAIT_H | |
# include <sys/wait.h> | |
#endif | |
#ifdef HAVE_SYS_RESOURCE_H | |
# include <sys/resource.h> | |
#endif | |
#ifdef HAVE_VFORK_H | |
# include <vfork.h> | |
#endif | |
#ifdef HAVE_SYS_PARAM_H | |
# include <sys/param.h> | |
#endif | |
#ifndef MAXPATHLEN | |
# define MAXPATHLEN 1024 | |
#endif | |
#include <sys/stat.h> | |
#ifdef HAVE_SYS_TIME_H | |
# include <sys/time.h> | |
#endif | |
#ifdef HAVE_SYS_TIMES_H | |
# include <sys/times.h> | |
#endif | |
#ifdef HAVE_PWD_H | |
# include <pwd.h> | |
#endif | |
#ifdef HAVE_GRP_H | |
# include <grp.h> | |
# ifdef __CYGWIN__ | |
int initgroups(const char *, rb_gid_t); | |
# endif | |
#endif | |
#ifdef HAVE_SYS_ID_H | |
# include <sys/id.h> | |
#endif | |
#ifdef __APPLE__ | |
# include <mach/mach_time.h> | |
#endif | |
#include "dln.h" | |
#include "hrtime.h" | |
#include "internal.h" | |
#include "internal/bits.h" | |
#include "internal/dir.h" | |
#include "internal/error.h" | |
#include "internal/eval.h" | |
#include "internal/hash.h" | |
#include "internal/object.h" | |
#include "internal/process.h" | |
#include "internal/thread.h" | |
#include "internal/variable.h" | |
#include "internal/warnings.h" | |
#include "mjit.h" | |
#include "ruby/io.h" | |
#include "ruby/st.h" | |
#include "ruby/thread.h" | |
#include "ruby/util.h" | |
#include "vm_core.h" | |
#include "ruby/ractor.h" | |
/* define system APIs */ | |
#ifdef _WIN32 | |
#undef open | |
#define open rb_w32_uopen | |
#endif | |
#if defined(HAVE_TIMES) || defined(_WIN32) | |
static VALUE rb_cProcessTms; | |
#endif | |
#ifndef WIFEXITED | |
#define WIFEXITED(w) (((w) & 0xff) == 0) | |
#endif | |
#ifndef WIFSIGNALED | |
#define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f)) | |
#endif | |
#ifndef WIFSTOPPED | |
#define WIFSTOPPED(w) (((w) & 0xff) == 0x7f) | |
#endif | |
#ifndef WEXITSTATUS | |
#define WEXITSTATUS(w) (((w) >> 8) & 0xff) | |
#endif | |
#ifndef WTERMSIG | |
#define WTERMSIG(w) ((w) & 0x7f) | |
#endif | |
#ifndef WSTOPSIG | |
#define WSTOPSIG WEXITSTATUS | |
#endif | |
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) | |
#define HAVE_44BSD_SETUID 1 | |
#define HAVE_44BSD_SETGID 1 | |
#endif | |
#ifdef __NetBSD__ | |
#undef HAVE_SETRUID | |
#undef HAVE_SETRGID | |
#endif | |
#ifdef BROKEN_SETREUID | |
#define setreuid ruby_setreuid | |
int setreuid(rb_uid_t ruid, rb_uid_t euid); | |
#endif | |
#ifdef BROKEN_SETREGID | |
#define setregid ruby_setregid | |
int setregid(rb_gid_t rgid, rb_gid_t egid); | |
#endif | |
#if defined(HAVE_44BSD_SETUID) || defined(__APPLE__) | |
#if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID) | |
#define OBSOLETE_SETREUID 1 | |
#endif | |
#if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID) | |
#define OBSOLETE_SETREGID 1 | |
#endif | |
#endif | |
static void check_uid_switch(void); | |
static void check_gid_switch(void); | |
static int exec_async_signal_safe(const struct rb_execarg *, char *, size_t); | |
#if 1 | |
#define p_uid_from_name p_uid_from_name | |
#define p_gid_from_name p_gid_from_name | |
#endif | |
#if defined(HAVE_UNISTD_H) | |
# if defined(HAVE_GETLOGIN_R) | |
# define USE_GETLOGIN_R 1 | |
# define GETLOGIN_R_SIZE_DEFAULT 0x100 | |
# define GETLOGIN_R_SIZE_LIMIT 0x1000 | |
# if defined(_SC_LOGIN_NAME_MAX) | |
# define GETLOGIN_R_SIZE_INIT sysconf(_SC_LOGIN_NAME_MAX) | |
# else | |
# define GETLOGIN_R_SIZE_INIT GETLOGIN_R_SIZE_DEFAULT | |
# endif | |
# elif defined(HAVE_GETLOGIN) | |
# define USE_GETLOGIN 1 | |
# endif | |
#endif | |
#if defined(HAVE_PWD_H) | |
# if defined(HAVE_GETPWUID_R) | |
# define USE_GETPWUID_R 1 | |
# elif defined(HAVE_GETPWUID) | |
# define USE_GETPWUID 1 | |
# endif | |
# if defined(HAVE_GETPWNAM_R) | |
# define USE_GETPWNAM_R 1 | |
# elif defined(HAVE_GETPWNAM) | |
# define USE_GETPWNAM 1 | |
# endif | |
# if defined(HAVE_GETPWNAM_R) || defined(HAVE_GETPWUID_R) | |
# define GETPW_R_SIZE_DEFAULT 0x1000 | |
# define GETPW_R_SIZE_LIMIT 0x10000 | |
# if defined(_SC_GETPW_R_SIZE_MAX) | |
# define GETPW_R_SIZE_INIT sysconf(_SC_GETPW_R_SIZE_MAX) | |
# else | |
# define GETPW_R_SIZE_INIT GETPW_R_SIZE_DEFAULT | |
# endif | |
# endif | |
# ifdef USE_GETPWNAM_R | |
# define PREPARE_GETPWNAM \ | |
VALUE getpw_buf = 0 | |
# define FINISH_GETPWNAM \ | |
(getpw_buf ? (void)rb_str_resize(getpw_buf, 0) : (void)0) | |
# define OBJ2UID1(id) obj2uid((id), &getpw_buf) | |
# define OBJ2UID(id) obj2uid0(id) | |
static rb_uid_t obj2uid(VALUE id, VALUE *getpw_buf); | |
static inline rb_uid_t | |
obj2uid0(VALUE id) | |
{ | |
rb_uid_t uid; | |
PREPARE_GETPWNAM; | |
uid = OBJ2UID1(id); | |
FINISH_GETPWNAM; | |
return uid; | |
} | |
# else | |
# define PREPARE_GETPWNAM /* do nothing */ | |
# define FINISH_GETPWNAM /* do nothing */ | |
# define OBJ2UID1(id) obj2uid((id)) | |
# define OBJ2UID(id) obj2uid((id)) | |
static rb_uid_t obj2uid(VALUE id); | |
# endif | |
#else | |
# define PREPARE_GETPWNAM /* do nothing */ | |
# define FINISH_GETPWNAM /* do nothing */ | |
# define OBJ2UID1(id) NUM2UIDT(id) | |
# define OBJ2UID(id) NUM2UIDT(id) | |
# ifdef p_uid_from_name | |
# undef p_uid_from_name | |
# define p_uid_from_name rb_f_notimplement | |
# endif | |
#endif | |
#if defined(HAVE_GRP_H) | |
# if defined(HAVE_GETGRNAM_R) && defined(_SC_GETGR_R_SIZE_MAX) | |
# define USE_GETGRNAM_R | |
# define GETGR_R_SIZE_INIT sysconf(_SC_GETGR_R_SIZE_MAX) | |
# define GETGR_R_SIZE_DEFAULT 0x1000 | |
# define GETGR_R_SIZE_LIMIT 0x10000 | |
# endif | |
# ifdef USE_GETGRNAM_R | |
# define PREPARE_GETGRNAM \ | |
VALUE getgr_buf = 0 | |
# define FINISH_GETGRNAM \ | |
(getgr_buf ? (void)rb_str_resize(getgr_buf, 0) : (void)0) | |
# define OBJ2GID1(id) obj2gid((id), &getgr_buf) | |
# define OBJ2GID(id) obj2gid0(id) | |
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf); | |
static inline rb_gid_t | |
obj2gid0(VALUE id) | |
{ | |
rb_gid_t gid; | |
PREPARE_GETGRNAM; | |
gid = OBJ2GID1(id); | |
FINISH_GETGRNAM; | |
return gid; | |
} | |
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf); | |
# else | |
# define PREPARE_GETGRNAM /* do nothing */ | |
# define FINISH_GETGRNAM /* do nothing */ | |
# define OBJ2GID1(id) obj2gid((id)) | |
# define OBJ2GID(id) obj2gid((id)) | |
static rb_gid_t obj2gid(VALUE id); | |
# endif | |
#else | |
# define PREPARE_GETGRNAM /* do nothing */ | |
# define FINISH_GETGRNAM /* do nothing */ | |
# define OBJ2GID1(id) NUM2GIDT(id) | |
# define OBJ2GID(id) NUM2GIDT(id) | |
# ifdef p_gid_from_name | |
# undef p_gid_from_name | |
# define p_gid_from_name rb_f_notimplement | |
# endif | |
#endif | |
#if SIZEOF_CLOCK_T == SIZEOF_INT | |
typedef unsigned int unsigned_clock_t; | |
#elif SIZEOF_CLOCK_T == SIZEOF_LONG | |
typedef unsigned long unsigned_clock_t; | |
#elif defined(HAVE_LONG_LONG) && SIZEOF_CLOCK_T == SIZEOF_LONG_LONG | |
typedef unsigned LONG_LONG unsigned_clock_t; | |
#endif | |
#ifndef HAVE_SIG_T | |
typedef void (*sig_t) (int); | |
#endif | |
#define id_exception idException | |
static ID id_in, id_out, id_err, id_pid, id_uid, id_gid; | |
static ID id_close, id_child; | |
#ifdef HAVE_SETPGID | |
static ID id_pgroup; | |
#endif | |
#ifdef _WIN32 | |
static ID id_new_pgroup; | |
#endif | |
static ID id_unsetenv_others, id_chdir, id_umask, id_close_others, id_ENV; | |
static ID id_nanosecond, id_microsecond, id_millisecond, id_second; | |
static ID id_float_microsecond, id_float_millisecond, id_float_second; | |
static ID id_GETTIMEOFDAY_BASED_CLOCK_REALTIME, id_TIME_BASED_CLOCK_REALTIME; | |
#ifdef HAVE_TIMES | |
static ID id_TIMES_BASED_CLOCK_MONOTONIC; | |
static ID id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID; | |
#endif | |
#ifdef RUSAGE_SELF | |
static ID id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID; | |
#endif | |
static ID id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID; | |
#ifdef __APPLE__ | |
static ID id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC; | |
#endif | |
static ID id_hertz; | |
/* execv and execl are async-signal-safe since SUSv4 (POSIX.1-2008, XPG7) */ | |
#if defined(__sun) && !defined(_XPG7) /* Solaris 10, 9, ... */ | |
#define execv(path, argv) (rb_async_bug_errno("unreachable: async-signal-unsafe execv() is called", 0)) | |
#define execl(path, arg0, arg1, arg2, term) do { extern char **environ; execle((path), (arg0), (arg1), (arg2), (term), (environ)); } while (0) | |
#define ALWAYS_NEED_ENVP 1 | |
#else | |
#define ALWAYS_NEED_ENVP 0 | |
#endif | |
static void | |
assert_close_on_exec(int fd) | |
{ | |
#if VM_CHECK_MODE > 0 | |
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(FD_CLOEXEC) | |
int flags = fcntl(fd, F_GETFD); | |
if (flags == -1) { | |
static const char m[] = "reserved FD closed unexpectedly?\n"; | |
(void)!write(2, m, sizeof(m) - 1); | |
return; | |
} | |
if (flags & FD_CLOEXEC) return; | |
rb_bug("reserved FD did not have close-on-exec set"); | |
#else | |
rb_bug("reserved FD without close-on-exec support"); | |
#endif /* FD_CLOEXEC */ | |
#endif /* VM_CHECK_MODE */ | |
} | |
static inline int | |
close_unless_reserved(int fd) | |
{ | |
if (rb_reserved_fd_p(fd)) { /* async-signal-safe */ | |
assert_close_on_exec(fd); | |
return 0; | |
} | |
return close(fd); /* async-signal-safe */ | |
} | |
/*#define DEBUG_REDIRECT*/ | |
#if defined(DEBUG_REDIRECT) | |
static void | |
ttyprintf(const char *fmt, ...) | |
{ | |
va_list ap; | |
FILE *tty; | |
int save = errno; | |
#ifdef _WIN32 | |
tty = fopen("con", "w"); | |
#else | |
tty = fopen("/dev/tty", "w"); | |
#endif | |
if (!tty) | |
return; | |
va_start(ap, fmt); | |
vfprintf(tty, fmt, ap); | |
va_end(ap); | |
fclose(tty); | |
errno = save; | |
} | |
static int | |
redirect_dup(int oldfd) | |
{ | |
int ret; | |
ret = dup(oldfd); | |
ttyprintf("dup(%d) => %d\n", oldfd, ret); | |
return ret; | |
} | |
static int | |
redirect_dup2(int oldfd, int newfd) | |
{ | |
int ret; | |
ret = dup2(oldfd, newfd); | |
ttyprintf("dup2(%d, %d) => %d\n", oldfd, newfd, ret); | |
return ret; | |
} | |
static int | |
redirect_cloexec_dup(int oldfd) | |
{ | |
int ret; | |
ret = rb_cloexec_dup(oldfd); | |
ttyprintf("cloexec_dup(%d) => %d\n", oldfd, ret); | |
return ret; | |
} | |
static int | |
redirect_cloexec_dup2(int oldfd, int newfd) | |
{ | |
int ret; | |
ret = rb_cloexec_dup2(oldfd, newfd); | |
ttyprintf("cloexec_dup2(%d, %d) => %d\n", oldfd, newfd, ret); | |
return ret; | |
} | |
static int | |
redirect_close(int fd) | |
{ | |
int ret; | |
ret = close_unless_reserved(fd); | |
ttyprintf("close(%d) => %d\n", fd, ret); | |
return ret; | |
} | |
static int | |
parent_redirect_open(const char *pathname, int flags, mode_t perm) | |
{ | |
int ret; | |
ret = rb_cloexec_open(pathname, flags, perm); | |
ttyprintf("parent_open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret); | |
return ret; | |
} | |
static int | |
parent_redirect_close(int fd) | |
{ | |
int ret; | |
ret = close_unless_reserved(fd); | |
ttyprintf("parent_close(%d) => %d\n", fd, ret); | |
return ret; | |
} | |
#else | |
#define redirect_dup(oldfd) dup(oldfd) | |
#define redirect_dup2(oldfd, newfd) dup2((oldfd), (newfd)) | |
#define redirect_cloexec_dup(oldfd) rb_cloexec_dup(oldfd) | |
#define redirect_cloexec_dup2(oldfd, newfd) rb_cloexec_dup2((oldfd), (newfd)) | |
#define redirect_close(fd) close_unless_reserved(fd) | |
#define parent_redirect_open(pathname, flags, perm) rb_cloexec_open((pathname), (flags), (perm)) | |
#define parent_redirect_close(fd) close_unless_reserved(fd) | |
#endif | |
/* | |
* Document-module: Process | |
* | |
* The module contains several groups of functionality for handling OS processes: | |
* | |
* * Low-level property introspection and management of the current process, like | |
* Process.argv0, Process.pid; | |
* * Low-level introspection of other processes, like Process.getpgid, Process.getpriority; | |
* * Management of the current process: Process.abort, Process.exit, Process.daemon, etc. | |
* (for convenience, most of those are also available as global functions | |
* and module functions of Kernel); | |
* * Creation and management of child processes: Process.fork, Process.spawn, and | |
* related methods; | |
* * Management of low-level system clock: Process.times and Process.clock_gettime, | |
* which could be important for proper benchmarking and other elapsed | |
* time measurement tasks. | |
*/ | |
static VALUE | |
get_pid(void) | |
{ | |
return PIDT2NUM(getpid()); | |
} | |
/* | |
* call-seq: | |
* Process.pid -> integer | |
* | |
* Returns the process id of this process. Not available on all | |
* platforms. | |
* | |
* Process.pid #=> 27415 | |
*/ | |
static VALUE | |
proc_get_pid(VALUE _) | |
{ | |
return get_pid(); | |
} | |
static VALUE | |
get_ppid(void) | |
{ | |
return PIDT2NUM(getppid()); | |
} | |
/* | |
* call-seq: | |
* Process.ppid -> integer | |
* | |
* Returns the process id of the parent of this process. Returns | |
* untrustworthy value on Win32/64. Not available on all platforms. | |
* | |
* puts "I am #{Process.pid}" | |
* Process.fork { puts "Dad is #{Process.ppid}" } | |
* | |
* <em>produces:</em> | |
* | |
* I am 27417 | |
* Dad is 27417 | |
*/ | |
static VALUE | |
proc_get_ppid(VALUE _) | |
{ | |
return get_ppid(); | |
} | |
/********************************************************************* | |
* | |
* Document-class: Process::Status | |
* | |
* Process::Status encapsulates the information on the | |
* status of a running or terminated system process. The built-in | |
* variable <code>$?</code> is either +nil+ or a | |
* Process::Status object. | |
* | |
* fork { exit 99 } #=> 26557 | |
* Process.wait #=> 26557 | |
* $?.class #=> Process::Status | |
* $?.to_i #=> 25344 | |
* $? >> 8 #=> 99 | |
* $?.stopped? #=> false | |
* $?.exited? #=> true | |
* $?.exitstatus #=> 99 | |
* | |
* Posix systems record information on processes using a 16-bit | |
* integer. The lower bits record the process status (stopped, | |
* exited, signaled) and the upper bits possibly contain additional | |
* information (for example the program's return code in the case of | |
* exited processes). Pre Ruby 1.8, these bits were exposed directly | |
* to the Ruby program. Ruby now encapsulates these in a | |
* Process::Status object. To maximize compatibility, | |
* however, these objects retain a bit-oriented interface. In the | |
* descriptions that follow, when we talk about the integer value of | |
* _stat_, we're referring to this 16 bit value. | |
*/ | |
static VALUE rb_cProcessStatus; | |
struct rb_process_status { | |
rb_pid_t pid; | |
int status; | |
int error; | |
}; | |
static const rb_data_type_t rb_process_status_type = { | |
.wrap_struct_name = "Process::Status", | |
.function = { | |
.dfree = RUBY_DEFAULT_FREE, | |
}, | |
.data = NULL, | |
.flags = RUBY_TYPED_FREE_IMMEDIATELY, | |
}; | |
static VALUE | |
rb_process_status_allocate(VALUE klass) | |
{ | |
struct rb_process_status *data = NULL; | |
return TypedData_Make_Struct(klass, struct rb_process_status, &rb_process_status_type, data); | |
} | |
VALUE | |
rb_last_status_get(void) | |
{ | |
return GET_THREAD()->last_status; | |
} | |
/* | |
* call-seq: | |
* Process.last_status -> Process::Status or nil | |
* | |
* Returns the status of the last executed child process in the | |
* current thread. | |
* | |
* Process.wait Process.spawn("ruby", "-e", "exit 13") | |
* Process.last_status #=> #<Process::Status: pid 4825 exit 13> | |
* | |
* If no child process has ever been executed in the current | |
* thread, this returns +nil+. | |
* | |
* Process.last_status #=> nil | |
*/ | |
static VALUE | |
proc_s_last_status(VALUE mod) | |
{ | |
return rb_last_status_get(); | |
} | |
VALUE | |
rb_process_status_new(rb_pid_t pid, int status, int error) | |
{ | |
VALUE last_status = rb_process_status_allocate(rb_cProcessStatus); | |
struct rb_process_status *data = RTYPEDDATA_DATA(last_status); | |
data->pid = pid; | |
data->status = status; | |
data->error = error; | |
rb_obj_freeze(last_status); | |
return last_status; | |
} | |
static VALUE | |
process_status_dump(VALUE status) | |
{ | |
VALUE dump = rb_class_new_instance(0, 0, rb_cObject); | |
struct rb_process_status *data = RTYPEDDATA_DATA(status); | |
if (data->pid) { | |
rb_ivar_set(dump, id_status, INT2NUM(data->status)); | |
rb_ivar_set(dump, id_pid, PIDT2NUM(data->pid)); | |
} | |
return dump; | |
} | |
static VALUE | |
process_status_load(VALUE real_obj, VALUE load_obj) | |
{ | |
struct rb_process_status *data = rb_check_typeddata(real_obj, &rb_process_status_type); | |
VALUE status = rb_attr_get(load_obj, id_status); | |
VALUE pid = rb_attr_get(load_obj, id_pid); | |
data->pid = NIL_P(pid) ? 0 : NUM2PIDT(pid); | |
data->status = NIL_P(status) ? 0 : NUM2INT(status); | |
return real_obj; | |
} | |
void | |
rb_last_status_set(int status, rb_pid_t pid) | |
{ | |
GET_THREAD()->last_status = rb_process_status_new(pid, status, 0); | |
} | |
void | |
rb_last_status_clear(void) | |
{ | |
GET_THREAD()->last_status = Qnil; | |
} | |
static rb_pid_t | |
pst_pid(VALUE pst) | |
{ | |
struct rb_process_status *data = RTYPEDDATA_DATA(pst); | |
return data->pid; | |
} | |
static int | |
pst_status(VALUE pst) | |
{ | |
struct rb_process_status *data = RTYPEDDATA_DATA(pst); | |
return data->status; | |
} | |
/* | |
* call-seq: | |
* stat.to_i -> integer | |
* | |
* Returns the bits in _stat_ as an Integer. Poking | |
* around in these bits is platform dependent. | |
* | |
* fork { exit 0xab } #=> 26566 | |
* Process.wait #=> 26566 | |
* sprintf('%04x', $?.to_i) #=> "ab00" | |
*/ | |
static VALUE | |
pst_to_i(VALUE self) | |
{ | |
int status = pst_status(self); | |
return RB_INT2NUM(status); | |
} | |
#define PST2INT(st) pst_status(st) | |
/* | |
* call-seq: | |
* stat.pid -> integer | |
* | |
* Returns the process ID that this status object represents. | |
* | |
* fork { exit } #=> 26569 | |
* Process.wait #=> 26569 | |
* $?.pid #=> 26569 | |
*/ | |
static VALUE | |
pst_pid_m(VALUE self) | |
{ | |
rb_pid_t pid = pst_pid(self); | |
return PIDT2NUM(pid); | |
} | |
static VALUE pst_message_status(VALUE str, int status); | |
static void | |
pst_message(VALUE str, rb_pid_t pid, int status) | |
{ | |
rb_str_catf(str, "pid %ld", (long)pid); | |
pst_message_status(str, status); | |
} | |
static VALUE | |
pst_message_status(VALUE str, int status) | |
{ | |
if (WIFSTOPPED(status)) { | |
int stopsig = WSTOPSIG(status); | |
const char *signame = ruby_signal_name(stopsig); | |
if (signame) { | |
rb_str_catf(str, " stopped SIG%s (signal %d)", signame, stopsig); | |
} | |
else { | |
rb_str_catf(str, " stopped signal %d", stopsig); | |
} | |
} | |
if (WIFSIGNALED(status)) { | |
int termsig = WTERMSIG(status); | |
const char *signame = ruby_signal_name(termsig); | |
if (signame) { | |
rb_str_catf(str, " SIG%s (signal %d)", signame, termsig); | |
} | |
else { | |
rb_str_catf(str, " signal %d", termsig); | |
} | |
} | |
if (WIFEXITED(status)) { | |
rb_str_catf(str, " exit %d", WEXITSTATUS(status)); | |
} | |
#ifdef WCOREDUMP | |
if (WCOREDUMP(status)) { | |
rb_str_cat2(str, " (core dumped)"); | |
} | |
#endif | |
return str; | |
} | |
/* | |
* call-seq: | |
* stat.to_s -> string | |
* | |
* Show pid and exit status as a string. | |
* | |
* system("false") | |
* p $?.to_s #=> "pid 12766 exit 1" | |
* | |
*/ | |
static VALUE | |
pst_to_s(VALUE st) | |
{ | |
rb_pid_t pid; | |
int status; | |
VALUE str; | |
pid = pst_pid(st); | |
status = PST2INT(st); | |
str = rb_str_buf_new(0); | |
pst_message(str, pid, status); | |
return str; | |
} | |
/* | |
* call-seq: | |
* stat.inspect -> string | |
* | |
* Override the inspection method. | |
* | |
* system("false") | |
* p $?.inspect #=> "#<Process::Status: pid 12861 exit 1>" | |
* | |
*/ | |
static VALUE | |
pst_inspect(VALUE st) | |
{ | |
rb_pid_t pid; | |
int status; | |
VALUE str; | |
pid = pst_pid(st); | |
if (!pid) { | |
return rb_sprintf("#<%s: uninitialized>", rb_class2name(CLASS_OF(st))); | |
} | |
status = PST2INT(st); | |
str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st))); | |
pst_message(str, pid, status); | |
rb_str_cat2(str, ">"); | |
return str; | |
} | |
/* | |
* call-seq: | |
* stat == other -> true or false | |
* | |
* Returns +true+ if the integer value of _stat_ | |
* equals <em>other</em>. | |
*/ | |
static VALUE | |
pst_equal(VALUE st1, VALUE st2) | |
{ | |
if (st1 == st2) return Qtrue; | |
return rb_equal(pst_to_i(st1), st2); | |
} | |
/* | |
* call-seq: | |
* stat & num -> integer | |
* | |
* Logical AND of the bits in _stat_ with <em>num</em>. | |
* | |
* fork { exit 0x37 } | |
* Process.wait | |
* sprintf('%04x', $?.to_i) #=> "3700" | |
* sprintf('%04x', $? & 0x1e00) #=> "1600" | |
*/ | |
static VALUE | |
pst_bitand(VALUE st1, VALUE st2) | |
{ | |
int status = PST2INT(st1) & NUM2INT(st2); | |
return INT2NUM(status); | |
} | |
/* | |
* call-seq: | |
* stat >> num -> integer | |
* | |
* Shift the bits in _stat_ right <em>num</em> places. | |
* | |
* fork { exit 99 } #=> 26563 | |
* Process.wait #=> 26563 | |
* $?.to_i #=> 25344 | |
* $? >> 8 #=> 99 | |
*/ | |
static VALUE | |
pst_rshift(VALUE st1, VALUE st2) | |
{ | |
int status = PST2INT(st1) >> NUM2INT(st2); | |
return INT2NUM(status); | |
} | |
/* | |
* call-seq: | |
* stat.stopped? -> true or false | |
* | |
* Returns +true+ if this process is stopped. This is only returned | |
* if the corresponding #wait call had the Process::WUNTRACED flag | |
* set. | |
*/ | |
static VALUE | |
pst_wifstopped(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFSTOPPED(status)) | |
return Qtrue; | |
else | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* stat.stopsig -> integer or nil | |
* | |
* Returns the number of the signal that caused _stat_ to stop | |
* (or +nil+ if self is not stopped). | |
*/ | |
static VALUE | |
pst_wstopsig(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFSTOPPED(status)) | |
return INT2NUM(WSTOPSIG(status)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* stat.signaled? -> true or false | |
* | |
* Returns +true+ if _stat_ terminated because of | |
* an uncaught signal. | |
*/ | |
static VALUE | |
pst_wifsignaled(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFSIGNALED(status)) | |
return Qtrue; | |
else | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* stat.termsig -> integer or nil | |
* | |
* Returns the number of the signal that caused _stat_ to | |
* terminate (or +nil+ if self was not terminated by an | |
* uncaught signal). | |
*/ | |
static VALUE | |
pst_wtermsig(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFSIGNALED(status)) | |
return INT2NUM(WTERMSIG(status)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* stat.exited? -> true or false | |
* | |
* Returns +true+ if _stat_ exited normally (for | |
* example using an <code>exit()</code> call or finishing the | |
* program). | |
*/ | |
static VALUE | |
pst_wifexited(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFEXITED(status)) | |
return Qtrue; | |
else | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* stat.exitstatus -> integer or nil | |
* | |
* Returns the least significant eight bits of the return code of | |
* _stat_. Only available if #exited? is +true+. | |
* | |
* fork { } #=> 26572 | |
* Process.wait #=> 26572 | |
* $?.exited? #=> true | |
* $?.exitstatus #=> 0 | |
* | |
* fork { exit 99 } #=> 26573 | |
* Process.wait #=> 26573 | |
* $?.exited? #=> true | |
* $?.exitstatus #=> 99 | |
*/ | |
static VALUE | |
pst_wexitstatus(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (WIFEXITED(status)) | |
return INT2NUM(WEXITSTATUS(status)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* stat.success? -> true, false or nil | |
* | |
* Returns +true+ if _stat_ is successful, +false+ if not. | |
* Returns +nil+ if #exited? is not +true+. | |
*/ | |
static VALUE | |
pst_success_p(VALUE st) | |
{ | |
int status = PST2INT(st); | |
if (!WIFEXITED(status)) | |
return Qnil; | |
return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse; | |
} | |
/* | |
* call-seq: | |
* stat.coredump? -> true or false | |
* | |
* Returns +true+ if _stat_ generated a coredump | |
* when it terminated. Not available on all platforms. | |
*/ | |
static VALUE | |
pst_wcoredump(VALUE st) | |
{ | |
#ifdef WCOREDUMP | |
int status = PST2INT(st); | |
if (WCOREDUMP(status)) | |
return Qtrue; | |
else | |
return Qfalse; | |
#else | |
return Qfalse; | |
#endif | |
} | |
static rb_pid_t | |
do_waitpid(rb_pid_t pid, int *st, int flags) | |
{ | |
#if defined HAVE_WAITPID | |
return waitpid(pid, st, flags); | |
#elif defined HAVE_WAIT4 | |
return wait4(pid, st, flags, NULL); | |
#else | |
# error waitpid or wait4 is required. | |
#endif | |
} | |
#define WAITPID_LOCK_ONLY ((struct waitpid_state *)-1) | |
struct waitpid_state { | |
struct list_node wnode; | |
rb_execution_context_t *ec; | |
rb_nativethread_cond_t *cond; | |
rb_pid_t ret; | |
rb_pid_t pid; | |
int status; | |
int options; | |
int errnum; | |
}; | |
int rb_sigwait_fd_get(const rb_thread_t *); | |
void rb_sigwait_sleep(const rb_thread_t *, int fd, const rb_hrtime_t *); | |
void rb_sigwait_fd_put(const rb_thread_t *, int fd); | |
void rb_thread_sleep_interruptible(void); | |
static int | |
waitpid_signal(struct waitpid_state *w) | |
{ | |
if (w->ec) { /* rb_waitpid */ | |
rb_threadptr_interrupt(rb_ec_thread_ptr(w->ec)); | |
return TRUE; | |
} | |
else { /* ruby_waitpid_locked */ | |
if (w->cond) { | |
rb_native_cond_signal(w->cond); | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
/* | |
* When a thread is done using sigwait_fd and there are other threads | |
* sleeping on waitpid, we must kick one of the threads out of | |
* rb_native_cond_wait so it can switch to rb_sigwait_sleep | |
*/ | |
static void | |
sigwait_fd_migrate_sleeper(rb_vm_t *vm) | |
{ | |
struct waitpid_state *w = 0; | |
list_for_each(&vm->waiting_pids, w, wnode) { | |
if (waitpid_signal(w)) return; | |
} | |
list_for_each(&vm->waiting_grps, w, wnode) { | |
if (waitpid_signal(w)) return; | |
} | |
} | |
void | |
rb_sigwait_fd_migrate(rb_vm_t *vm) | |
{ | |
rb_native_mutex_lock(&vm->waitpid_lock); | |
sigwait_fd_migrate_sleeper(vm); | |
rb_native_mutex_unlock(&vm->waitpid_lock); | |
} | |
#if RUBY_SIGCHLD | |
extern volatile unsigned int ruby_nocldwait; /* signal.c */ | |
/* called by timer thread or thread which acquired sigwait_fd */ | |
static void | |
waitpid_each(struct list_head *head) | |
{ | |
struct waitpid_state *w = 0, *next; | |
list_for_each_safe(head, w, next, wnode) { | |
rb_pid_t ret = do_waitpid(w->pid, &w->status, w->options | WNOHANG); | |
if (!ret) continue; | |
if (ret == -1) w->errnum = errno; | |
w->ret = ret; | |
list_del_init(&w->wnode); | |
waitpid_signal(w); | |
} | |
} | |
#else | |
# define ruby_nocldwait 0 | |
#endif | |
void | |
ruby_waitpid_all(rb_vm_t *vm) | |
{ | |
#if RUBY_SIGCHLD | |
rb_native_mutex_lock(&vm->waitpid_lock); | |
waitpid_each(&vm->waiting_pids); | |
if (list_empty(&vm->waiting_pids)) { | |
waitpid_each(&vm->waiting_grps); | |
} | |
/* emulate SA_NOCLDWAIT */ | |
if (list_empty(&vm->waiting_pids) && list_empty(&vm->waiting_grps)) { | |
while (ruby_nocldwait && do_waitpid(-1, 0, WNOHANG) > 0) | |
; /* keep looping */ | |
} | |
rb_native_mutex_unlock(&vm->waitpid_lock); | |
#endif | |
} | |
static void | |
waitpid_state_init(struct waitpid_state *w, rb_pid_t pid, int options) | |
{ | |
w->ret = 0; | |
w->pid = pid; | |
w->options = options; | |
w->errnum = 0; | |
w->status = 0; | |
} | |
static const rb_hrtime_t * | |
sigwait_sleep_time(void) | |
{ | |
if (SIGCHLD_LOSSY) { | |
static const rb_hrtime_t busy_wait = 100 * RB_HRTIME_PER_MSEC; | |
return &busy_wait; | |
} | |
return 0; | |
} | |
/* | |
* must be called with vm->waitpid_lock held, this is not interruptible | |
*/ | |
rb_pid_t | |
ruby_waitpid_locked(rb_vm_t *vm, rb_pid_t pid, int *status, int options, | |
rb_nativethread_cond_t *cond) | |
{ | |
struct waitpid_state w; | |
assert(!ruby_thread_has_gvl_p() && "must not have GVL"); | |
waitpid_state_init(&w, pid, options); | |
if (w.pid > 0 || list_empty(&vm->waiting_pids)) | |
w.ret = do_waitpid(w.pid, &w.status, w.options | WNOHANG); | |
if (w.ret) { | |
if (w.ret == -1) w.errnum = errno; | |
} | |
else { | |
int sigwait_fd = -1; | |
w.ec = 0; | |
list_add(w.pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w.wnode); | |
do { | |
if (sigwait_fd < 0) | |
sigwait_fd = rb_sigwait_fd_get(0); | |
if (sigwait_fd >= 0) { | |
w.cond = 0; | |
rb_native_mutex_unlock(&vm->waitpid_lock); | |
rb_sigwait_sleep(0, sigwait_fd, sigwait_sleep_time()); | |
rb_native_mutex_lock(&vm->waitpid_lock); | |
} | |
else { | |
w.cond = cond; | |
rb_native_cond_wait(w.cond, &vm->waitpid_lock); | |
} | |
} while (!w.ret); | |
list_del(&w.wnode); | |
/* we're done, maybe other waitpid callers are not: */ | |
if (sigwait_fd >= 0) { | |
rb_sigwait_fd_put(0, sigwait_fd); | |
sigwait_fd_migrate_sleeper(vm); | |
} | |
} | |
if (status) { | |
*status = w.status; | |
} | |
if (w.ret == -1) errno = w.errnum; | |
return w.ret; | |
} | |
static VALUE | |
waitpid_sleep(VALUE x) | |
{ | |
struct waitpid_state *w = (struct waitpid_state *)x; | |
while (!w->ret) { | |
rb_thread_sleep_interruptible(); | |
} | |
return Qfalse; | |
} | |
static VALUE | |
waitpid_cleanup(VALUE x) | |
{ | |
struct waitpid_state *w = (struct waitpid_state *)x; | |
/* | |
* XXX w->ret is sometimes set but list_del is still needed, here, | |
* Not sure why, so we unconditionally do list_del here: | |
*/ | |
if (TRUE || w->ret == 0) { | |
rb_vm_t *vm = rb_ec_vm_ptr(w->ec); | |
rb_native_mutex_lock(&vm->waitpid_lock); | |
list_del(&w->wnode); | |
rb_native_mutex_unlock(&vm->waitpid_lock); | |
} | |
return Qfalse; | |
} | |
static void | |
waitpid_wait(struct waitpid_state *w) | |
{ | |
rb_vm_t *vm = rb_ec_vm_ptr(w->ec); | |
int need_sleep = FALSE; | |
/* | |
* Lock here to prevent do_waitpid from stealing work from the | |
* ruby_waitpid_locked done by mjit workers since mjit works | |
* outside of GVL | |
*/ | |
rb_native_mutex_lock(&vm->waitpid_lock); | |
if (w->pid > 0 || list_empty(&vm->waiting_pids)) { | |
w->ret = do_waitpid(w->pid, &w->status, w->options | WNOHANG); | |
} | |
if (w->ret) { | |
if (w->ret == -1) w->errnum = errno; | |
} | |
else if (w->options & WNOHANG) { | |
} | |
else { | |
need_sleep = TRUE; | |
} | |
if (need_sleep) { | |
w->cond = 0; | |
/* order matters, favor specified PIDs rather than -1 or 0 */ | |
list_add(w->pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w->wnode); | |
} | |
rb_native_mutex_unlock(&vm->waitpid_lock); | |
if (need_sleep) { | |
rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); | |
} | |
} | |
static void * | |
waitpid_blocking_no_SIGCHLD(void *x) | |
{ | |
struct waitpid_state *w = x; | |
w->ret = do_waitpid(w->pid, &w->status, w->options); | |
return 0; | |
} | |
static void | |
waitpid_no_SIGCHLD(struct waitpid_state *w) | |
{ | |
if (w->options & WNOHANG) { | |
w->ret = do_waitpid(w->pid, &w->status, w->options); | |
} | |
else { | |
do { | |
rb_thread_call_without_gvl(waitpid_blocking_no_SIGCHLD, w, | |
RUBY_UBF_PROCESS, 0); | |
} while (w->ret < 0 && errno == EINTR && (RUBY_VM_CHECK_INTS(w->ec),1)); | |
} | |
if (w->ret == -1) | |
w->errnum = errno; | |
} | |
VALUE | |
rb_process_status_wait(rb_pid_t pid, int flags) | |
{ | |
// We only enter the scheduler if we are "blocking": | |
if (!(flags & WNOHANG)) { | |
VALUE scheduler = rb_fiber_scheduler_current(); | |
VALUE result = rb_fiber_scheduler_process_wait(scheduler, pid, flags); | |
if (result != Qundef) return result; | |
} | |
struct waitpid_state waitpid_state; | |
waitpid_state_init(&waitpid_state, pid, flags); | |
waitpid_state.ec = GET_EC(); | |
if (WAITPID_USE_SIGCHLD) { | |
waitpid_wait(&waitpid_state); | |
} | |
else { | |
waitpid_no_SIGCHLD(&waitpid_state); | |
} | |
if (waitpid_state.ret == 0) return Qnil; | |
if (waitpid_state.ret > 0 && ruby_nocldwait) { | |
waitpid_state.ret = -1; | |
waitpid_state.errnum = ECHILD; | |
} | |
return rb_process_status_new(waitpid_state.ret, waitpid_state.status, waitpid_state.errnum); | |
} | |
/* | |
* call-seq: | |
* Process::Status.wait(pid=-1, flags=0) -> Process::Status | |
* | |
* Waits for a child process to exit and returns a Process::Status object | |
* containing information on that process. Which child it waits on | |
* depends on the value of _pid_: | |
* | |
* > 0:: Waits for the child whose process ID equals _pid_. | |
* | |
* 0:: Waits for any child whose process group ID equals that of the | |
* calling process. | |
* | |
* -1:: Waits for any child process (the default if no _pid_ is | |
* given). | |
* | |
* < -1:: Waits for any child whose process group ID equals the absolute | |
* value of _pid_. | |
* | |
* The _flags_ argument may be a logical or of the flag values | |
* Process::WNOHANG (do not block if no child available) | |
* or Process::WUNTRACED (return stopped children that | |
* haven't been reported). Not all flags are available on all | |
* platforms, but a flag value of zero will work on all platforms. | |
* | |
* Returns +nil+ if there are no child processes. | |
* Not available on all platforms. | |
* | |
* May invoke the scheduler hook _process_wait_. | |
* | |
* fork { exit 99 } #=> 27429 | |
* Process::Status.wait #=> pid 27429 exit 99 | |
* $? #=> nil | |
* | |
* pid = fork { sleep 3 } #=> 27440 | |
* Time.now #=> 2008-03-08 19:56:16 +0900 | |
* Process::Status.wait(pid, Process::WNOHANG) #=> nil | |
* Time.now #=> 2008-03-08 19:56:16 +0900 | |
* Process::Status.wait(pid, 0) #=> pid 27440 exit 99 | |
* Time.now #=> 2008-03-08 19:56:19 +0900 | |
* | |
* This is an EXPERIMENTAL FEATURE. | |
*/ | |
VALUE | |
rb_process_status_waitv(int argc, VALUE *argv, VALUE _) | |
{ | |
rb_check_arity(argc, 0, 2); | |
rb_pid_t pid = -1; | |
int flags = 0; | |
if (argc >= 1) { | |
pid = NUM2PIDT(argv[0]); | |
} | |
if (argc >= 2) { | |
flags = RB_NUM2INT(argv[1]); | |
} | |
return rb_process_status_wait(pid, flags); | |
} | |
rb_pid_t | |
rb_waitpid(rb_pid_t pid, int *st, int flags) | |
{ | |
VALUE status = rb_process_status_wait(pid, flags); | |
if (NIL_P(status)) return 0; | |
struct rb_process_status *data = RTYPEDDATA_DATA(status); | |
pid = data->pid; | |
if (st) *st = data->status; | |
if (pid == -1) { | |
errno = data->error; | |
} | |
else { | |
GET_THREAD()->last_status = status; | |
} | |
return pid; | |
} | |
static VALUE | |
proc_wait(int argc, VALUE *argv) | |
{ | |
rb_pid_t pid; | |
int flags, status; | |
flags = 0; | |
if (rb_check_arity(argc, 0, 2) == 0) { | |
pid = -1; | |
} | |
else { | |
VALUE vflags; | |
pid = NUM2PIDT(argv[0]); | |
if (argc == 2 && !NIL_P(vflags = argv[1])) { | |
flags = NUM2UINT(vflags); | |
} | |
} | |
if ((pid = rb_waitpid(pid, &status, flags)) < 0) | |
rb_sys_fail(0); | |
if (pid == 0) { | |
rb_last_status_clear(); | |
return Qnil; | |
} | |
return PIDT2NUM(pid); | |
} | |
/* [MG]:FIXME: I wasn't sure how this should be done, since ::wait() | |
has historically been documented as if it didn't take any arguments | |
despite the fact that it's just an alias for ::waitpid(). The way I | |
have it below is more truthful, but a little confusing. | |
I also took the liberty of putting in the pid values, as they're | |
pretty useful, and it looked as if the original 'ri' output was | |
supposed to contain them after "[...]depending on the value of | |
aPid:". | |
The 'ansi' and 'bs' formats of the ri output don't display the | |
definition list for some reason, but the plain text one does. | |
*/ | |
/* | |
* call-seq: | |
* Process.wait() -> integer | |
* Process.wait(pid=-1, flags=0) -> integer | |
* Process.waitpid(pid=-1, flags=0) -> integer | |
* | |
* Waits for a child process to exit, returns its process id, and | |
* sets <code>$?</code> to a Process::Status object | |
* containing information on that process. Which child it waits on | |
* depends on the value of _pid_: | |
* | |
* > 0:: Waits for the child whose process ID equals _pid_. | |
* | |
* 0:: Waits for any child whose process group ID equals that of the | |
* calling process. | |
* | |
* -1:: Waits for any child process (the default if no _pid_ is | |
* given). | |
* | |
* < -1:: Waits for any child whose process group ID equals the absolute | |
* value of _pid_. | |
* | |
* The _flags_ argument may be a logical or of the flag values | |
* Process::WNOHANG (do not block if no child available) | |
* or Process::WUNTRACED (return stopped children that | |
* haven't been reported). Not all flags are available on all | |
* platforms, but a flag value of zero will work on all platforms. | |
* | |
* Calling this method raises a SystemCallError if there are no child | |
* processes. Not available on all platforms. | |
* | |
* include Process | |
* fork { exit 99 } #=> 27429 | |
* wait #=> 27429 | |
* $?.exitstatus #=> 99 | |
* | |
* pid = fork { sleep 3 } #=> 27440 | |
* Time.now #=> 2008-03-08 19:56:16 +0900 | |
* waitpid(pid, Process::WNOHANG) #=> nil | |
* Time.now #=> 2008-03-08 19:56:16 +0900 | |
* waitpid(pid, 0) #=> 27440 | |
* Time.now #=> 2008-03-08 19:56:19 +0900 | |
*/ | |
static VALUE | |
proc_m_wait(int c, VALUE *v, VALUE _) | |
{ | |
return proc_wait(c, v); | |
} | |
/* | |
* call-seq: | |
* Process.wait2(pid=-1, flags=0) -> [pid, status] | |
* Process.waitpid2(pid=-1, flags=0) -> [pid, status] | |
* | |
* Waits for a child process to exit (see Process::waitpid for exact | |
* semantics) and returns an array containing the process id and the | |
* exit status (a Process::Status object) of that | |
* child. Raises a SystemCallError if there are no child processes. | |
* | |
* Process.fork { exit 99 } #=> 27437 | |
* pid, status = Process.wait2 | |
* pid #=> 27437 | |
* status.exitstatus #=> 99 | |
*/ | |
static VALUE | |
proc_wait2(int argc, VALUE *argv, VALUE _) | |
{ | |
VALUE pid = proc_wait(argc, argv); | |
if (NIL_P(pid)) return Qnil; | |
return rb_assoc_new(pid, rb_last_status_get()); | |
} | |
/* | |
* call-seq: | |
* Process.waitall -> [ [pid1,status1], ...] | |
* | |
* Waits for all children, returning an array of | |
* _pid_/_status_ pairs (where _status_ is a | |
* Process::Status object). | |
* | |
* fork { sleep 0.2; exit 2 } #=> 27432 | |
* fork { sleep 0.1; exit 1 } #=> 27433 | |
* fork { exit 0 } #=> 27434 | |
* p Process.waitall | |
* | |
* <em>produces</em>: | |
* | |
* [[30982, #<Process::Status: pid 30982 exit 0>], | |
* [30979, #<Process::Status: pid 30979 exit 1>], | |
* [30976, #<Process::Status: pid 30976 exit 2>]] | |
*/ | |
static VALUE | |
proc_waitall(VALUE _) | |
{ | |
VALUE result; | |
rb_pid_t pid; | |
int status; | |
result = rb_ary_new(); | |
rb_last_status_clear(); | |
for (pid = -1;;) { | |
pid = rb_waitpid(-1, &status, 0); | |
if (pid == -1) { | |
int e = errno; | |
if (e == ECHILD) | |
break; | |
rb_syserr_fail(e, 0); | |
} | |
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get())); | |
} | |
return result; | |
} | |
static VALUE rb_cWaiter; | |
static VALUE | |
detach_process_pid(VALUE thread) | |
{ | |
return rb_thread_local_aref(thread, id_pid); | |
} | |
static VALUE | |
detach_process_watcher(void *arg) | |
{ | |
rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg; | |
int status; | |
while ((cpid = rb_waitpid(pid, &status, 0)) == 0) { | |
/* wait while alive */ | |
} | |
return rb_last_status_get(); | |
} | |
VALUE | |
rb_detach_process(rb_pid_t pid) | |
{ | |
VALUE watcher = rb_thread_create(detach_process_watcher, (void*)(VALUE)pid); | |
rb_thread_local_aset(watcher, id_pid, PIDT2NUM(pid)); | |
RBASIC_SET_CLASS(watcher, rb_cWaiter); | |
return watcher; | |
} | |
/* | |
* call-seq: | |
* Process.detach(pid) -> thread | |
* | |
* Some operating systems retain the status of terminated child | |
* processes until the parent collects that status (normally using | |
* some variant of <code>wait()</code>). If the parent never collects | |
* this status, the child stays around as a <em>zombie</em> process. | |
* Process::detach prevents this by setting up a separate Ruby thread | |
* whose sole job is to reap the status of the process _pid_ when it | |
* terminates. Use #detach only when you do not intend to explicitly | |
* wait for the child to terminate. | |
* | |
* The waiting thread returns the exit status of the detached process | |
* when it terminates, so you can use Thread#join to | |
* know the result. If specified _pid_ is not a valid child process | |
* ID, the thread returns +nil+ immediately. | |
* | |
* The waiting thread has #pid method which returns the pid. | |
* | |
* In this first example, we don't reap the first child process, so | |
* it appears as a zombie in the process status display. | |
* | |
* p1 = fork { sleep 0.1 } | |
* p2 = fork { sleep 0.2 } | |
* Process.waitpid(p2) | |
* sleep 2 | |
* system("ps -ho pid,state -p #{p1}") | |
* | |
* <em>produces:</em> | |
* | |
* 27389 Z | |
* | |
* In the next example, Process::detach is used to reap | |
* the child automatically. | |
* | |
* p1 = fork { sleep 0.1 } | |
* p2 = fork { sleep 0.2 } | |
* Process.detach(p1) | |
* Process.waitpid(p2) | |
* sleep 2 | |
* system("ps -ho pid,state -p #{p1}") | |
* | |
* <em>(produces no output)</em> | |
*/ | |
static VALUE | |
proc_detach(VALUE obj, VALUE pid) | |
{ | |
return rb_detach_process(NUM2PIDT(pid)); | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static void | |
before_exec_async_signal_safe(void) | |
{ | |
} | |
static void | |
before_exec_non_async_signal_safe(void) | |
{ | |
/* | |
* On Mac OS X 10.5.x (Leopard) or earlier, exec() may return ENOTSUP | |
* if the process have multiple threads. Therefore we have to kill | |
* internal threads temporary. [ruby-core:10583] | |
* This is also true on Haiku. It returns Errno::EPERM against exec() | |
* in multiple threads. | |
* | |
* Nowadays, we always stop the timer thread completely to allow redirects. | |
*/ | |
rb_thread_stop_timer_thread(); | |
} | |
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0) | |
#ifdef _WIN32 | |
int rb_w32_set_nonblock2(int fd, int nonblock); | |
#endif | |
static int | |
set_blocking(int fd) | |
{ | |
#ifdef _WIN32 | |
return rb_w32_set_nonblock2(fd, 0); | |
#elif defined(F_GETFL) && defined(F_SETFL) | |
int fl = fcntl(fd, F_GETFL); /* async-signal-safe */ | |
/* EBADF ought to be possible */ | |
if (fl == -1) return fl; | |
if (fl & O_NONBLOCK) { | |
fl &= ~O_NONBLOCK; | |
return fcntl(fd, F_SETFL, fl); | |
} | |
return 0; | |
#endif | |
} | |
static void | |
stdfd_clear_nonblock(void) | |
{ | |
/* many programs cannot deal with non-blocking stdin/stdout/stderr */ | |
int fd; | |
for (fd = 0; fd < 3; fd++) { | |
(void)set_blocking(fd); /* can't do much about errors anyhow */ | |
} | |
} | |
static void | |
before_exec(void) | |
{ | |
before_exec_non_async_signal_safe(); | |
before_exec_async_signal_safe(); | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static void | |
after_exec_async_signal_safe(void) | |
{ | |
} | |
static void | |
after_exec_non_async_signal_safe(void) | |
{ | |
rb_thread_reset_timer_thread(); | |
rb_thread_start_timer_thread(); | |
} | |
static void | |
after_exec(void) | |
{ | |
after_exec_async_signal_safe(); | |
after_exec_non_async_signal_safe(); | |
} | |
#if defined HAVE_WORKING_FORK || defined HAVE_DAEMON | |
static void | |
before_fork_ruby(void) | |
{ | |
before_exec(); | |
} | |
static void | |
after_fork_ruby(void) | |
{ | |
rb_threadptr_pending_interrupt_clear(GET_THREAD()); | |
after_exec(); | |
} | |
#endif | |
#if defined(HAVE_WORKING_FORK) | |
/* try_with_sh and exec_with_sh should be async-signal-safe. Actually it is.*/ | |
#define try_with_sh(err, prog, argv, envp) ((err == ENOEXEC) ? exec_with_sh((prog), (argv), (envp)) : (void)0) | |
static void | |
exec_with_sh(const char *prog, char **argv, char **envp) | |
{ | |
*argv = (char *)prog; | |
*--argv = (char *)"sh"; | |
if (envp) | |
execve("/bin/sh", argv, envp); /* async-signal-safe */ | |
else | |
execv("/bin/sh", argv); /* async-signal-safe (since SUSv4) */ | |
} | |
#else | |
#define try_with_sh(err, prog, argv, envp) (void)0 | |
#endif | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
proc_exec_cmd(const char *prog, VALUE argv_str, VALUE envp_str) | |
{ | |
char **argv; | |
#ifndef _WIN32 | |
char **envp; | |
int err; | |
#endif | |
argv = ARGVSTR2ARGV(argv_str); | |
if (!prog) { | |
return ENOENT; | |
} | |
#ifdef _WIN32 | |
rb_w32_uaspawn(P_OVERLAY, prog, argv); | |
return errno; | |
#else | |
envp = envp_str ? RB_IMEMO_TMPBUF_PTR(envp_str) : NULL; | |
if (envp_str) | |
execve(prog, argv, envp); /* async-signal-safe */ | |
else | |
execv(prog, argv); /* async-signal-safe (since SUSv4) */ | |
err = errno; | |
try_with_sh(err, prog, argv, envp); /* try_with_sh() is async-signal-safe. */ | |
return err; | |
#endif | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
proc_exec_sh(const char *str, VALUE envp_str) | |
{ | |
const char *s; | |
s = str; | |
while (*s == ' ' || *s == '\t' || *s == '\n') | |
s++; | |
if (!*s) { | |
return ENOENT; | |
} | |
#ifdef _WIN32 | |
rb_w32_uspawn(P_OVERLAY, (char *)str, 0); | |
#elif defined(__CYGWIN32__) | |
{ | |
char fbuf[MAXPATHLEN]; | |
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf)); | |
int status = -1; | |
if (shell) | |
execl(shell, "sh", "-c", str, (char *) NULL); | |
else | |
status = system(str); | |
if (status != -1) | |
exit(status); | |
} | |
#else | |
if (envp_str) | |
execle("/bin/sh", "sh", "-c", str, (char *)NULL, RB_IMEMO_TMPBUF_PTR(envp_str)); /* async-signal-safe */ | |
else | |
execl("/bin/sh", "sh", "-c", str, (char *)NULL); /* async-signal-safe (since SUSv4) */ | |
#endif /* _WIN32 */ | |
return errno; | |
} | |
int | |
rb_proc_exec(const char *str) | |
{ | |
int ret; | |
before_exec(); | |
ret = proc_exec_sh(str, Qfalse); | |
after_exec(); | |
errno = ret; | |
return -1; | |
} | |
static void | |
mark_exec_arg(void *ptr) | |
{ | |
struct rb_execarg *eargp = ptr; | |
if (eargp->use_shell) | |
rb_gc_mark(eargp->invoke.sh.shell_script); | |
else { | |
rb_gc_mark(eargp->invoke.cmd.command_name); | |
rb_gc_mark(eargp->invoke.cmd.command_abspath); | |
rb_gc_mark(eargp->invoke.cmd.argv_str); | |
rb_gc_mark(eargp->invoke.cmd.argv_buf); | |
} | |
rb_gc_mark(eargp->redirect_fds); | |
rb_gc_mark(eargp->envp_str); | |
rb_gc_mark(eargp->envp_buf); | |
rb_gc_mark(eargp->dup2_tmpbuf); | |
rb_gc_mark(eargp->rlimit_limits); | |
rb_gc_mark(eargp->fd_dup2); | |
rb_gc_mark(eargp->fd_close); | |
rb_gc_mark(eargp->fd_open); | |
rb_gc_mark(eargp->fd_dup2_child); | |
rb_gc_mark(eargp->env_modification); | |
rb_gc_mark(eargp->path_env); | |
rb_gc_mark(eargp->chdir_dir); | |
} | |
static size_t | |
memsize_exec_arg(const void *ptr) | |
{ | |
return sizeof(struct rb_execarg); | |
} | |
static const rb_data_type_t exec_arg_data_type = { | |
"exec_arg", | |
{mark_exec_arg, RUBY_TYPED_DEFAULT_FREE, memsize_exec_arg}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
#ifdef _WIN32 | |
# define DEFAULT_PROCESS_ENCODING rb_utf8_encoding() | |
#endif | |
#ifdef DEFAULT_PROCESS_ENCODING | |
# define EXPORT_STR(str) rb_str_export_to_enc((str), DEFAULT_PROCESS_ENCODING) | |
# define EXPORT_DUP(str) export_dup(str) | |
static VALUE | |
export_dup(VALUE str) | |
{ | |
VALUE newstr = EXPORT_STR(str); | |
if (newstr == str) newstr = rb_str_dup(str); | |
return newstr; | |
} | |
#else | |
# define EXPORT_STR(str) (str) | |
# define EXPORT_DUP(str) rb_str_dup(str) | |
#endif | |
#if !defined(HAVE_WORKING_FORK) && defined(HAVE_SPAWNV) | |
# define USE_SPAWNV 1 | |
#else | |
# define USE_SPAWNV 0 | |
#endif | |
#ifndef P_NOWAIT | |
# define P_NOWAIT _P_NOWAIT | |
#endif | |
#if USE_SPAWNV | |
#if defined(_WIN32) | |
#define proc_spawn_cmd_internal(argv, prog) rb_w32_uaspawn(P_NOWAIT, (prog), (argv)) | |
#else | |
static rb_pid_t | |
proc_spawn_cmd_internal(char **argv, char *prog) | |
{ | |
char fbuf[MAXPATHLEN]; | |
rb_pid_t status; | |
if (!prog) | |
prog = argv[0]; | |
prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf)); | |
if (!prog) | |
return -1; | |
before_exec(); | |
status = spawnv(P_NOWAIT, prog, (const char **)argv); | |
if (status == -1 && errno == ENOEXEC) { | |
*argv = (char *)prog; | |
*--argv = (char *)"sh"; | |
status = spawnv(P_NOWAIT, "/bin/sh", (const char **)argv); | |
after_exec(); | |
if (status == -1) errno = ENOEXEC; | |
} | |
return status; | |
} | |
#endif | |
static rb_pid_t | |
proc_spawn_cmd(char **argv, VALUE prog, struct rb_execarg *eargp) | |
{ | |
rb_pid_t pid = -1; | |
if (argv[0]) { | |
#if defined(_WIN32) | |
DWORD flags = 0; | |
if (eargp->new_pgroup_given && eargp->new_pgroup_flag) { | |
flags = CREATE_NEW_PROCESS_GROUP; | |
} | |
pid = rb_w32_uaspawn_flags(P_NOWAIT, prog ? RSTRING_PTR(prog) : 0, argv, flags); | |
#else | |
pid = proc_spawn_cmd_internal(argv, prog ? RSTRING_PTR(prog) : 0); | |
#endif | |
} | |
return pid; | |
} | |
#if defined(_WIN32) | |
#define proc_spawn_sh(str) rb_w32_uspawn(P_NOWAIT, (str), 0) | |
#else | |
static rb_pid_t | |
proc_spawn_sh(char *str) | |
{ | |
char fbuf[MAXPATHLEN]; | |
rb_pid_t status; | |
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf)); | |
before_exec(); | |
status = spawnl(P_NOWAIT, (shell ? shell : "/bin/sh"), "sh", "-c", str, (char*)NULL); | |
after_exec(); | |
return status; | |
} | |
#endif | |
#endif | |
static VALUE | |
hide_obj(VALUE obj) | |
{ | |
RBASIC_CLEAR_CLASS(obj); | |
return obj; | |
} | |
static VALUE | |
check_exec_redirect_fd(VALUE v, int iskey) | |
{ | |
VALUE tmp; | |
int fd; | |
if (FIXNUM_P(v)) { | |
fd = FIX2INT(v); | |
} | |
else if (SYMBOL_P(v)) { | |
ID id = rb_check_id(&v); | |
if (id == id_in) | |
fd = 0; | |
else if (id == id_out) | |
fd = 1; | |
else if (id == id_err) | |
fd = 2; | |
else | |
goto wrong; | |
} | |
else if (!NIL_P(tmp = rb_io_check_io(v))) { | |
rb_io_t *fptr; | |
GetOpenFile(tmp, fptr); | |
if (fptr->tied_io_for_writing) | |
rb_raise(rb_eArgError, "duplex IO redirection"); | |
fd = fptr->fd; | |
} | |
else { | |
goto wrong; | |
} | |
if (fd < 0) { | |
rb_raise(rb_eArgError, "negative file descriptor"); | |
} | |
#ifdef _WIN32 | |
else if (fd >= 3 && iskey) { | |
rb_raise(rb_eArgError, "wrong file descriptor (%d)", fd); | |
} | |
#endif | |
return INT2FIX(fd); | |
wrong: | |
rb_raise(rb_eArgError, "wrong exec redirect"); | |
UNREACHABLE_RETURN(Qundef); | |
} | |
static VALUE | |
check_exec_redirect1(VALUE ary, VALUE key, VALUE param) | |
{ | |
if (ary == Qfalse) { | |
ary = hide_obj(rb_ary_new()); | |
} | |
if (!RB_TYPE_P(key, T_ARRAY)) { | |
VALUE fd = check_exec_redirect_fd(key, !NIL_P(param)); | |
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param))); | |
} | |
else { | |
int i; | |
for (i = 0 ; i < RARRAY_LEN(key); i++) { | |
VALUE v = RARRAY_AREF(key, i); | |
VALUE fd = check_exec_redirect_fd(v, !NIL_P(param)); | |
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param))); | |
} | |
} | |
return ary; | |
} | |
static void | |
check_exec_redirect(VALUE key, VALUE val, struct rb_execarg *eargp) | |
{ | |
VALUE param; | |
VALUE path, flags, perm; | |
VALUE tmp; | |
ID id; | |
switch (TYPE(val)) { | |
case T_SYMBOL: | |
id = rb_check_id(&val); | |
if (id == id_close) { | |
param = Qnil; | |
eargp->fd_close = check_exec_redirect1(eargp->fd_close, key, param); | |
} | |
else if (id == id_in) { | |
param = INT2FIX(0); | |
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); | |
} | |
else if (id == id_out) { | |
param = INT2FIX(1); | |
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); | |
} | |
else if (id == id_err) { | |
param = INT2FIX(2); | |
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); | |
} | |
else { | |
rb_raise(rb_eArgError, "wrong exec redirect symbol: %"PRIsVALUE, | |
val); | |
} | |
break; | |
case T_FILE: | |
io: | |
val = check_exec_redirect_fd(val, 0); | |
/* fall through */ | |
case T_FIXNUM: | |
param = val; | |
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param); | |
break; | |
case T_ARRAY: | |
path = rb_ary_entry(val, 0); | |
if (RARRAY_LEN(val) == 2 && SYMBOL_P(path) && | |
path == ID2SYM(id_child)) { | |
param = check_exec_redirect_fd(rb_ary_entry(val, 1), 0); | |
eargp->fd_dup2_child = check_exec_redirect1(eargp->fd_dup2_child, key, param); | |
} | |
else { | |
FilePathValue(path); | |
flags = rb_ary_entry(val, 1); | |
if (NIL_P(flags)) | |
flags = INT2NUM(O_RDONLY); | |
else if (RB_TYPE_P(flags, T_STRING)) | |
flags = INT2NUM(rb_io_modestr_oflags(StringValueCStr(flags))); | |
else | |
flags = rb_to_int(flags); | |
perm = rb_ary_entry(val, 2); | |
perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm); | |
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)), | |
flags, perm, Qnil)); | |
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param); | |
} | |
break; | |
case T_STRING: | |
path = val; | |
FilePathValue(path); | |
if (RB_TYPE_P(key, T_FILE)) | |
key = check_exec_redirect_fd(key, 1); | |
if (FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2)) | |
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC); | |
else if (RB_TYPE_P(key, T_ARRAY)) { | |
int i; | |
for (i = 0; i < RARRAY_LEN(key); i++) { | |
VALUE v = RARRAY_AREF(key, i); | |
VALUE fd = check_exec_redirect_fd(v, 1); | |
if (FIX2INT(fd) != 1 && FIX2INT(fd) != 2) break; | |
} | |
if (i == RARRAY_LEN(key)) | |
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC); | |
else | |
flags = INT2NUM(O_RDONLY); | |
} | |
else | |
flags = INT2NUM(O_RDONLY); | |
perm = INT2FIX(0644); | |
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)), | |
flags, perm, Qnil)); | |
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param); | |
break; | |
default: | |
tmp = val; | |
val = rb_io_check_io(tmp); | |
if (!NIL_P(val)) goto io; | |
rb_raise(rb_eArgError, "wrong exec redirect action"); | |
} | |
} | |
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) | |
static int rlimit_type_by_sym(VALUE key); | |
static void | |
rb_execarg_addopt_rlimit(struct rb_execarg *eargp, int rtype, VALUE val) | |
{ | |
VALUE ary = eargp->rlimit_limits; | |
VALUE tmp, softlim, hardlim; | |
if (eargp->rlimit_limits == Qfalse) | |
ary = eargp->rlimit_limits = hide_obj(rb_ary_new()); | |
else | |
ary = eargp->rlimit_limits; | |
tmp = rb_check_array_type(val); | |
if (!NIL_P(tmp)) { | |
if (RARRAY_LEN(tmp) == 1) | |
softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0)); | |
else if (RARRAY_LEN(tmp) == 2) { | |
softlim = rb_to_int(rb_ary_entry(tmp, 0)); | |
hardlim = rb_to_int(rb_ary_entry(tmp, 1)); | |
} | |
else { | |
rb_raise(rb_eArgError, "wrong exec rlimit option"); | |
} | |
} | |
else { | |
softlim = hardlim = rb_to_int(val); | |
} | |
tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim)); | |
rb_ary_push(ary, tmp); | |
} | |
#endif | |
#define TO_BOOL(val, name) NIL_P(val) ? 0 : rb_bool_expected((val), name) | |
int | |
rb_execarg_addopt(VALUE execarg_obj, VALUE key, VALUE val) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
ID id; | |
switch (TYPE(key)) { | |
case T_SYMBOL: | |
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) | |
{ | |
int rtype = rlimit_type_by_sym(key); | |
if (rtype != -1) { | |
rb_execarg_addopt_rlimit(eargp, rtype, val); | |
RB_GC_GUARD(execarg_obj); | |
return ST_CONTINUE; | |
} | |
} | |
#endif | |
if (!(id = rb_check_id(&key))) return ST_STOP; | |
#ifdef HAVE_SETPGID | |
if (id == id_pgroup) { | |
rb_pid_t pgroup; | |
if (eargp->pgroup_given) { | |
rb_raise(rb_eArgError, "pgroup option specified twice"); | |
} | |
if (!RTEST(val)) | |
pgroup = -1; /* asis(-1) means "don't call setpgid()". */ | |
else if (val == Qtrue) | |
pgroup = 0; /* new process group. */ | |
else { | |
pgroup = NUM2PIDT(val); | |
if (pgroup < 0) { | |
rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup); | |
} | |
} | |
eargp->pgroup_given = 1; | |
eargp->pgroup_pgid = pgroup; | |
} | |
else | |
#endif | |
#ifdef _WIN32 | |
if (id == id_new_pgroup) { | |
if (eargp->new_pgroup_given) { | |
rb_raise(rb_eArgError, "new_pgroup option specified twice"); | |
} | |
eargp->new_pgroup_given = 1; | |
eargp->new_pgroup_flag = TO_BOOL(val, "new_pgroup"); | |
} | |
else | |
#endif | |
if (id == id_unsetenv_others) { | |
if (eargp->unsetenv_others_given) { | |
rb_raise(rb_eArgError, "unsetenv_others option specified twice"); | |
} | |
eargp->unsetenv_others_given = 1; | |
eargp->unsetenv_others_do = TO_BOOL(val, "unsetenv_others"); | |
} | |
else if (id == id_chdir) { | |
if (eargp->chdir_given) { | |
rb_raise(rb_eArgError, "chdir option specified twice"); | |
} | |
FilePathValue(val); | |
val = rb_str_encode_ospath(val); | |
eargp->chdir_given = 1; | |
eargp->chdir_dir = hide_obj(EXPORT_DUP(val)); | |
} | |
else if (id == id_umask) { | |
mode_t cmask = NUM2MODET(val); | |
if (eargp->umask_given) { | |
rb_raise(rb_eArgError, "umask option specified twice"); | |
} | |
eargp->umask_given = 1; | |
eargp->umask_mask = cmask; | |
} | |
else if (id == id_close_others) { | |
if (eargp->close_others_given) { | |
rb_raise(rb_eArgError, "close_others option specified twice"); | |
} | |
eargp->close_others_given = 1; | |
eargp->close_others_do = TO_BOOL(val, "close_others"); | |
} | |
else if (id == id_in) { | |
key = INT2FIX(0); | |
goto redirect; | |
} | |
else if (id == id_out) { | |
key = INT2FIX(1); | |
goto redirect; | |
} | |
else if (id == id_err) { | |
key = INT2FIX(2); | |
goto redirect; | |
} | |
else if (id == id_uid) { | |
#ifdef HAVE_SETUID | |
if (eargp->uid_given) { | |
rb_raise(rb_eArgError, "uid option specified twice"); | |
} | |
check_uid_switch(); | |
{ | |
eargp->uid = OBJ2UID(val); | |
eargp->uid_given = 1; | |
} | |
#else | |
rb_raise(rb_eNotImpError, | |
"uid option is unimplemented on this machine"); | |
#endif | |
} | |
else if (id == id_gid) { | |
#ifdef HAVE_SETGID | |
if (eargp->gid_given) { | |
rb_raise(rb_eArgError, "gid option specified twice"); | |
} | |
check_gid_switch(); | |
{ | |
eargp->gid = OBJ2GID(val); | |
eargp->gid_given = 1; | |
} | |
#else | |
rb_raise(rb_eNotImpError, | |
"gid option is unimplemented on this machine"); | |
#endif | |
} | |
else if (id == id_exception) { | |
if (eargp->exception_given) { | |
rb_raise(rb_eArgError, "exception option specified twice"); | |
} | |
eargp->exception_given = 1; | |
eargp->exception = TO_BOOL(val, "exception"); | |
} | |
else { | |
return ST_STOP; | |
} | |
break; | |
case T_FIXNUM: | |
case T_FILE: | |
case T_ARRAY: | |
redirect: | |
check_exec_redirect(key, val, eargp); | |
break; | |
default: | |
return ST_STOP; | |
} | |
RB_GC_GUARD(execarg_obj); | |
return ST_CONTINUE; | |
} | |
static int | |
check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg) | |
{ | |
VALUE key = (VALUE)st_key; | |
VALUE val = (VALUE)st_val; | |
VALUE execarg_obj = (VALUE)arg; | |
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) { | |
if (SYMBOL_P(key)) | |
rb_raise(rb_eArgError, "wrong exec option symbol: % "PRIsVALUE, | |
key); | |
rb_raise(rb_eArgError, "wrong exec option"); | |
} | |
return ST_CONTINUE; | |
} | |
static int | |
check_exec_options_i_extract(st_data_t st_key, st_data_t st_val, st_data_t arg) | |
{ | |
VALUE key = (VALUE)st_key; | |
VALUE val = (VALUE)st_val; | |
VALUE *args = (VALUE *)arg; | |
VALUE execarg_obj = args[0]; | |
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) { | |
VALUE nonopts = args[1]; | |
if (NIL_P(nonopts)) args[1] = nonopts = rb_hash_new(); | |
rb_hash_aset(nonopts, key, val); | |
} | |
return ST_CONTINUE; | |
} | |
static int | |
check_exec_fds_1(struct rb_execarg *eargp, VALUE h, int maxhint, VALUE ary) | |
{ | |
long i; | |
if (ary != Qfalse) { | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int fd = FIX2INT(RARRAY_AREF(elt, 0)); | |
if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) { | |
rb_raise(rb_eArgError, "fd %d specified twice", fd); | |
} | |
if (ary == eargp->fd_dup2) | |
rb_hash_aset(h, INT2FIX(fd), Qtrue); | |
else if (ary == eargp->fd_dup2_child) | |
rb_hash_aset(h, INT2FIX(fd), RARRAY_AREF(elt, 1)); | |
else /* ary == eargp->fd_close */ | |
rb_hash_aset(h, INT2FIX(fd), INT2FIX(-1)); | |
if (maxhint < fd) | |
maxhint = fd; | |
if (ary == eargp->fd_dup2 || ary == eargp->fd_dup2_child) { | |
fd = FIX2INT(RARRAY_AREF(elt, 1)); | |
if (maxhint < fd) | |
maxhint = fd; | |
} | |
} | |
} | |
return maxhint; | |
} | |
static VALUE | |
check_exec_fds(struct rb_execarg *eargp) | |
{ | |
VALUE h = rb_hash_new(); | |
VALUE ary; | |
int maxhint = -1; | |
long i; | |
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2); | |
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_close); | |
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2_child); | |
if (eargp->fd_dup2_child) { | |
ary = eargp->fd_dup2_child; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int newfd = FIX2INT(RARRAY_AREF(elt, 0)); | |
int oldfd = FIX2INT(RARRAY_AREF(elt, 1)); | |
int lastfd = oldfd; | |
VALUE val = rb_hash_lookup(h, INT2FIX(lastfd)); | |
long depth = 0; | |
while (FIXNUM_P(val) && 0 <= FIX2INT(val)) { | |
lastfd = FIX2INT(val); | |
val = rb_hash_lookup(h, val); | |
if (RARRAY_LEN(ary) < depth) | |
rb_raise(rb_eArgError, "cyclic child fd redirection from %d", oldfd); | |
depth++; | |
} | |
if (val != Qtrue) | |
rb_raise(rb_eArgError, "child fd %d is not redirected", oldfd); | |
if (oldfd != lastfd) { | |
VALUE val2; | |
rb_ary_store(elt, 1, INT2FIX(lastfd)); | |
rb_hash_aset(h, INT2FIX(newfd), INT2FIX(lastfd)); | |
val = INT2FIX(oldfd); | |
while (FIXNUM_P(val2 = rb_hash_lookup(h, val))) { | |
rb_hash_aset(h, val, INT2FIX(lastfd)); | |
val = val2; | |
} | |
} | |
} | |
} | |
eargp->close_others_maxhint = maxhint; | |
return h; | |
} | |
static void | |
rb_check_exec_options(VALUE opthash, VALUE execarg_obj) | |
{ | |
if (RHASH_EMPTY_P(opthash)) | |
return; | |
rb_hash_stlike_foreach(opthash, check_exec_options_i, (st_data_t)execarg_obj); | |
} | |
VALUE | |
rb_execarg_extract_options(VALUE execarg_obj, VALUE opthash) | |
{ | |
VALUE args[2]; | |
if (RHASH_EMPTY_P(opthash)) | |
return Qnil; | |
args[0] = execarg_obj; | |
args[1] = Qnil; | |
rb_hash_stlike_foreach(opthash, check_exec_options_i_extract, (st_data_t)args); | |
return args[1]; | |
} | |
#ifdef ENV_IGNORECASE | |
#define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0) | |
#else | |
#define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0) | |
#endif | |
static int | |
check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg) | |
{ | |
VALUE key = (VALUE)st_key; | |
VALUE val = (VALUE)st_val; | |
VALUE env = ((VALUE *)arg)[0]; | |
VALUE *path = &((VALUE *)arg)[1]; | |
char *k; | |
k = StringValueCStr(key); | |
if (strchr(k, '=')) | |
rb_raise(rb_eArgError, "environment name contains a equal : %"PRIsVALUE, key); | |
if (!NIL_P(val)) | |
StringValueCStr(val); | |
key = EXPORT_STR(key); | |
if (!NIL_P(val)) val = EXPORT_STR(val); | |
if (ENVMATCH(k, PATH_ENV)) { | |
*path = val; | |
} | |
rb_ary_push(env, hide_obj(rb_assoc_new(key, val))); | |
return ST_CONTINUE; | |
} | |
static VALUE | |
rb_check_exec_env(VALUE hash, VALUE *path) | |
{ | |
VALUE env[2]; | |
env[0] = hide_obj(rb_ary_new()); | |
env[1] = Qfalse; | |
rb_hash_stlike_foreach(hash, check_exec_env_i, (st_data_t)env); | |
*path = env[1]; | |
return env[0]; | |
} | |
static VALUE | |
rb_check_argv(int argc, VALUE *argv) | |
{ | |
VALUE tmp, prog; | |
int i; | |
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); | |
prog = 0; | |
tmp = rb_check_array_type(argv[0]); | |
if (!NIL_P(tmp)) { | |
if (RARRAY_LEN(tmp) != 2) { | |
rb_raise(rb_eArgError, "wrong first argument"); | |
} | |
prog = RARRAY_AREF(tmp, 0); | |
argv[0] = RARRAY_AREF(tmp, 1); | |
SafeStringValue(prog); | |
StringValueCStr(prog); | |
prog = rb_str_new_frozen(prog); | |
} | |
for (i = 0; i < argc; i++) { | |
SafeStringValue(argv[i]); | |
argv[i] = rb_str_new_frozen(argv[i]); | |
StringValueCStr(argv[i]); | |
} | |
return prog; | |
} | |
static VALUE | |
check_hash(VALUE obj) | |
{ | |
if (RB_SPECIAL_CONST_P(obj)) return Qnil; | |
switch (RB_BUILTIN_TYPE(obj)) { | |
case T_STRING: | |
case T_ARRAY: | |
return Qnil; | |
default: | |
break; | |
} | |
return rb_check_hash_type(obj); | |
} | |
static VALUE | |
rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *opthash_ret) | |
{ | |
VALUE hash, prog; | |
if (0 < *argc_p) { | |
hash = check_hash((*argv_p)[*argc_p-1]); | |
if (!NIL_P(hash)) { | |
*opthash_ret = hash; | |
(*argc_p)--; | |
} | |
} | |
if (0 < *argc_p) { | |
hash = check_hash((*argv_p)[0]); | |
if (!NIL_P(hash)) { | |
*env_ret = hash; | |
(*argc_p)--; | |
(*argv_p)++; | |
} | |
} | |
prog = rb_check_argv(*argc_p, *argv_p); | |
if (!prog) { | |
prog = (*argv_p)[0]; | |
if (accept_shell && *argc_p == 1) { | |
*argc_p = 0; | |
*argv_p = 0; | |
} | |
} | |
return prog; | |
} | |
#ifndef _WIN32 | |
struct string_part { | |
const char *ptr; | |
size_t len; | |
}; | |
static int | |
compare_posix_sh(const void *key, const void *el) | |
{ | |
const struct string_part *word = key; | |
int ret = strncmp(word->ptr, el, word->len); | |
if (!ret && ((const char *)el)[word->len]) ret = -1; | |
return ret; | |
} | |
#endif | |
static void | |
rb_exec_fillarg(VALUE prog, int argc, VALUE *argv, VALUE env, VALUE opthash, VALUE execarg_obj) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
char fbuf[MAXPATHLEN]; | |
MEMZERO(eargp, struct rb_execarg, 1); | |
if (!NIL_P(opthash)) { | |
rb_check_exec_options(opthash, execarg_obj); | |
} | |
if (!NIL_P(env)) { | |
env = rb_check_exec_env(env, &eargp->path_env); | |
eargp->env_modification = env; | |
} | |
prog = EXPORT_STR(prog); | |
eargp->use_shell = argc == 0; | |
if (eargp->use_shell) | |
eargp->invoke.sh.shell_script = prog; | |
else | |
eargp->invoke.cmd.command_name = prog; | |
#ifndef _WIN32 | |
if (eargp->use_shell) { | |
static const char posix_sh_cmds[][9] = { | |
"!", /* reserved */ | |
".", /* special built-in */ | |
":", /* special built-in */ | |
"break", /* special built-in */ | |
"case", /* reserved */ | |
"continue", /* special built-in */ | |
"do", /* reserved */ | |
"done", /* reserved */ | |
"elif", /* reserved */ | |
"else", /* reserved */ | |
"esac", /* reserved */ | |
"eval", /* special built-in */ | |
"exec", /* special built-in */ | |
"exit", /* special built-in */ | |
"export", /* special built-in */ | |
"fi", /* reserved */ | |
"for", /* reserved */ | |
"if", /* reserved */ | |
"in", /* reserved */ | |
"readonly", /* special built-in */ | |
"return", /* special built-in */ | |
"set", /* special built-in */ | |
"shift", /* special built-in */ | |
"then", /* reserved */ | |
"times", /* special built-in */ | |
"trap", /* special built-in */ | |
"unset", /* special built-in */ | |
"until", /* reserved */ | |
"while", /* reserved */ | |
}; | |
const char *p; | |
struct string_part first = {0, 0}; | |
int has_meta = 0; | |
/* | |
* meta characters: | |
* | |
* * Pathname Expansion | |
* ? Pathname Expansion | |
* {} Grouping Commands | |
* [] Pathname Expansion | |
* <> Redirection | |
* () Grouping Commands | |
* ~ Tilde Expansion | |
* & AND Lists, Asynchronous Lists | |
* | OR Lists, Pipelines | |
* \ Escape Character | |
* $ Parameter Expansion | |
* ; Sequential Lists | |
* ' Single-Quotes | |
* ` Command Substitution | |
* " Double-Quotes | |
* \n Lists | |
* | |
* # Comment | |
* = Assignment preceding command name | |
* % (used in Parameter Expansion) | |
*/ | |
for (p = RSTRING_PTR(prog); *p; p++) { | |
if (*p == ' ' || *p == '\t') { | |
if (first.ptr && !first.len) first.len = p - first.ptr; | |
} | |
else { | |
if (!first.ptr) first.ptr = p; | |
} | |
if (!has_meta && strchr("*?{}[]<>()~&|\\$;'`\"\n#", *p)) | |
has_meta = 1; | |
if (!first.len) { | |
if (*p == '=') { | |
has_meta = 1; | |
} | |
else if (*p == '/') { | |
first.len = 0x100; /* longer than any posix_sh_cmds */ | |
} | |
} | |
if (has_meta) | |
break; | |
} | |
if (!has_meta && first.ptr) { | |
if (!first.len) first.len = p - first.ptr; | |
if (first.len > 0 && first.len <= sizeof(posix_sh_cmds[0]) && | |
bsearch(&first, posix_sh_cmds, numberof(posix_sh_cmds), sizeof(posix_sh_cmds[0]), compare_posix_sh)) | |
has_meta = 1; | |
} | |
if (!has_meta) { | |
/* avoid shell since no shell meta character found. */ | |
eargp->use_shell = 0; | |
} | |
if (!eargp->use_shell) { | |
VALUE argv_buf; | |
argv_buf = hide_obj(rb_str_buf_new(0)); | |
p = RSTRING_PTR(prog); | |
while (*p) { | |
while (*p == ' ' || *p == '\t') | |
p++; | |
if (*p) { | |
const char *w = p; | |
while (*p && *p != ' ' && *p != '\t') | |
p++; | |
rb_str_buf_cat(argv_buf, w, p-w); | |
rb_str_buf_cat(argv_buf, "", 1); /* append '\0' */ | |
} | |
} | |
eargp->invoke.cmd.argv_buf = argv_buf; | |
eargp->invoke.cmd.command_name = | |
hide_obj(rb_str_subseq(argv_buf, 0, strlen(RSTRING_PTR(argv_buf)))); | |
rb_enc_copy(eargp->invoke.cmd.command_name, prog); | |
} | |
} | |
#endif | |
if (!eargp->use_shell) { | |
const char *abspath; | |
const char *path_env = 0; | |
if (RTEST(eargp->path_env)) path_env = RSTRING_PTR(eargp->path_env); | |
abspath = dln_find_exe_r(RSTRING_PTR(eargp->invoke.cmd.command_name), | |
path_env, fbuf, sizeof(fbuf)); | |
if (abspath) | |
eargp->invoke.cmd.command_abspath = rb_str_new_cstr(abspath); | |
else | |
eargp->invoke.cmd.command_abspath = Qnil; | |
} | |
if (!eargp->use_shell && !eargp->invoke.cmd.argv_buf) { | |
int i; | |
VALUE argv_buf; | |
argv_buf = rb_str_buf_new(0); | |
hide_obj(argv_buf); | |
for (i = 0; i < argc; i++) { | |
VALUE arg = argv[i]; | |
const char *s = StringValueCStr(arg); | |
#ifdef DEFAULT_PROCESS_ENCODING | |
arg = EXPORT_STR(arg); | |
s = RSTRING_PTR(arg); | |
#endif | |
rb_str_buf_cat(argv_buf, s, RSTRING_LEN(arg) + 1); /* include '\0' */ | |
} | |
eargp->invoke.cmd.argv_buf = argv_buf; | |
} | |
if (!eargp->use_shell) { | |
const char *p, *ep, *null=NULL; | |
VALUE argv_str; | |
argv_str = hide_obj(rb_str_buf_new(sizeof(char*) * (argc + 2))); | |
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* place holder for /bin/sh of try_with_sh. */ | |
p = RSTRING_PTR(eargp->invoke.cmd.argv_buf); | |
ep = p + RSTRING_LEN(eargp->invoke.cmd.argv_buf); | |
while (p < ep) { | |
rb_str_buf_cat(argv_str, (char *)&p, sizeof(p)); | |
p += strlen(p) + 1; | |
} | |
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* terminator for execve. */ | |
eargp->invoke.cmd.argv_str = | |
rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(argv_str); | |
} | |
RB_GC_GUARD(execarg_obj); | |
} | |
struct rb_execarg * | |
rb_execarg_get(VALUE execarg_obj) | |
{ | |
struct rb_execarg *eargp; | |
TypedData_Get_Struct(execarg_obj, struct rb_execarg, &exec_arg_data_type, eargp); | |
return eargp; | |
} | |
static VALUE | |
rb_execarg_init(int argc, const VALUE *orig_argv, int accept_shell, VALUE execarg_obj) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
VALUE prog, ret; | |
VALUE env = Qnil, opthash = Qnil; | |
VALUE argv_buf; | |
VALUE *argv = ALLOCV_N(VALUE, argv_buf, argc); | |
MEMCPY(argv, orig_argv, VALUE, argc); | |
prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash); | |
rb_exec_fillarg(prog, argc, argv, env, opthash, execarg_obj); | |
ALLOCV_END(argv_buf); | |
ret = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; | |
RB_GC_GUARD(execarg_obj); | |
return ret; | |
} | |
VALUE | |
rb_execarg_new(int argc, const VALUE *argv, int accept_shell, int allow_exc_opt) | |
{ | |
VALUE execarg_obj; | |
struct rb_execarg *eargp; | |
execarg_obj = TypedData_Make_Struct(0, struct rb_execarg, &exec_arg_data_type, eargp); | |
rb_execarg_init(argc, argv, accept_shell, execarg_obj); | |
if (!allow_exc_opt && eargp->exception_given) { | |
rb_raise(rb_eArgError, "exception option is not allowed"); | |
} | |
return execarg_obj; | |
} | |
void | |
rb_execarg_setenv(VALUE execarg_obj, VALUE env) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
env = !NIL_P(env) ? rb_check_exec_env(env, &eargp->path_env) : Qfalse; | |
eargp->env_modification = env; | |
} | |
static int | |
fill_envp_buf_i(st_data_t st_key, st_data_t st_val, st_data_t arg) | |
{ | |
VALUE key = (VALUE)st_key; | |
VALUE val = (VALUE)st_val; | |
VALUE envp_buf = (VALUE)arg; | |
rb_str_buf_cat2(envp_buf, StringValueCStr(key)); | |
rb_str_buf_cat2(envp_buf, "="); | |
rb_str_buf_cat2(envp_buf, StringValueCStr(val)); | |
rb_str_buf_cat(envp_buf, "", 1); /* append '\0' */ | |
return ST_CONTINUE; | |
} | |
static long run_exec_dup2_tmpbuf_size(long n); | |
struct open_struct { | |
VALUE fname; | |
int oflags; | |
mode_t perm; | |
int ret; | |
int err; | |
}; | |
static void * | |
open_func(void *ptr) | |
{ | |
struct open_struct *data = ptr; | |
const char *fname = RSTRING_PTR(data->fname); | |
data->ret = parent_redirect_open(fname, data->oflags, data->perm); | |
data->err = errno; | |
return NULL; | |
} | |
static void | |
rb_execarg_allocate_dup2_tmpbuf(struct rb_execarg *eargp, long len) | |
{ | |
VALUE tmpbuf = rb_imemo_tmpbuf_auto_free_pointer(); | |
rb_imemo_tmpbuf_set_ptr(tmpbuf, ruby_xmalloc(run_exec_dup2_tmpbuf_size(len))); | |
eargp->dup2_tmpbuf = tmpbuf; | |
} | |
static VALUE | |
rb_execarg_parent_start1(VALUE execarg_obj) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
int unsetenv_others; | |
VALUE envopts; | |
VALUE ary; | |
ary = eargp->fd_open; | |
if (ary != Qfalse) { | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int fd = FIX2INT(RARRAY_AREF(elt, 0)); | |
VALUE param = RARRAY_AREF(elt, 1); | |
VALUE vpath = RARRAY_AREF(param, 0); | |
int flags = NUM2INT(RARRAY_AREF(param, 1)); | |
mode_t perm = NUM2MODET(RARRAY_AREF(param, 2)); | |
VALUE fd2v = RARRAY_AREF(param, 3); | |
int fd2; | |
if (NIL_P(fd2v)) { | |
struct open_struct open_data; | |
again: | |
open_data.fname = vpath; | |
open_data.oflags = flags; | |
open_data.perm = perm; | |
open_data.ret = -1; | |
open_data.err = EINTR; | |
rb_thread_call_without_gvl2(open_func, (void *)&open_data, RUBY_UBF_IO, 0); | |
if (open_data.ret == -1) { | |
if (open_data.err == EINTR) { | |
rb_thread_check_ints(); | |
goto again; | |
} | |
rb_syserr_fail_str(open_data.err, vpath); | |
} | |
fd2 = open_data.ret; | |
rb_update_max_fd(fd2); | |
RARRAY_ASET(param, 3, INT2FIX(fd2)); | |
rb_thread_check_ints(); | |
} | |
else { | |
fd2 = NUM2INT(fd2v); | |
} | |
rb_execarg_addopt(execarg_obj, INT2FIX(fd), INT2FIX(fd2)); | |
} | |
} | |
eargp->redirect_fds = check_exec_fds(eargp); | |
ary = eargp->fd_dup2; | |
if (ary != Qfalse) { | |
rb_execarg_allocate_dup2_tmpbuf(eargp, RARRAY_LEN(ary)); | |
} | |
unsetenv_others = eargp->unsetenv_others_given && eargp->unsetenv_others_do; | |
envopts = eargp->env_modification; | |
if (ALWAYS_NEED_ENVP || unsetenv_others || envopts != Qfalse) { | |
VALUE envtbl, envp_str, envp_buf; | |
char *p, *ep; | |
if (unsetenv_others) { | |
envtbl = rb_hash_new(); | |
} | |
else { | |
envtbl = rb_const_get(rb_cObject, id_ENV); | |
envtbl = rb_to_hash_type(envtbl); | |
} | |
hide_obj(envtbl); | |
if (envopts != Qfalse) { | |
st_table *stenv = RHASH_TBL_RAW(envtbl); | |
long i; | |
for (i = 0; i < RARRAY_LEN(envopts); i++) { | |
VALUE pair = RARRAY_AREF(envopts, i); | |
VALUE key = RARRAY_AREF(pair, 0); | |
VALUE val = RARRAY_AREF(pair, 1); | |
if (NIL_P(val)) { | |
st_data_t stkey = (st_data_t)key; | |
st_delete(stenv, &stkey, NULL); | |
} | |
else { | |
st_insert(stenv, (st_data_t)key, (st_data_t)val); | |
RB_OBJ_WRITTEN(envtbl, Qundef, key); | |
RB_OBJ_WRITTEN(envtbl, Qundef, val); | |
} | |
} | |
} | |
envp_buf = rb_str_buf_new(0); | |
hide_obj(envp_buf); | |
rb_hash_stlike_foreach(envtbl, fill_envp_buf_i, (st_data_t)envp_buf); | |
envp_str = rb_str_buf_new(sizeof(char*) * (RHASH_SIZE(envtbl) + 1)); | |
hide_obj(envp_str); | |
p = RSTRING_PTR(envp_buf); | |
ep = p + RSTRING_LEN(envp_buf); | |
while (p < ep) { | |
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p)); | |
p += strlen(p) + 1; | |
} | |
p = NULL; | |
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p)); | |
eargp->envp_str = | |
rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(envp_str); | |
eargp->envp_buf = envp_buf; | |
/* | |
char **tmp_envp = (char **)RSTRING_PTR(envp_str); | |
while (*tmp_envp) { | |
printf("%s\n", *tmp_envp); | |
tmp_envp++; | |
} | |
*/ | |
} | |
RB_GC_GUARD(execarg_obj); | |
return Qnil; | |
} | |
void | |
rb_execarg_parent_start(VALUE execarg_obj) | |
{ | |
int state; | |
rb_protect(rb_execarg_parent_start1, execarg_obj, &state); | |
if (state) { | |
rb_execarg_parent_end(execarg_obj); | |
rb_jump_tag(state); | |
} | |
} | |
static VALUE | |
execarg_parent_end(VALUE execarg_obj) | |
{ | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
int err = errno; | |
VALUE ary; | |
ary = eargp->fd_open; | |
if (ary != Qfalse) { | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
VALUE param = RARRAY_AREF(elt, 1); | |
VALUE fd2v; | |
int fd2; | |
fd2v = RARRAY_AREF(param, 3); | |
if (!NIL_P(fd2v)) { | |
fd2 = FIX2INT(fd2v); | |
parent_redirect_close(fd2); | |
RARRAY_ASET(param, 3, Qnil); | |
} | |
} | |
} | |
errno = err; | |
return execarg_obj; | |
} | |
void | |
rb_execarg_parent_end(VALUE execarg_obj) | |
{ | |
execarg_parent_end(execarg_obj); | |
RB_GC_GUARD(execarg_obj); | |
} | |
static void | |
rb_exec_fail(struct rb_execarg *eargp, int err, const char *errmsg) | |
{ | |
if (!errmsg || !*errmsg) return; | |
if (strcmp(errmsg, "chdir") == 0) { | |
rb_sys_fail_str(eargp->chdir_dir); | |
} | |
rb_sys_fail(errmsg); | |
} | |
#if 0 | |
void | |
rb_execarg_fail(VALUE execarg_obj, int err, const char *errmsg) | |
{ | |
if (!errmsg || !*errmsg) return; | |
rb_exec_fail(rb_execarg_get(execarg_obj), err, errmsg); | |
RB_GC_GUARD(execarg_obj); | |
} | |
#endif | |
VALUE | |
rb_f_exec(int argc, const VALUE *argv) | |
{ | |
VALUE execarg_obj, fail_str; | |
struct rb_execarg *eargp; | |
#define CHILD_ERRMSG_BUFLEN 80 | |
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; | |
int err, state; | |
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); | |
eargp = rb_execarg_get(execarg_obj); | |
if (mjit_enabled) mjit_finish(false); // avoid leaking resources, and do not leave files. XXX: JIT-ed handle can leak after exec error is rescued. | |
before_exec(); /* stop timer thread before redirects */ | |
rb_protect(rb_execarg_parent_start1, execarg_obj, &state); | |
if (state) { | |
execarg_parent_end(execarg_obj); | |
after_exec(); /* restart timer thread */ | |
rb_jump_tag(state); | |
} | |
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; | |
err = exec_async_signal_safe(eargp, errmsg, sizeof(errmsg)); | |
after_exec(); /* restart timer thread */ | |
rb_exec_fail(eargp, err, errmsg); | |
RB_GC_GUARD(execarg_obj); | |
rb_syserr_fail_str(err, fail_str); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
NORETURN(static VALUE f_exec(int c, const VALUE *a, VALUE _)); | |
/* | |
* call-seq: | |
* exec([env,] command... [,options]) | |
* | |
* Replaces the current process by running the given external _command_, which | |
* can take one of the following forms: | |
* | |
* [<code>exec(commandline)</code>] | |
* command line string which is passed to the standard shell | |
* [<code>exec(cmdname, arg1, ...)</code>] | |
* command name and one or more arguments (no shell) | |
* [<code>exec([cmdname, argv0], arg1, ...)</code>] | |
* command name, argv[0] and zero or more arguments (no shell) | |
* | |
* In the first form, the string is taken as a command line that is subject to | |
* shell expansion before being executed. | |
* | |
* The standard shell always means <code>"/bin/sh"</code> on Unix-like systems, | |
* same as <code>ENV["RUBYSHELL"]</code> | |
* (or <code>ENV["COMSPEC"]</code> on Windows NT series), and similar. | |
* | |
* If the string from the first form (<code>exec("command")</code>) follows | |
* these simple rules: | |
* | |
* * no meta characters | |
* * no shell reserved word and no special built-in | |
* * Ruby invokes the command directly without shell | |
* | |
* You can force shell invocation by adding ";" to the string (because ";" is | |
* a meta character). | |
* | |
* Note that this behavior is observable by pid obtained | |
* (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked | |
* command, not shell. | |
* | |
* In the second form (<code>exec("command1", "arg1", ...)</code>), the first | |
* is taken as a command name and the rest are passed as parameters to command | |
* with no shell expansion. | |
* | |
* In the third form (<code>exec(["command", "argv0"], "arg1", ...)</code>), | |
* starting a two-element array at the beginning of the command, the first | |
* element is the command to be executed, and the second argument is used as | |
* the <code>argv[0]</code> value, which may show up in process listings. | |
* | |
* In order to execute the command, one of the <code>exec(2)</code> system | |
* calls are used, so the running command may inherit some of the environment | |
* of the original program (including open file descriptors). | |
* | |
* This behavior is modified by the given +env+ and +options+ parameters. See | |
* ::spawn for details. | |
* | |
* If the command fails to execute (typically Errno::ENOENT when | |
* it was not found) a SystemCallError exception is raised. | |
* | |
* This method modifies process attributes according to given +options+ before | |
* <code>exec(2)</code> system call. See ::spawn for more details about the | |
* given +options+. | |
* | |
* The modified attributes may be retained when <code>exec(2)</code> system | |
* call fails. | |
* | |
* For example, hard resource limits are not restorable. | |
* | |
* Consider to create a child process using ::spawn or Kernel#system if this | |
* is not acceptable. | |
* | |
* exec "echo *" # echoes list of files in current directory | |
* # never get here | |
* | |
* exec "echo", "*" # echoes an asterisk | |
* # never get here | |
*/ | |
static VALUE | |
f_exec(int c, const VALUE *a, VALUE _) | |
{ | |
rb_f_exec(c, a); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
#define ERRMSG(str) do { if (errmsg && 0 < errmsg_buflen) strlcpy(errmsg, (str), errmsg_buflen); } while (0) | |
#define ERRMSG1(str, a) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a)); } while (0) | |
#define ERRMSG2(str, a, b) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a), (b)); } while (0) | |
static int fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen); | |
static int fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen); | |
static int fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen); | |
static int | |
save_redirect_fd(int fd, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
if (sargp) { | |
VALUE newary, redirection; | |
int save_fd = redirect_cloexec_dup(fd), cloexec; | |
if (save_fd == -1) { | |
if (errno == EBADF) | |
return 0; | |
ERRMSG("dup"); | |
return -1; | |
} | |
rb_update_max_fd(save_fd); | |
newary = sargp->fd_dup2; | |
if (newary == Qfalse) { | |
newary = hide_obj(rb_ary_new()); | |
sargp->fd_dup2 = newary; | |
} | |
cloexec = fd_get_cloexec(fd, errmsg, errmsg_buflen); | |
redirection = hide_obj(rb_assoc_new(INT2FIX(fd), INT2FIX(save_fd))); | |
if (cloexec) rb_ary_push(redirection, Qtrue); | |
rb_ary_push(newary, redirection); | |
newary = sargp->fd_close; | |
if (newary == Qfalse) { | |
newary = hide_obj(rb_ary_new()); | |
sargp->fd_close = newary; | |
} | |
rb_ary_push(newary, hide_obj(rb_assoc_new(INT2FIX(save_fd), Qnil))); | |
} | |
return 0; | |
} | |
static int | |
intcmp(const void *a, const void *b) | |
{ | |
return *(int*)a - *(int*)b; | |
} | |
static int | |
intrcmp(const void *a, const void *b) | |
{ | |
return *(int*)b - *(int*)a; | |
} | |
struct run_exec_dup2_fd_pair { | |
int oldfd; | |
int newfd; | |
long older_index; | |
long num_newer; | |
int cloexec; | |
}; | |
static long | |
run_exec_dup2_tmpbuf_size(long n) | |
{ | |
return sizeof(struct run_exec_dup2_fd_pair) * n; | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen) | |
{ | |
#ifdef F_GETFD | |
int ret = 0; | |
ret = fcntl(fd, F_GETFD); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("fcntl(F_GETFD)"); | |
return -1; | |
} | |
if (ret & FD_CLOEXEC) return 1; | |
#endif | |
return 0; | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen) | |
{ | |
#ifdef F_GETFD | |
int ret = 0; | |
ret = fcntl(fd, F_GETFD); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("fcntl(F_GETFD)"); | |
return -1; | |
} | |
if (!(ret & FD_CLOEXEC)) { | |
ret |= FD_CLOEXEC; | |
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("fcntl(F_SETFD)"); | |
return -1; | |
} | |
} | |
#endif | |
return 0; | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen) | |
{ | |
#ifdef F_GETFD | |
int ret; | |
ret = fcntl(fd, F_GETFD); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("fcntl(F_GETFD)"); | |
return -1; | |
} | |
if (ret & FD_CLOEXEC) { | |
ret &= ~FD_CLOEXEC; | |
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("fcntl(F_SETFD)"); | |
return -1; | |
} | |
} | |
#endif | |
return 0; | |
} | |
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ | |
static int | |
run_exec_dup2(VALUE ary, VALUE tmpbuf, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
long n, i; | |
int ret; | |
int extra_fd = -1; | |
struct rb_imemo_tmpbuf_struct *buf = (void *)tmpbuf; | |
struct run_exec_dup2_fd_pair *pairs = (void *)buf->ptr; | |
n = RARRAY_LEN(ary); | |
/* initialize oldfd and newfd: O(n) */ | |
for (i = 0; i < n; i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
pairs[i].oldfd = FIX2INT(RARRAY_AREF(elt, 1)); | |
pairs[i].newfd = FIX2INT(RARRAY_AREF(elt, 0)); /* unique */ | |
pairs[i].cloexec = RARRAY_LEN(elt) > 2 && RTEST(RARRAY_AREF(elt, 2)); | |
pairs[i].older_index = -1; | |
} | |
/* sort the table by oldfd: O(n log n) */ | |
if (!sargp) | |
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */ | |
else | |
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intrcmp); | |
/* initialize older_index and num_newer: O(n log n) */ | |
for (i = 0; i < n; i++) { | |
int newfd = pairs[i].newfd; | |
struct run_exec_dup2_fd_pair key, *found; | |
key.oldfd = newfd; | |
found = bsearch(&key, pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */ | |
pairs[i].num_newer = 0; | |
if (found) { | |
while (pairs < found && (found-1)->oldfd == newfd) | |
found--; | |
while (found < pairs+n && found->oldfd == newfd) { | |
pairs[i].num_newer++; | |
found->older_index = i; | |
found++; | |
} | |
} | |
} | |
/* non-cyclic redirection: O(n) */ | |
for (i = 0; i < n; i++) { | |
long j = i; | |
while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) { | |
if (save_redirect_fd(pairs[j].newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */ | |
goto fail; | |
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("dup2"); | |
goto fail; | |
} | |
if (pairs[j].cloexec && | |
fd_set_cloexec(pairs[j].newfd, errmsg, errmsg_buflen)) { | |
goto fail; | |
} | |
rb_update_max_fd(pairs[j].newfd); /* async-signal-safe but don't need to call it in a child process. */ | |
pairs[j].oldfd = -1; | |
j = pairs[j].older_index; | |
if (j != -1) | |
pairs[j].num_newer--; | |
} | |
} | |
/* cyclic redirection: O(n) */ | |
for (i = 0; i < n; i++) { | |
long j; | |
if (pairs[i].oldfd == -1) | |
continue; | |
if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */ | |
if (fd_clear_cloexec(pairs[i].oldfd, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ | |
goto fail; | |
pairs[i].oldfd = -1; | |
continue; | |
} | |
if (extra_fd == -1) { | |
extra_fd = redirect_dup(pairs[i].oldfd); /* async-signal-safe */ | |
if (extra_fd == -1) { | |
ERRMSG("dup"); | |
goto fail; | |
} | |
rb_update_max_fd(extra_fd); | |
} | |
else { | |
ret = redirect_dup2(pairs[i].oldfd, extra_fd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("dup2"); | |
goto fail; | |
} | |
rb_update_max_fd(extra_fd); | |
} | |
pairs[i].oldfd = extra_fd; | |
j = pairs[i].older_index; | |
pairs[i].older_index = -1; | |
while (j != -1) { | |
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("dup2"); | |
goto fail; | |
} | |
rb_update_max_fd(ret); | |
pairs[j].oldfd = -1; | |
j = pairs[j].older_index; | |
} | |
} | |
if (extra_fd != -1) { | |
ret = redirect_close(extra_fd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("close"); | |
goto fail; | |
} | |
} | |
return 0; | |
fail: | |
return -1; | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
run_exec_close(VALUE ary, char *errmsg, size_t errmsg_buflen) | |
{ | |
long i; | |
int ret; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int fd = FIX2INT(RARRAY_AREF(elt, 0)); | |
ret = redirect_close(fd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("close"); | |
return -1; | |
} | |
} | |
return 0; | |
} | |
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */ | |
static int | |
run_exec_dup2_child(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
long i; | |
int ret; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int newfd = FIX2INT(RARRAY_AREF(elt, 0)); | |
int oldfd = FIX2INT(RARRAY_AREF(elt, 1)); | |
if (save_redirect_fd(newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */ | |
return -1; | |
ret = redirect_dup2(oldfd, newfd); /* async-signal-safe */ | |
if (ret == -1) { | |
ERRMSG("dup2"); | |
return -1; | |
} | |
rb_update_max_fd(newfd); | |
} | |
return 0; | |
} | |
#ifdef HAVE_SETPGID | |
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */ | |
static int | |
run_exec_pgroup(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
/* | |
* If FD_CLOEXEC is available, rb_fork_async_signal_safe waits the child's execve. | |
* So setpgid is done in the child when rb_fork_async_signal_safe is returned in | |
* the parent. | |
* No race condition, even without setpgid from the parent. | |
* (Is there an environment which has setpgid but no FD_CLOEXEC?) | |
*/ | |
int ret; | |
rb_pid_t pgroup; | |
pgroup = eargp->pgroup_pgid; | |
if (pgroup == -1) | |
return 0; | |
if (sargp) { | |
/* maybe meaningless with no fork environment... */ | |
sargp->pgroup_given = 1; | |
sargp->pgroup_pgid = getpgrp(); | |
} | |
if (pgroup == 0) { | |
pgroup = getpid(); /* async-signal-safe */ | |
} | |
ret = setpgid(getpid(), pgroup); /* async-signal-safe */ | |
if (ret == -1) ERRMSG("setpgid"); | |
return ret; | |
} | |
#endif | |
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM) | |
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ | |
static int | |
run_exec_rlimit(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
long i; | |
for (i = 0; i < RARRAY_LEN(ary); i++) { | |
VALUE elt = RARRAY_AREF(ary, i); | |
int rtype = NUM2INT(RARRAY_AREF(elt, 0)); | |
struct rlimit rlim; | |
if (sargp) { | |
VALUE tmp, newary; | |
if (getrlimit(rtype, &rlim) == -1) { | |
ERRMSG("getrlimit"); | |
return -1; | |
} | |
tmp = hide_obj(rb_ary_new3(3, RARRAY_AREF(elt, 0), | |
RLIM2NUM(rlim.rlim_cur), | |
RLIM2NUM(rlim.rlim_max))); | |
if (sargp->rlimit_limits == Qfalse) | |
newary = sargp->rlimit_limits = hide_obj(rb_ary_new()); | |
else | |
newary = sargp->rlimit_limits; | |
rb_ary_push(newary, tmp); | |
} | |
rlim.rlim_cur = NUM2RLIM(RARRAY_AREF(elt, 1)); | |
rlim.rlim_max = NUM2RLIM(RARRAY_AREF(elt, 2)); | |
if (setrlimit(rtype, &rlim) == -1) { /* hopefully async-signal-safe */ | |
ERRMSG("setrlimit"); | |
return -1; | |
} | |
} | |
return 0; | |
} | |
#endif | |
#if !defined(HAVE_WORKING_FORK) | |
static VALUE | |
save_env_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) | |
{ | |
rb_ary_push(ary, hide_obj(rb_ary_dup(argv[0]))); | |
return Qnil; | |
} | |
static void | |
save_env(struct rb_execarg *sargp) | |
{ | |
if (!sargp) | |
return; | |
if (sargp->env_modification == Qfalse) { | |
VALUE env = rb_const_get(rb_cObject, id_ENV); | |
if (RTEST(env)) { | |
VALUE ary = hide_obj(rb_ary_new()); | |
rb_block_call(env, idEach, 0, 0, save_env_i, | |
(VALUE)ary); | |
sargp->env_modification = ary; | |
} | |
sargp->unsetenv_others_given = 1; | |
sargp->unsetenv_others_do = 1; | |
} | |
} | |
#endif | |
#ifdef _WIN32 | |
#undef chdir | |
#define chdir(p) rb_w32_uchdir(p) | |
#endif | |
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */ | |
int | |
rb_execarg_run_options(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
VALUE obj; | |
if (sargp) { | |
/* assume that sargp is always NULL on fork-able environments */ | |
MEMZERO(sargp, struct rb_execarg, 1); | |
sargp->redirect_fds = Qnil; | |
} | |
#ifdef HAVE_SETPGID | |
if (eargp->pgroup_given) { | |
if (run_exec_pgroup(eargp, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ | |
return -1; | |
} | |
#endif | |
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM) | |
obj = eargp->rlimit_limits; | |
if (obj != Qfalse) { | |
if (run_exec_rlimit(obj, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */ | |
return -1; | |
} | |
#endif | |
#if !defined(HAVE_WORKING_FORK) | |
if (eargp->unsetenv_others_given && eargp->unsetenv_others_do) { | |
save_env(sargp); | |
rb_env_clear(); | |
} | |
obj = eargp->env_modification; | |
if (obj != Qfalse) { | |
long i; | |
save_env(sargp); | |
for (i = 0; i < RARRAY_LEN(obj); i++) { | |
VALUE pair = RARRAY_AREF(obj, i); | |
VALUE key = RARRAY_AREF(pair, 0); | |
VALUE val = RARRAY_AREF(pair, 1); | |
if (NIL_P(val)) | |
ruby_setenv(StringValueCStr(key), 0); | |
else | |
ruby_setenv(StringValueCStr(key), StringValueCStr(val)); | |
} | |
} | |
#endif | |
if (eargp->umask_given) { | |
mode_t mask = eargp->umask_mask; | |
mode_t oldmask = umask(mask); /* never fail */ /* async-signal-safe */ | |
if (sargp) { | |
sargp->umask_given = 1; | |
sargp->umask_mask = oldmask; | |
} | |
} | |
obj = eargp->fd_dup2; | |
if (obj != Qfalse) { | |
if (run_exec_dup2(obj, eargp->dup2_tmpbuf, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */ | |
return -1; | |
} | |
obj = eargp->fd_close; | |
if (obj != Qfalse) { | |
if (sargp) | |
rb_warn("cannot close fd before spawn"); | |
else { | |
if (run_exec_close(obj, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ | |
return -1; | |
} | |
} | |
#ifdef HAVE_WORKING_FORK | |
if (eargp->close_others_do) { | |
rb_close_before_exec(3, eargp->close_others_maxhint, eargp->redirect_fds); /* async-signal-safe */ | |
} | |
#endif | |
obj = eargp->fd_dup2_child; | |
if (obj != Qfalse) { | |
if (run_exec_dup2_child(obj, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */ | |
return -1; | |
} | |
if (eargp->chdir_given) { | |
if (sargp) { | |
sargp->chdir_given = 1; | |
sargp->chdir_dir = hide_obj(rb_dir_getwd_ospath()); | |
} | |
if (chdir(RSTRING_PTR(eargp->chdir_dir)) == -1) { /* async-signal-safe */ | |
ERRMSG("chdir"); | |
return -1; | |
} | |
} | |
#ifdef HAVE_SETGID | |
if (eargp->gid_given) { | |
if (setgid(eargp->gid) < 0) { | |
ERRMSG("setgid"); | |
return -1; | |
} | |
} | |
#endif | |
#ifdef HAVE_SETUID | |
if (eargp->uid_given) { | |
if (setuid(eargp->uid) < 0) { | |
ERRMSG("setuid"); | |
return -1; | |
} | |
} | |
#endif | |
if (sargp) { | |
VALUE ary = sargp->fd_dup2; | |
if (ary != Qfalse) { | |
rb_execarg_allocate_dup2_tmpbuf(sargp, RARRAY_LEN(ary)); | |
} | |
} | |
{ | |
int preserve = errno; | |
stdfd_clear_nonblock(); | |
errno = preserve; | |
} | |
return 0; | |
} | |
/* This function should be async-signal-safe. Hopefully it is. */ | |
int | |
rb_exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
errno = exec_async_signal_safe(eargp, errmsg, errmsg_buflen); | |
return -1; | |
} | |
static int | |
exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
#if !defined(HAVE_WORKING_FORK) | |
struct rb_execarg sarg, *const sargp = &sarg; | |
#else | |
struct rb_execarg *const sargp = NULL; | |
#endif | |
int err; | |
if (rb_execarg_run_options(eargp, sargp, errmsg, errmsg_buflen) < 0) { /* hopefully async-signal-safe */ | |
return errno; | |
} | |
if (eargp->use_shell) { | |
err = proc_exec_sh(RSTRING_PTR(eargp->invoke.sh.shell_script), eargp->envp_str); /* async-signal-safe */ | |
} | |
else { | |
char *abspath = NULL; | |
if (!NIL_P(eargp->invoke.cmd.command_abspath)) | |
abspath = RSTRING_PTR(eargp->invoke.cmd.command_abspath); | |
err = proc_exec_cmd(abspath, eargp->invoke.cmd.argv_str, eargp->envp_str); /* async-signal-safe */ | |
} | |
#if !defined(HAVE_WORKING_FORK) | |
rb_execarg_run_options(sargp, NULL, errmsg, errmsg_buflen); | |
#endif | |
return err; | |
} | |
#ifdef HAVE_WORKING_FORK | |
/* This function should be async-signal-safe. Hopefully it is. */ | |
static int | |
rb_exec_atfork(void* arg, char *errmsg, size_t errmsg_buflen) | |
{ | |
return rb_exec_async_signal_safe(arg, errmsg, errmsg_buflen); /* hopefully async-signal-safe */ | |
} | |
#if SIZEOF_INT == SIZEOF_LONG | |
#define proc_syswait (VALUE (*)(VALUE))rb_syswait | |
#else | |
static VALUE | |
proc_syswait(VALUE pid) | |
{ | |
rb_syswait((int)pid); | |
return Qnil; | |
} | |
#endif | |
static int | |
move_fds_to_avoid_crash(int *fdp, int n, VALUE fds) | |
{ | |
int min = 0; | |
int i; | |
for (i = 0; i < n; i++) { | |
int ret; | |
while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) { | |
if (min <= fdp[i]) | |
min = fdp[i]+1; | |
while (RTEST(rb_hash_lookup(fds, INT2FIX(min)))) | |
min++; | |
ret = rb_cloexec_fcntl_dupfd(fdp[i], min); | |
if (ret == -1) | |
return -1; | |
rb_update_max_fd(ret); | |
close(fdp[i]); | |
fdp[i] = ret; | |
} | |
} | |
return 0; | |
} | |
static int | |
pipe_nocrash(int filedes[2], VALUE fds) | |
{ | |
int ret; | |
ret = rb_pipe(filedes); | |
if (ret == -1) | |
return -1; | |
if (RTEST(fds)) { | |
int save = errno; | |
if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) { | |
close(filedes[0]); | |
close(filedes[1]); | |
return -1; | |
} | |
errno = save; | |
} | |
return ret; | |
} | |
#ifndef O_BINARY | |
#define O_BINARY 0 | |
#endif | |
static VALUE | |
rb_thread_sleep_that_takes_VALUE_as_sole_argument(VALUE n) | |
{ | |
rb_thread_sleep(NUM2INT(n)); | |
return Qundef; | |
} | |
static int | |
handle_fork_error(int err, int *status, int *ep, volatile int *try_gc_p) | |
{ | |
int state = 0; | |
switch (err) { | |
case ENOMEM: | |
if ((*try_gc_p)-- > 0 && !rb_during_gc()) { | |
rb_gc(); | |
return 0; | |
} | |
break; | |
case EAGAIN: | |
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN | |
case EWOULDBLOCK: | |
#endif | |
if (!status && !ep) { | |
rb_thread_sleep(1); | |
return 0; | |
} | |
else { | |
rb_protect(rb_thread_sleep_that_takes_VALUE_as_sole_argument, INT2FIX(1), &state); | |
if (status) *status = state; | |
if (!state) return 0; | |
} | |
break; | |
} | |
if (ep) { | |
close(ep[0]); | |
close(ep[1]); | |
errno = err; | |
} | |
if (state && !status) rb_jump_tag(state); | |
return -1; | |
} | |
#define prefork() ( \ | |
rb_io_flush(rb_stdout), \ | |
rb_io_flush(rb_stderr) \ | |
) | |
/* | |
* Forks child process, and returns the process ID in the parent | |
* process. | |
* | |
* If +status+ is given, protects from any exceptions and sets the | |
* jump status to it, and returns -1. If failed to fork new process | |
* but no exceptions occurred, sets 0 to it. Otherwise, if forked | |
* successfully, the value of +status+ is undetermined. | |
* | |
* In the child process, just returns 0 if +chfunc+ is +NULL+. | |
* Otherwise +chfunc+ will be called with +charg+, and then the child | |
* process exits with +EXIT_SUCCESS+ when it returned zero. | |
* | |
* In the case of the function is called and returns non-zero value, | |
* the child process exits with non-+EXIT_SUCCESS+ value (normally | |
* 127). And, on the platforms where +FD_CLOEXEC+ is available, | |
* +errno+ is propagated to the parent process, and this function | |
* returns -1 in the parent process. On the other platforms, just | |
* returns pid. | |
* | |
* If fds is not Qnil, internal pipe for the errno propagation is | |
* arranged to avoid conflicts of the hash keys in +fds+. | |
* | |
* +chfunc+ must not raise any exceptions. | |
*/ | |
static ssize_t | |
write_retry(int fd, const void *buf, size_t len) | |
{ | |
ssize_t w; | |
do { | |
w = write(fd, buf, len); | |
} while (w < 0 && errno == EINTR); | |
return w; | |
} | |
static ssize_t | |
read_retry(int fd, void *buf, size_t len) | |
{ | |
ssize_t r; | |
if (set_blocking(fd) != 0) { | |
#ifndef _WIN32 | |
rb_async_bug_errno("set_blocking failed reading child error", errno); | |
#endif | |
} | |
do { | |
r = read(fd, buf, len); | |
} while (r < 0 && errno == EINTR); | |
return r; | |
} | |
static void | |
send_child_error(int fd, char *errmsg, size_t errmsg_buflen) | |
{ | |
int err; | |
err = errno; | |
if (write_retry(fd, &err, sizeof(err)) < 0) err = errno; | |
if (errmsg && 0 < errmsg_buflen) { | |
errmsg[errmsg_buflen-1] = '\0'; | |
errmsg_buflen = strlen(errmsg); | |
if (errmsg_buflen > 0 && write_retry(fd, errmsg, errmsg_buflen) < 0) | |
err = errno; | |
} | |
} | |
static int | |
recv_child_error(int fd, int *errp, char *errmsg, size_t errmsg_buflen) | |
{ | |
int err; | |
ssize_t size; | |
if ((size = read_retry(fd, &err, sizeof(err))) < 0) { | |
err = errno; | |
} | |
*errp = err; | |
if (size == sizeof(err) && | |
errmsg && 0 < errmsg_buflen) { | |
ssize_t ret = read_retry(fd, errmsg, errmsg_buflen-1); | |
if (0 <= ret) { | |
errmsg[ret] = '\0'; | |
} | |
} | |
close(fd); | |
return size != 0; | |
} | |
#ifdef HAVE_WORKING_VFORK | |
#if !defined(HAVE_GETRESUID) && defined(HAVE_GETUIDX) | |
/* AIX 7.1 */ | |
static int | |
getresuid(rb_uid_t *ruid, rb_uid_t *euid, rb_uid_t *suid) | |
{ | |
rb_uid_t ret; | |
*ruid = getuid(); | |
*euid = geteuid(); | |
ret = getuidx(ID_SAVED); | |
if (ret == (rb_uid_t)-1) | |
return -1; | |
*suid = ret; | |
return 0; | |
} | |
#define HAVE_GETRESUID | |
#endif | |
#if !defined(HAVE_GETRESGID) && defined(HAVE_GETGIDX) | |
/* AIX 7.1 */ | |
static int | |
getresgid(rb_gid_t *rgid, rb_gid_t *egid, rb_gid_t *sgid) | |
{ | |
rb_gid_t ret; | |
*rgid = getgid(); | |
*egid = getegid(); | |
ret = getgidx(ID_SAVED); | |
if (ret == (rb_gid_t)-1) | |
return -1; | |
*sgid = ret; | |
return 0; | |
} | |
#define HAVE_GETRESGID | |
#endif | |
static int | |
has_privilege(void) | |
{ | |
/* | |
* has_privilege() is used to choose vfork() or fork(). | |
* | |
* If the process has privilege, the parent process or | |
* the child process can change UID/GID. | |
* If vfork() is used to create the child process and | |
* the parent or child process change effective UID/GID, | |
* different privileged processes shares memory. | |
* It is a bad situation. | |
* So, fork() should be used. | |
*/ | |
rb_uid_t ruid, euid; | |
rb_gid_t rgid, egid; | |
#if defined HAVE_ISSETUGID | |
if (issetugid()) | |
return 1; | |
#endif | |
#ifdef HAVE_GETRESUID | |
{ | |
int ret; | |
rb_uid_t suid; | |
ret = getresuid(&ruid, &euid, &suid); | |
if (ret == -1) | |
rb_sys_fail("getresuid(2)"); | |
if (euid != suid) | |
return 1; | |
} | |
#else | |
ruid = getuid(); | |
euid = geteuid(); | |
#endif | |
if (euid == 0 || euid != ruid) | |
return 1; | |
#ifdef HAVE_GETRESGID | |
{ | |
int ret; | |
rb_gid_t sgid; | |
ret = getresgid(&rgid, &egid, &sgid); | |
if (ret == -1) | |
rb_sys_fail("getresgid(2)"); | |
if (egid != sgid) | |
return 1; | |
} | |
#else | |
rgid = getgid(); | |
egid = getegid(); | |
#endif | |
if (egid != rgid) | |
return 1; | |
return 0; | |
} | |
#endif | |
struct child_handler_disabler_state | |
{ | |
sigset_t sigmask; | |
}; | |
static void | |
disable_child_handler_before_fork(struct child_handler_disabler_state *old) | |
{ | |
int ret; | |
sigset_t all; | |
#ifdef HAVE_PTHREAD_SIGMASK | |
ret = sigfillset(&all); | |
if (ret == -1) | |
rb_sys_fail("sigfillset"); | |
ret = pthread_sigmask(SIG_SETMASK, &all, &old->sigmask); /* not async-signal-safe */ | |
if (ret != 0) { | |
rb_syserr_fail(ret, "pthread_sigmask"); | |
} | |
#else | |
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous" | |
#endif | |
} | |
static void | |
disable_child_handler_fork_parent(struct child_handler_disabler_state *old) | |
{ | |
int ret; | |
#ifdef HAVE_PTHREAD_SIGMASK | |
ret = pthread_sigmask(SIG_SETMASK, &old->sigmask, NULL); /* not async-signal-safe */ | |
if (ret != 0) { | |
rb_syserr_fail(ret, "pthread_sigmask"); | |
} | |
#else | |
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous" | |
#endif | |
} | |
/* This function should be async-signal-safe. Actually it is. */ | |
static int | |
disable_child_handler_fork_child(struct child_handler_disabler_state *old, char *errmsg, size_t errmsg_buflen) | |
{ | |
int sig; | |
int ret; | |
for (sig = 1; sig < NSIG; sig++) { | |
sig_t handler = signal(sig, SIG_DFL); | |
if (handler == SIG_ERR && errno == EINVAL) { | |
continue; /* Ignore invalid signal number */ | |
} | |
if (handler == SIG_ERR) { | |
ERRMSG("signal to obtain old action"); | |
return -1; | |
} | |
#ifdef SIGPIPE | |
if (sig == SIGPIPE) { | |
continue; | |
} | |
#endif | |
/* it will be reset to SIG_DFL at execve time, instead */ | |
if (handler == SIG_IGN) { | |
signal(sig, SIG_IGN); | |
} | |
} | |
/* non-Ruby child process, ensure cmake can see SIGCHLD */ | |
sigemptyset(&old->sigmask); | |
ret = sigprocmask(SIG_SETMASK, &old->sigmask, NULL); /* async-signal-safe */ | |
if (ret != 0) { | |
ERRMSG("sigprocmask"); | |
return -1; | |
} | |
return 0; | |
} | |
static rb_pid_t | |
retry_fork_async_signal_safe(int *status, int *ep, | |
int (*chfunc)(void*, char *, size_t), void *charg, | |
char *errmsg, size_t errmsg_buflen, | |
struct waitpid_state *w) | |
{ | |
rb_pid_t pid; | |
volatile int try_gc = 1; | |
struct child_handler_disabler_state old; | |
int err; | |
rb_nativethread_lock_t *const volatile waitpid_lock_init = | |
(w && WAITPID_USE_SIGCHLD) ? &GET_VM()->waitpid_lock : 0; | |
while (1) { | |
rb_nativethread_lock_t *waitpid_lock = waitpid_lock_init; | |
prefork(); | |
disable_child_handler_before_fork(&old); | |
if (waitpid_lock) { | |
rb_native_mutex_lock(waitpid_lock); | |
} | |
#ifdef HAVE_WORKING_VFORK | |
if (!has_privilege()) | |
pid = vfork(); | |
else | |
pid = rb_fork(); | |
#else | |
pid = rb_fork(); | |
#endif | |
if (pid == 0) {/* fork succeed, child process */ | |
int ret; | |
close(ep[0]); | |
ret = disable_child_handler_fork_child(&old, errmsg, errmsg_buflen); /* async-signal-safe */ | |
if (ret == 0) { | |
ret = chfunc(charg, errmsg, errmsg_buflen); | |
if (!ret) _exit(EXIT_SUCCESS); | |
} | |
send_child_error(ep[1], errmsg, errmsg_buflen); | |
#if EXIT_SUCCESS == 127 | |
_exit(EXIT_FAILURE); | |
#else | |
_exit(127); | |
#endif | |
} | |
err = errno; | |
waitpid_lock = waitpid_lock_init; | |
if (waitpid_lock) { | |
if (pid > 0 && w != WAITPID_LOCK_ONLY) { | |
w->pid = pid; | |
list_add(&GET_VM()->waiting_pids, &w->wnode); | |
} | |
rb_native_mutex_unlock(waitpid_lock); | |
} | |
disable_child_handler_fork_parent(&old); | |
if (0 < pid) /* fork succeed, parent process */ | |
return pid; | |
/* fork failed */ | |
if (handle_fork_error(err, status, ep, &try_gc)) | |
return -1; | |
} | |
} | |
static rb_pid_t | |
fork_check_err(int *status, int (*chfunc)(void*, char *, size_t), void *charg, | |
VALUE fds, char *errmsg, size_t errmsg_buflen, | |
struct rb_execarg *eargp) | |
{ | |
rb_pid_t pid; | |
int err; | |
int ep[2]; | |
int error_occurred; | |
struct waitpid_state *w; | |
w = eargp && eargp->waitpid_state ? eargp->waitpid_state : 0; | |
if (status) *status = 0; | |
if (pipe_nocrash(ep, fds)) return -1; | |
pid = retry_fork_async_signal_safe(status, ep, chfunc, charg, | |
errmsg, errmsg_buflen, w); | |
if (pid < 0) | |
return pid; | |
close(ep[1]); | |
error_occurred = recv_child_error(ep[0], &err, errmsg, errmsg_buflen); | |
if (error_occurred) { | |
if (status) { | |
VM_ASSERT((w == 0 || w == WAITPID_LOCK_ONLY) && | |
"only used by extensions"); | |
rb_protect(proc_syswait, (VALUE)pid, status); | |
} | |
else if (!w || w == WAITPID_LOCK_ONLY) { | |
rb_syswait(pid); | |
} | |
errno = err; | |
return -1; | |
} | |
return pid; | |
} | |
/* | |
* The "async_signal_safe" name is a lie, but it is used by pty.c and | |
* maybe other exts. fork() is not async-signal-safe due to pthread_atfork | |
* and future POSIX revisions will remove it from a list of signal-safe | |
* functions. rb_waitpid is not async-signal-safe since MJIT, either. | |
* For our purposes, we do not need async-signal-safety, here | |
*/ | |
rb_pid_t | |
rb_fork_async_signal_safe(int *status, | |
int (*chfunc)(void*, char *, size_t), void *charg, | |
VALUE fds, char *errmsg, size_t errmsg_buflen) | |
{ | |
return fork_check_err(status, chfunc, charg, fds, errmsg, errmsg_buflen, 0); | |
} | |
rb_pid_t | |
rb_fork_ruby(int *status) | |
{ | |
rb_pid_t pid; | |
int try_gc = 1, err; | |
struct child_handler_disabler_state old; | |
if (status) *status = 0; | |
while (1) { | |
prefork(); | |
if (mjit_enabled) mjit_pause(false); // Don't leave locked mutex to child. Note: child_handler must be enabled to pause MJIT. | |
disable_child_handler_before_fork(&old); | |
before_fork_ruby(); | |
pid = rb_fork(); | |
err = errno; | |
after_fork_ruby(); | |
disable_child_handler_fork_parent(&old); /* yes, bad name */ | |
if (mjit_enabled && pid > 0) mjit_resume(); /* child (pid == 0) is cared by rb_thread_atfork */ | |
if (pid >= 0) { /* fork succeed */ | |
if (pid == 0) rb_thread_atfork(); | |
return pid; | |
} | |
/* fork failed */ | |
if (handle_fork_error(err, status, NULL, &try_gc)) | |
return -1; | |
} | |
} | |
#endif | |
#if defined(HAVE_WORKING_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD) | |
/* | |
* call-seq: | |
* Kernel.fork [{ block }] -> integer or nil | |
* Process.fork [{ block }] -> integer or nil | |
* | |
* Creates a subprocess. If a block is specified, that block is run | |
* in the subprocess, and the subprocess terminates with a status of | |
* zero. Otherwise, the +fork+ call returns twice, once in the | |
* parent, returning the process ID of the child, and once in the | |
* child, returning _nil_. The child process can exit using | |
* Kernel.exit! to avoid running any <code>at_exit</code> | |
* functions. The parent process should use Process.wait to collect | |
* the termination statuses of its children or use Process.detach to | |
* register disinterest in their status; otherwise, the operating | |
* system may accumulate zombie processes. | |
* | |
* The thread calling fork is the only thread in the created child process. | |
* fork doesn't copy other threads. | |
* | |
* If fork is not usable, Process.respond_to?(:fork) returns false. | |
* | |
* Note that fork(2) is not available on some platforms like Windows and NetBSD 4. | |
* Therefore you should use spawn() instead of fork(). | |
*/ | |
static VALUE | |
rb_f_fork(VALUE obj) | |
{ | |
rb_pid_t pid; | |
switch (pid = rb_fork_ruby(NULL)) { | |
case 0: | |
if (rb_block_given_p()) { | |
int status; | |
rb_protect(rb_yield, Qundef, &status); | |
ruby_stop(status); | |
} | |
return Qnil; | |
case -1: | |
rb_sys_fail("fork(2)"); | |
return Qnil; | |
default: | |
return PIDT2NUM(pid); | |
} | |
} | |
#else | |
#define rb_f_fork rb_f_notimplement | |
#endif | |
static int | |
exit_status_code(VALUE status) | |
{ | |
int istatus; | |
switch (status) { | |
case Qtrue: | |
istatus = EXIT_SUCCESS; | |
break; | |
case Qfalse: | |
istatus = EXIT_FAILURE; | |
break; | |
default: | |
istatus = NUM2INT(status); | |
#if EXIT_SUCCESS != 0 | |
if (istatus == 0) | |
istatus = EXIT_SUCCESS; | |
#endif | |
break; | |
} | |
return istatus; | |
} | |
NORETURN(static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)); | |
/* | |
* call-seq: | |
* Process.exit!(status=false) | |
* | |
* Exits the process immediately. No exit handlers are | |
* run. <em>status</em> is returned to the underlying system as the | |
* exit status. | |
* | |
* Process.exit!(true) | |
*/ | |
static VALUE | |
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) | |
{ | |
int istatus; | |
if (rb_check_arity(argc, 0, 1) == 1) { | |
istatus = exit_status_code(argv[0]); | |
} | |
else { | |
istatus = EXIT_FAILURE; | |
} | |
_exit(istatus); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
void | |
rb_exit(int status) | |
{ | |
if (GET_EC()->tag) { | |
VALUE args[2]; | |
args[0] = INT2NUM(status); | |
args[1] = rb_str_new2("exit"); | |
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); | |
} | |
ruby_stop(status); | |
} | |
VALUE | |
rb_f_exit(int argc, const VALUE *argv) | |
{ | |
int istatus; | |
if (rb_check_arity(argc, 0, 1) == 1) { | |
istatus = exit_status_code(argv[0]); | |
} | |
else { | |
istatus = EXIT_SUCCESS; | |
} | |
rb_exit(istatus); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
NORETURN(static VALUE f_exit(int c, const VALUE *a, VALUE _)); | |
/* | |
* call-seq: | |
* exit(status=true) | |
* Kernel::exit(status=true) | |
* Process::exit(status=true) | |
* | |
* Initiates the termination of the Ruby script by raising the | |
* SystemExit exception. This exception may be caught. The | |
* optional parameter is used to return a status code to the invoking | |
* environment. | |
* +true+ and +FALSE+ of _status_ means success and failure | |
* respectively. The interpretation of other integer values are | |
* system dependent. | |
* | |
* begin | |
* exit | |
* puts "never get here" | |
* rescue SystemExit | |
* puts "rescued a SystemExit exception" | |
* end | |
* puts "after begin block" | |
* | |
* <em>produces:</em> | |
* | |
* rescued a SystemExit exception | |
* after begin block | |
* | |
* Just prior to termination, Ruby executes any <code>at_exit</code> | |
* functions (see Kernel::at_exit) and runs any object finalizers | |
* (see ObjectSpace::define_finalizer). | |
* | |
* at_exit { puts "at_exit function" } | |
* ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) | |
* exit | |
* | |
* <em>produces:</em> | |
* | |
* at_exit function | |
* in finalizer | |
*/ | |
static VALUE | |
f_exit(int c, const VALUE *a, VALUE _) | |
{ | |
rb_f_exit(c, a); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
VALUE | |
rb_f_abort(int argc, const VALUE *argv) | |
{ | |
rb_check_arity(argc, 0, 1); | |
if (argc == 0) { | |
rb_execution_context_t *ec = GET_EC(); | |
VALUE errinfo = rb_ec_get_errinfo(ec); | |
if (!NIL_P(errinfo)) { | |
rb_ec_error_print(ec, errinfo); | |
} | |
rb_exit(EXIT_FAILURE); | |
} | |
else { | |
VALUE args[2]; | |
args[1] = args[0] = argv[0]; | |
StringValue(args[0]); | |
rb_io_puts(1, args, rb_ractor_stderr()); | |
args[0] = INT2NUM(EXIT_FAILURE); | |
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); | |
} | |
UNREACHABLE_RETURN(Qnil); | |
} | |
NORETURN(static VALUE f_abort(int c, const VALUE *a, VALUE _)); | |
/* | |
* call-seq: | |
* abort | |
* Kernel::abort([msg]) | |
* Process.abort([msg]) | |
* | |
* Terminate execution immediately, effectively by calling | |
* <code>Kernel.exit(false)</code>. If _msg_ is given, it is written | |
* to STDERR prior to terminating. | |
*/ | |
static VALUE | |
f_abort(int c, const VALUE *a, VALUE _) | |
{ | |
rb_f_abort(c, a); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
void | |
rb_syswait(rb_pid_t pid) | |
{ | |
int status; | |
rb_waitpid(pid, &status, 0); | |
} | |
#if !defined HAVE_WORKING_FORK && !defined HAVE_SPAWNV | |
char * | |
rb_execarg_commandline(const struct rb_execarg *eargp, VALUE *prog) | |
{ | |
VALUE cmd = *prog; | |
if (eargp && !eargp->use_shell) { | |
VALUE str = eargp->invoke.cmd.argv_str; | |
VALUE buf = eargp->invoke.cmd.argv_buf; | |
char *p, **argv = ARGVSTR2ARGV(str); | |
long i, argc = ARGVSTR2ARGC(str); | |
const char *start = RSTRING_PTR(buf); | |
cmd = rb_str_new(start, RSTRING_LEN(buf)); | |
p = RSTRING_PTR(cmd); | |
for (i = 1; i < argc; ++i) { | |
p[argv[i] - start - 1] = ' '; | |
} | |
*prog = cmd; | |
return p; | |
} | |
return StringValueCStr(*prog); | |
} | |
#endif | |
static rb_pid_t | |
rb_spawn_process(struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen) | |
{ | |
rb_pid_t pid; | |
#if !defined HAVE_WORKING_FORK || USE_SPAWNV | |
VALUE prog; | |
struct rb_execarg sarg; | |
# if !defined HAVE_SPAWNV | |
int status; | |
# endif | |
#endif | |
#if defined HAVE_WORKING_FORK && !USE_SPAWNV | |
pid = fork_check_err(0, rb_exec_atfork, eargp, eargp->redirect_fds, errmsg, errmsg_buflen, eargp); | |
#else | |
prog = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; | |
if (rb_execarg_run_options(eargp, &sarg, errmsg, errmsg_buflen) < 0) { | |
return -1; | |
} | |
if (prog && !eargp->use_shell) { | |
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str); | |
argv[0] = RSTRING_PTR(prog); | |
} | |
# if defined HAVE_SPAWNV | |
if (eargp->use_shell) { | |
pid = proc_spawn_sh(RSTRING_PTR(prog)); | |
} | |
else { | |
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str); | |
pid = proc_spawn_cmd(argv, prog, eargp); | |
} | |
if (pid == -1) { | |
rb_last_status_set(0x7f << 8, pid); | |
} | |
# else | |
status = system(rb_execarg_commandline(eargp, &prog)); | |
pid = 1; /* dummy */ | |
rb_last_status_set((status & 0xff) << 8, pid); | |
# endif | |
if (eargp->waitpid_state && eargp->waitpid_state != WAITPID_LOCK_ONLY) { | |
eargp->waitpid_state->pid = pid; | |
} | |
rb_execarg_run_options(&sarg, NULL, errmsg, errmsg_buflen); | |
#endif | |
return pid; | |
} | |
struct spawn_args { | |
VALUE execarg; | |
struct { | |
char *ptr; | |
size_t buflen; | |
} errmsg; | |
}; | |
static VALUE | |
do_spawn_process(VALUE arg) | |
{ | |
struct spawn_args *argp = (struct spawn_args *)arg; | |
rb_execarg_parent_start1(argp->execarg); | |
return (VALUE)rb_spawn_process(DATA_PTR(argp->execarg), | |
argp->errmsg.ptr, argp->errmsg.buflen); | |
} | |
static rb_pid_t | |
rb_execarg_spawn(VALUE execarg_obj, char *errmsg, size_t errmsg_buflen) | |
{ | |
struct spawn_args args; | |
struct rb_execarg *eargp = rb_execarg_get(execarg_obj); | |
/* | |
* Prevent a race with MJIT where the compiler process where | |
* can hold an FD of ours in between vfork + execve | |
*/ | |
if (!eargp->waitpid_state && mjit_enabled) { | |
eargp->waitpid_state = WAITPID_LOCK_ONLY; | |
} | |
args.execarg = execarg_obj; | |
args.errmsg.ptr = errmsg; | |
args.errmsg.buflen = errmsg_buflen; | |
return (rb_pid_t)rb_ensure(do_spawn_process, (VALUE)&args, | |
execarg_parent_end, execarg_obj); | |
} | |
static rb_pid_t | |
rb_spawn_internal(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen) | |
{ | |
VALUE execarg_obj; | |
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); | |
return rb_execarg_spawn(execarg_obj, errmsg, errmsg_buflen); | |
} | |
rb_pid_t | |
rb_spawn_err(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen) | |
{ | |
return rb_spawn_internal(argc, argv, errmsg, errmsg_buflen); | |
} | |
rb_pid_t | |
rb_spawn(int argc, const VALUE *argv) | |
{ | |
return rb_spawn_internal(argc, argv, NULL, 0); | |
} | |
/* | |
* call-seq: | |
* system([env,] command... [,options], exception: false) -> true, false or nil | |
* | |
* Executes _command..._ in a subshell. | |
* _command..._ is one of following forms. | |
* | |
* [<code>commandline</code>] | |
* command line string which is passed to the standard shell | |
* [<code>cmdname, arg1, ...</code>] | |
* command name and one or more arguments (no shell) | |
* [<code>[cmdname, argv0], arg1, ...</code>] | |
* command name, <code>argv[0]</code> and zero or more arguments (no shell) | |
* | |
* system returns +true+ if the command gives zero exit status, | |
* +false+ for non zero exit status. | |
* Returns +nil+ if command execution fails. | |
* An error status is available in <code>$?</code>. | |
* | |
* If the <code>exception: true</code> argument is passed, the method | |
* raises an exception instead of returning +false+ or +nil+. | |
* | |
* The arguments are processed in the same way as | |
* for Kernel#spawn. | |
* | |
* The hash arguments, env and options, are same as #exec and #spawn. | |
* See Kernel#spawn for details. | |
* | |
* system("echo *") | |
* system("echo", "*") | |
* | |
* <em>produces:</em> | |
* | |
* config.h main.rb | |
* * | |
* | |
* Error handling: | |
* | |
* system("cat nonexistent.txt") | |
* # => false | |
* system("catt nonexistent.txt") | |
* # => nil | |
* | |
* system("cat nonexistent.txt", exception: true) | |
* # RuntimeError (Command failed with exit 1: cat) | |
* system("catt nonexistent.txt", exception: true) | |
* # Errno::ENOENT (No such file or directory - catt) | |
* | |
* See Kernel#exec for the standard shell. | |
*/ | |
static VALUE | |
rb_f_system(int argc, VALUE *argv, VALUE _) | |
{ | |
/* | |
* n.b. using alloca for now to simplify future Thread::Light code | |
* when we need to use malloc for non-native Fiber | |
*/ | |
struct waitpid_state *w = alloca(sizeof(struct waitpid_state)); | |
rb_pid_t pid; /* may be different from waitpid_state.pid on exec failure */ | |
VALUE execarg_obj; | |
struct rb_execarg *eargp; | |
int exec_errnum; | |
execarg_obj = rb_execarg_new(argc, argv, TRUE, TRUE); | |
eargp = rb_execarg_get(execarg_obj); | |
w->ec = GET_EC(); | |
waitpid_state_init(w, 0, 0); | |
eargp->waitpid_state = w; | |
pid = rb_execarg_spawn(execarg_obj, 0, 0); | |
exec_errnum = pid < 0 ? errno : 0; | |
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) | |
if (w->pid > 0) { | |
/* `pid' (not w->pid) may be < 0 here if execve failed in child */ | |
if (WAITPID_USE_SIGCHLD) { | |
rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); | |
} | |
else { | |
waitpid_no_SIGCHLD(w); | |
} | |
rb_last_status_set(w->status, w->ret); | |
} | |
#endif | |
if (w->pid < 0 /* fork failure */ || pid < 0 /* exec failure */) { | |
if (eargp->exception) { | |
int err = exec_errnum ? exec_errnum : w->errnum; | |
VALUE command = eargp->invoke.sh.shell_script; | |
RB_GC_GUARD(execarg_obj); | |
rb_syserr_fail_str(err, command); | |
} | |
else { | |
return Qnil; | |
} | |
} | |
if (w->status == EXIT_SUCCESS) return Qtrue; | |
if (eargp->exception) { | |
VALUE command = eargp->invoke.sh.shell_script; | |
VALUE str = rb_str_new_cstr("Command failed with"); | |
rb_str_cat_cstr(pst_message_status(str, w->status), ": "); | |
rb_str_append(str, command); | |
RB_GC_GUARD(execarg_obj); | |
rb_exc_raise(rb_exc_new_str(rb_eRuntimeError, str)); | |
} | |
else { | |
return Qfalse; | |
} | |
} | |
/* | |
* call-seq: | |
* spawn([env,] command... [,options]) -> pid | |
* Process.spawn([env,] command... [,options]) -> pid | |
* | |
* spawn executes specified command and return its pid. | |
* | |
* pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2") | |
* Process.wait pid | |
* | |
* pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'") | |
* Process.wait pid | |
* | |
* This method is similar to Kernel#system but it doesn't wait for the command | |
* to finish. | |
* | |
* The parent process should | |
* use Process.wait to collect | |
* the termination status of its child or | |
* use Process.detach to register | |
* disinterest in their status; | |
* otherwise, the operating system may accumulate zombie processes. | |
* | |
* spawn has bunch of options to specify process attributes: | |
* | |
* env: hash | |
* name => val : set the environment variable | |
* name => nil : unset the environment variable | |
* | |
* the keys and the values except for +nil+ must be strings. | |
* command...: | |
* commandline : command line string which is passed to the standard shell | |
* cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.) | |
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell) | |
* options: hash | |
* clearing environment variables: | |
* :unsetenv_others => true : clear environment variables except specified by env | |
* :unsetenv_others => false : don't clear (default) | |
* process group: | |
* :pgroup => true or 0 : make a new process group | |
* :pgroup => pgid : join the specified process group | |
* :pgroup => nil : don't change the process group (default) | |
* create new process group: Windows only | |
* :new_pgroup => true : the new process is the root process of a new process group | |
* :new_pgroup => false : don't create a new process group (default) | |
* resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit. | |
* :rlimit_resourcename => limit | |
* :rlimit_resourcename => [cur_limit, max_limit] | |
* umask: | |
* :umask => int | |
* redirection: | |
* key: | |
* FD : single file descriptor in child process | |
* [FD, FD, ...] : multiple file descriptor in child process | |
* value: | |
* FD : redirect to the file descriptor in parent process | |
* string : redirect to file with open(string, "r" or "w") | |
* [string] : redirect to file with open(string, File::RDONLY) | |
* [string, open_mode] : redirect to file with open(string, open_mode, 0644) | |
* [string, open_mode, perm] : redirect to file with open(string, open_mode, perm) | |
* [:child, FD] : redirect to the redirected file descriptor | |
* :close : close the file descriptor in child process | |
* FD is one of follows | |
* :in : the file descriptor 0 which is the standard input | |
* :out : the file descriptor 1 which is the standard output | |
* :err : the file descriptor 2 which is the standard error | |
* integer : the file descriptor of specified the integer | |
* io : the file descriptor specified as io.fileno | |
* file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not | |
* :close_others => false : inherit | |
* current directory: | |
* :chdir => str | |
* | |
* The <code>cmdname, arg1, ...</code> form does not use the shell. | |
* However, on different OSes, different things are provided as | |
* built-in commands. An example of this is +'echo'+, which is a | |
* built-in on Windows, but is a normal program on Linux and Mac OS X. | |
* This means that <code>Process.spawn 'echo', '%Path%'</code> will | |
* display the contents of the <tt>%Path%</tt> environment variable | |
* on Windows, but <code>Process.spawn 'echo', '$PATH'</code> prints | |
* the literal <tt>$PATH</tt>. | |
* | |
* If a hash is given as +env+, the environment is | |
* updated by +env+ before <code>exec(2)</code> in the child process. | |
* If a pair in +env+ has nil as the value, the variable is deleted. | |
* | |
* # set FOO as BAR and unset BAZ. | |
* pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command) | |
* | |
* If a hash is given as +options+, | |
* it specifies | |
* process group, | |
* create new process group, | |
* resource limit, | |
* current directory, | |
* umask and | |
* redirects for the child process. | |
* Also, it can be specified to clear environment variables. | |
* | |
* The <code>:unsetenv_others</code> key in +options+ specifies | |
* to clear environment variables, other than specified by +env+. | |
* | |
* pid = spawn(command, :unsetenv_others=>true) # no environment variable | |
* pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only | |
* | |
* The <code>:pgroup</code> key in +options+ specifies a process group. | |
* The corresponding value should be true, zero, a positive integer, or nil. | |
* true and zero cause the process to be a process leader of a new process group. | |
* A non-zero positive integer causes the process to join the provided process group. | |
* The default value, nil, causes the process to remain in the same process group. | |
* | |
* pid = spawn(command, :pgroup=>true) # process leader | |
* pid = spawn(command, :pgroup=>10) # belongs to the process group 10 | |
* | |
* The <code>:new_pgroup</code> key in +options+ specifies to pass | |
* +CREATE_NEW_PROCESS_GROUP+ flag to <code>CreateProcessW()</code> that is | |
* Windows API. This option is only for Windows. | |
* true means the new process is the root process of the new process group. | |
* The new process has CTRL+C disabled. This flag is necessary for | |
* <code>Process.kill(:SIGINT, pid)</code> on the subprocess. | |
* :new_pgroup is false by default. | |
* | |
* pid = spawn(command, :new_pgroup=>true) # new process group | |
* pid = spawn(command, :new_pgroup=>false) # same process group | |
* | |
* The <code>:rlimit_</code><em>foo</em> key specifies a resource limit. | |
* <em>foo</em> should be one of resource types such as <code>core</code>. | |
* The corresponding value should be an integer or an array which have one or | |
* two integers: same as cur_limit and max_limit arguments for | |
* Process.setrlimit. | |
* | |
* cur, max = Process.getrlimit(:CORE) | |
* pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary. | |
* pid = spawn(command, :rlimit_core=>max) # enable core dump | |
* pid = spawn(command, :rlimit_core=>0) # never dump core. | |
* | |
* The <code>:umask</code> key in +options+ specifies the umask. | |
* | |
* pid = spawn(command, :umask=>077) | |
* | |
* The :in, :out, :err, an integer, an IO and an array key specifies a redirection. | |
* The redirection maps a file descriptor in the child process. | |
* | |
* For example, stderr can be merged into stdout as follows: | |
* | |
* pid = spawn(command, :err=>:out) | |
* pid = spawn(command, 2=>1) | |
* pid = spawn(command, STDERR=>:out) | |
* pid = spawn(command, STDERR=>STDOUT) | |
* | |
* The hash keys specifies a file descriptor in the child process | |
* started by #spawn. | |
* :err, 2 and STDERR specifies the standard error stream (stderr). | |
* | |
* The hash values specifies a file descriptor in the parent process | |
* which invokes #spawn. | |
* :out, 1 and STDOUT specifies the standard output stream (stdout). | |
* | |
* In the above example, | |
* the standard output in the child process is not specified. | |
* So it is inherited from the parent process. | |
* | |
* The standard input stream (stdin) can be specified by :in, 0 and STDIN. | |
* | |
* A filename can be specified as a hash value. | |
* | |
* pid = spawn(command, :in=>"/dev/null") # read mode | |
* pid = spawn(command, :out=>"/dev/null") # write mode | |
* pid = spawn(command, :err=>"log") # write mode | |
* pid = spawn(command, [:out, :err]=>"/dev/null") # write mode | |
* pid = spawn(command, 3=>"/dev/null") # read mode | |
* | |
* For stdout and stderr (and combination of them), | |
* it is opened in write mode. | |
* Otherwise read mode is used. | |
* | |
* For specifying flags and permission of file creation explicitly, | |
* an array is used instead. | |
* | |
* pid = spawn(command, :in=>["file"]) # read mode is assumed | |
* pid = spawn(command, :in=>["file", "r"]) | |
* pid = spawn(command, :out=>["log", "w"]) # 0644 assumed | |
* pid = spawn(command, :out=>["log", "w", 0600]) | |
* pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600]) | |
* | |
* The array specifies a filename, flags and permission. | |
* The flags can be a string or an integer. | |
* If the flags is omitted or nil, File::RDONLY is assumed. | |
* The permission should be an integer. | |
* If the permission is omitted or nil, 0644 is assumed. | |
* | |
* If an array of IOs and integers are specified as a hash key, | |
* all the elements are redirected. | |
* | |
* # stdout and stderr is redirected to log file. | |
* # The file "log" is opened just once. | |
* pid = spawn(command, [:out, :err]=>["log", "w"]) | |
* | |
* Another way to merge multiple file descriptors is [:child, fd]. | |
* \[:child, fd] means the file descriptor in the child process. | |
* This is different from fd. | |
* For example, :err=>:out means redirecting child stderr to parent stdout. | |
* But :err=>[:child, :out] means redirecting child stderr to child stdout. | |
* They differ if stdout is redirected in the child process as follows. | |
* | |
* # stdout and stderr is redirected to log file. | |
* # The file "log" is opened just once. | |
* pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out]) | |
* | |
* \[:child, :out] can be used to merge stderr into stdout in IO.popen. | |
* In this case, IO.popen redirects stdout to a pipe in the child process | |
* and [:child, :out] refers the redirected stdout. | |
* | |
* io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]]) | |
* p io.read #=> "out\nerr\n" | |
* | |
* The <code>:chdir</code> key in +options+ specifies the current directory. | |
* | |
* pid = spawn(command, :chdir=>"/var/tmp") | |
* | |
* spawn closes all non-standard unspecified descriptors by default. | |
* The "standard" descriptors are 0, 1 and 2. | |
* This behavior is specified by :close_others option. | |
* :close_others doesn't affect the standard descriptors which are | |
* closed only if :close is specified explicitly. | |
* | |
* pid = spawn(command, :close_others=>true) # close 3,4,5,... (default) | |
* pid = spawn(command, :close_others=>false) # don't close 3,4,5,... | |
* | |
* :close_others is false by default for spawn and IO.popen. | |
* | |
* Note that fds which close-on-exec flag is already set are closed | |
* regardless of :close_others option. | |
* | |
* So IO.pipe and spawn can be used as IO.popen. | |
* | |
* # similar to r = IO.popen(command) | |
* r, w = IO.pipe | |
* pid = spawn(command, :out=>w) # r, w is closed in the child process. | |
* w.close | |
* | |
* :close is specified as a hash value to close a fd individually. | |
* | |
* f = open(foo) | |
* system(command, f=>:close) # don't inherit f. | |
* | |
* If a file descriptor need to be inherited, | |
* io=>io can be used. | |
* | |
* # valgrind has --log-fd option for log destination. | |
* # log_w=>log_w indicates log_w.fileno inherits to child process. | |
* log_r, log_w = IO.pipe | |
* pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w) | |
* log_w.close | |
* p log_r.read | |
* | |
* It is also possible to exchange file descriptors. | |
* | |
* pid = spawn(command, :out=>:err, :err=>:out) | |
* | |
* The hash keys specify file descriptors in the child process. | |
* The hash values specifies file descriptors in the parent process. | |
* So the above specifies exchanging stdout and stderr. | |
* Internally, +spawn+ uses an extra file descriptor to resolve such cyclic | |
* file descriptor mapping. | |
* | |
* See Kernel.exec for the standard shell. | |
*/ | |
static VALUE | |
rb_f_spawn(int argc, VALUE *argv, VALUE _) | |
{ | |
rb_pid_t pid; | |
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; | |
VALUE execarg_obj, fail_str; | |
struct rb_execarg *eargp; | |
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); | |
eargp = rb_execarg_get(execarg_obj); | |
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; | |
pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg)); | |
if (pid == -1) { | |
int err = errno; | |
rb_exec_fail(eargp, err, errmsg); | |
RB_GC_GUARD(execarg_obj); | |
rb_syserr_fail_str(err, fail_str); | |
} | |
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) | |
return PIDT2NUM(pid); | |
#else | |
return Qnil; | |
#endif | |
} | |
/* | |
* call-seq: | |
* sleep([duration]) -> integer | |
* | |
* Suspends the current thread for _duration_ seconds (which may be any number, | |
* including a +Float+ with fractional seconds). Returns the actual number of | |
* seconds slept (rounded), which may be less than that asked for if another | |
* thread calls Thread#run. Called without an argument, sleep() | |
* will sleep forever. | |
* | |
* Time.new #=> 2008-03-08 19:56:19 +0900 | |
* sleep 1.2 #=> 1 | |
* Time.new #=> 2008-03-08 19:56:20 +0900 | |
* sleep 1.9 #=> 2 | |
* Time.new #=> 2008-03-08 19:56:22 +0900 | |
*/ | |
static VALUE | |
rb_f_sleep(int argc, VALUE *argv, VALUE _) | |
{ | |
time_t beg = time(0); | |
VALUE scheduler = rb_fiber_scheduler_current(); | |
if (scheduler != Qnil) { | |
rb_fiber_scheduler_kernel_sleepv(scheduler, argc, argv); | |
} | |
else { | |
if (argc == 0) { | |
rb_thread_sleep_forever(); | |
} | |
else { | |
rb_check_arity(argc, 0, 1); | |
rb_thread_wait_for(rb_time_interval(argv[0])); | |
} | |
} | |
time_t end = time(0) - beg; | |
return TIMET2NUM(end); | |
} | |
#if (defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)) || defined(HAVE_GETPGID) | |
/* | |
* call-seq: | |
* Process.getpgrp -> integer | |
* | |
* Returns the process group ID for this process. Not available on | |
* all platforms. | |
* | |
* Process.getpgid(0) #=> 25527 | |
* Process.getpgrp #=> 25527 | |
*/ | |
static VALUE | |
proc_getpgrp(VALUE _) | |
{ | |
rb_pid_t pgrp; | |
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) | |
pgrp = getpgrp(); | |
if (pgrp < 0) rb_sys_fail(0); | |
return PIDT2NUM(pgrp); | |
#else /* defined(HAVE_GETPGID) */ | |
pgrp = getpgid(0); | |
if (pgrp < 0) rb_sys_fail(0); | |
return PIDT2NUM(pgrp); | |
#endif | |
} | |
#else | |
#define proc_getpgrp rb_f_notimplement | |
#endif | |
#if defined(HAVE_SETPGID) || (defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)) | |
/* | |
* call-seq: | |
* Process.setpgrp -> 0 | |
* | |
* Equivalent to <code>setpgid(0,0)</code>. Not available on all | |
* platforms. | |
*/ | |
static VALUE | |
proc_setpgrp(VALUE _) | |
{ | |
/* check for posix setpgid() first; this matches the posix */ | |
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */ | |
/* even though setpgrp(0,0) would be preferred. The posix call avoids */ | |
/* this confusion. */ | |
#ifdef HAVE_SETPGID | |
if (setpgid(0,0) < 0) rb_sys_fail(0); | |
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID) | |
if (setpgrp() < 0) rb_sys_fail(0); | |
#endif | |
return INT2FIX(0); | |
} | |
#else | |
#define proc_setpgrp rb_f_notimplement | |
#endif | |
#if defined(HAVE_GETPGID) | |
/* | |
* call-seq: | |
* Process.getpgid(pid) -> integer | |
* | |
* Returns the process group ID for the given process id. Not | |
* available on all platforms. | |
* | |
* Process.getpgid(Process.ppid()) #=> 25527 | |
*/ | |
static VALUE | |
proc_getpgid(VALUE obj, VALUE pid) | |
{ | |
rb_pid_t i; | |
i = getpgid(NUM2PIDT(pid)); | |
if (i < 0) rb_sys_fail(0); | |
return PIDT2NUM(i); | |
} | |
#else | |
#define proc_getpgid rb_f_notimplement | |
#endif | |
#ifdef HAVE_SETPGID | |
/* | |
* call-seq: | |
* Process.setpgid(pid, integer) -> 0 | |
* | |
* Sets the process group ID of _pid_ (0 indicates this | |
* process) to <em>integer</em>. Not available on all platforms. | |
*/ | |
static VALUE | |
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp) | |
{ | |
rb_pid_t ipid, ipgrp; | |
ipid = NUM2PIDT(pid); | |
ipgrp = NUM2PIDT(pgrp); | |
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0); | |
return INT2FIX(0); | |
} | |
#else | |
#define proc_setpgid rb_f_notimplement | |
#endif | |
#ifdef HAVE_GETSID | |
/* | |
* call-seq: | |
* Process.getsid() -> integer | |
* Process.getsid(pid) -> integer | |
* | |
* Returns the session ID for the given process id. If not given, | |
* return current process sid. Not available on all platforms. | |
* | |
* Process.getsid() #=> 27422 | |
* Process.getsid(0) #=> 27422 | |
* Process.getsid(Process.pid()) #=> 27422 | |
*/ | |
static VALUE | |
proc_getsid(int argc, VALUE *argv, VALUE _) | |
{ | |
rb_pid_t sid; | |
rb_pid_t pid = 0; | |
if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0])) | |
pid = NUM2PIDT(argv[0]); | |
sid = getsid(pid); | |
if (sid < 0) rb_sys_fail(0); | |
return PIDT2NUM(sid); | |
} | |
#else | |
#define proc_getsid rb_f_notimplement | |
#endif | |
#if defined(HAVE_SETSID) || (defined(HAVE_SETPGRP) && defined(TIOCNOTTY)) | |
#if !defined(HAVE_SETSID) | |
static rb_pid_t ruby_setsid(void); | |
#define setsid() ruby_setsid() | |
#endif | |
/* | |
* call-seq: | |
* Process.setsid -> integer | |
* | |
* Establishes this process as a new session and process group | |
* leader, with no controlling tty. Returns the session id. Not | |
* available on all platforms. | |
* | |
* Process.setsid #=> 27422 | |
*/ | |
static VALUE | |
proc_setsid(VALUE _) | |
{ | |
rb_pid_t pid; | |
pid = setsid(); | |
if (pid < 0) rb_sys_fail(0); | |
return PIDT2NUM(pid); | |
} | |
#if !defined(HAVE_SETSID) | |
#define HAVE_SETSID 1 | |
static rb_pid_t | |
ruby_setsid(void) | |
{ | |
rb_pid_t pid; | |
int ret; | |
pid = getpid(); | |
#if defined(SETPGRP_VOID) | |
ret = setpgrp(); | |
/* If `pid_t setpgrp(void)' is equivalent to setsid(), | |
`ret' will be the same value as `pid', and following open() will fail. | |
In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */ | |
#else | |
ret = setpgrp(0, pid); | |
#endif | |
if (ret == -1) return -1; | |
if ((fd = rb_cloexec_open("/dev/tty", O_RDWR, 0)) >= 0) { | |
rb_update_max_fd(fd); | |
ioctl(fd, TIOCNOTTY, NULL); | |
close(fd); | |
} | |
return pid; | |
} | |
#endif | |
#else | |
#define proc_setsid rb_f_notimplement | |
#endif | |
#ifdef HAVE_GETPRIORITY | |
/* | |
* call-seq: | |
* Process.getpriority(kind, integer) -> integer | |
* | |
* Gets the scheduling priority for specified process, process group, | |
* or user. <em>kind</em> indicates the kind of entity to find: one | |
* of Process::PRIO_PGRP, | |
* Process::PRIO_USER, or | |
* Process::PRIO_PROCESS. _integer_ is an id | |
* indicating the particular process, process group, or user (an id | |
* of 0 means _current_). Lower priorities are more favorable | |
* for scheduling. Not available on all platforms. | |
* | |
* Process.getpriority(Process::PRIO_USER, 0) #=> 19 | |
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 | |
*/ | |
static VALUE | |
proc_getpriority(VALUE obj, VALUE which, VALUE who) | |
{ | |
int prio, iwhich, iwho; | |
iwhich = NUM2INT(which); | |
iwho = NUM2INT(who); | |
errno = 0; | |
prio = getpriority(iwhich, iwho); | |
if (errno) rb_sys_fail(0); | |
return INT2FIX(prio); | |
} | |
#else | |
#define proc_getpriority rb_f_notimplement | |
#endif | |
#ifdef HAVE_GETPRIORITY | |
/* | |
* call-seq: | |
* Process.setpriority(kind, integer, priority) -> 0 | |
* | |
* See Process.getpriority. | |
* | |
* Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 | |
* Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 | |
* Process.getpriority(Process::PRIO_USER, 0) #=> 19 | |
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 | |
*/ | |
static VALUE | |
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio) | |
{ | |
int iwhich, iwho, iprio; | |
iwhich = NUM2INT(which); | |
iwho = NUM2INT(who); | |
iprio = NUM2INT(prio); | |
if (setpriority(iwhich, iwho, iprio) < 0) | |
rb_sys_fail(0); | |
return INT2FIX(0); | |
} | |
#else | |
#define proc_setpriority rb_f_notimplement | |
#endif | |
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) | |
static int | |
rlimit_resource_name2int(const char *name, long len, int casetype) | |
{ | |
int resource; | |
const char *p; | |
#define RESCHECK(r) \ | |
do { \ | |
if (len == rb_strlen_lit(#r) && STRCASECMP(name, #r) == 0) { \ | |
resource = RLIMIT_##r; \ | |
goto found; \ | |
} \ | |
} while (0) | |
switch (TOUPPER(*name)) { | |
case 'A': | |
#ifdef RLIMIT_AS | |
RESCHECK(AS); | |
#endif | |
break; | |
case 'C': | |
#ifdef RLIMIT_CORE | |
RESCHECK(CORE); | |
#endif | |
#ifdef RLIMIT_CPU | |
RESCHECK(CPU); | |
#endif | |
break; | |
case 'D': | |
#ifdef RLIMIT_DATA | |
RESCHECK(DATA); | |
#endif | |
break; | |
case 'F': | |
#ifdef RLIMIT_FSIZE | |
RESCHECK(FSIZE); | |
#endif | |
break; | |
case 'M': | |
#ifdef RLIMIT_MEMLOCK | |
RESCHECK(MEMLOCK); | |
#endif | |
#ifdef RLIMIT_MSGQUEUE | |
RESCHECK(MSGQUEUE); | |
#endif | |
break; | |
case 'N': | |
#ifdef RLIMIT_NOFILE | |
RESCHECK(NOFILE); | |
#endif | |
#ifdef RLIMIT_NPROC | |
RESCHECK(NPROC); | |
#endif | |
#ifdef RLIMIT_NICE | |
RESCHECK(NICE); | |
#endif | |
break; | |
case 'R': | |
#ifdef RLIMIT_RSS | |
RESCHECK(RSS); | |
#endif | |
#ifdef RLIMIT_RTPRIO | |
RESCHECK(RTPRIO); | |
#endif | |
#ifdef RLIMIT_RTTIME | |
RESCHECK(RTTIME); | |
#endif | |
break; | |
case 'S': | |
#ifdef RLIMIT_STACK | |
RESCHECK(STACK); | |
#endif | |
#ifdef RLIMIT_SBSIZE | |
RESCHECK(SBSIZE); | |
#endif | |
#ifdef RLIMIT_SIGPENDING | |
RESCHECK(SIGPENDING); | |
#endif | |
break; | |
} | |
return -1; | |
found: | |
switch (casetype) { | |
case 0: | |
for (p = name; *p; p++) | |
if (!ISUPPER(*p)) | |
return -1; | |
break; | |
case 1: | |
for (p = name; *p; p++) | |
if (!ISLOWER(*p)) | |
return -1; | |
break; | |
default: | |
rb_bug("unexpected casetype"); | |
} | |
return resource; | |
#undef RESCHECK | |
} | |
static int | |
rlimit_type_by_hname(const char *name, long len) | |
{ | |
return rlimit_resource_name2int(name, len, 0); | |
} | |
static int | |
rlimit_type_by_lname(const char *name, long len) | |
{ | |
return rlimit_resource_name2int(name, len, 1); | |
} | |
static int | |
rlimit_type_by_sym(VALUE key) | |
{ | |
VALUE name = rb_sym2str(key); | |
const char *rname = RSTRING_PTR(name); | |
long len = RSTRING_LEN(name); | |
int rtype = -1; | |
static const char prefix[] = "rlimit_"; | |
enum {prefix_len = sizeof(prefix)-1}; | |
if (len > prefix_len && strncmp(prefix, rname, prefix_len) == 0) { | |
rtype = rlimit_type_by_lname(rname + prefix_len, len - prefix_len); | |
} | |
RB_GC_GUARD(key); | |
return rtype; | |
} | |
static int | |
rlimit_resource_type(VALUE rtype) | |
{ | |
const char *name; | |
long len; | |
VALUE v; | |
int r; | |
switch (TYPE(rtype)) { | |
case T_SYMBOL: | |
v = rb_sym2str(rtype); | |
name = RSTRING_PTR(v); | |
len = RSTRING_LEN(v); | |
break; | |
default: | |
v = rb_check_string_type(rtype); | |
if (!NIL_P(v)) { | |
rtype = v; | |
case T_STRING: | |
name = StringValueCStr(rtype); | |
len = RSTRING_LEN(rtype); | |
break; | |
} | |
/* fall through */ | |
case T_FIXNUM: | |
case T_BIGNUM: | |
return NUM2INT(rtype); | |
} | |
r = rlimit_type_by_hname(name, len); | |
if (r != -1) | |
return r; | |
rb_raise(rb_eArgError, "invalid resource name: % "PRIsVALUE, rtype); | |
UNREACHABLE_RETURN(-1); | |
} | |
static rlim_t | |
rlimit_resource_value(VALUE rval) | |
{ | |
const char *name; | |
VALUE v; | |
switch (TYPE(rval)) { | |
case T_SYMBOL: | |
v = rb_sym2str(rval); | |
name = RSTRING_PTR(v); | |
break; | |
default: | |
v = rb_check_string_type(rval); | |
if (!NIL_P(v)) { | |
rval = v; | |
case T_STRING: | |
name = StringValueCStr(rval); | |
break; | |
} | |
/* fall through */ | |
case T_FIXNUM: | |
case T_BIGNUM: | |
return NUM2RLIM(rval); | |
} | |
#ifdef RLIM_INFINITY | |
if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY; | |
#endif | |
#ifdef RLIM_SAVED_MAX | |
if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX; | |
#endif | |
#ifdef RLIM_SAVED_CUR | |
if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR; | |
#endif | |
rb_raise(rb_eArgError, "invalid resource value: %"PRIsVALUE, rval); | |
UNREACHABLE_RETURN((rlim_t)-1); | |
} | |
#endif | |
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM) | |
/* | |
* call-seq: | |
* Process.getrlimit(resource) -> [cur_limit, max_limit] | |
* | |
* Gets the resource limit of the process. | |
* _cur_limit_ means current (soft) limit and | |
* _max_limit_ means maximum (hard) limit. | |
* | |
* _resource_ indicates the kind of resource to limit. | |
* It is specified as a symbol such as <code>:CORE</code>, | |
* a string such as <code>"CORE"</code> or | |
* a constant such as Process::RLIMIT_CORE. | |
* See Process.setrlimit for details. | |
* | |
* _cur_limit_ and _max_limit_ may be Process::RLIM_INFINITY, | |
* Process::RLIM_SAVED_MAX or | |
* Process::RLIM_SAVED_CUR. | |
* See Process.setrlimit and the system getrlimit(2) manual for details. | |
*/ | |
static VALUE | |
proc_getrlimit(VALUE obj, VALUE resource) | |
{ | |
struct rlimit rlim; | |
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) { | |
rb_sys_fail("getrlimit"); | |
} | |
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max)); | |
} | |
#else | |
#define proc_getrlimit rb_f_notimplement | |
#endif | |
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) | |
/* | |
* call-seq: | |
* Process.setrlimit(resource, cur_limit, max_limit) -> nil | |
* Process.setrlimit(resource, cur_limit) -> nil | |
* | |
* Sets the resource limit of the process. | |
* _cur_limit_ means current (soft) limit and | |
* _max_limit_ means maximum (hard) limit. | |
* | |
* If _max_limit_ is not given, _cur_limit_ is used. | |
* | |
* _resource_ indicates the kind of resource to limit. | |
* It should be a symbol such as <code>:CORE</code>, | |
* a string such as <code>"CORE"</code> or | |
* a constant such as Process::RLIMIT_CORE. | |
* The available resources are OS dependent. | |
* Ruby may support following resources. | |
* | |
* [AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite) | |
* [CORE] core size (bytes) (SUSv3) | |
* [CPU] CPU time (seconds) (SUSv3) | |
* [DATA] data segment (bytes) (SUSv3) | |
* [FSIZE] file size (bytes) (SUSv3) | |
* [MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux) | |
* [MSGQUEUE] allocation for POSIX message queues (bytes) (GNU/Linux) | |
* [NICE] ceiling on process's nice(2) value (number) (GNU/Linux) | |
* [NOFILE] file descriptors (number) (SUSv3) | |
* [NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux) | |
* [RSS] resident memory size (bytes) (4.2BSD, GNU/Linux) | |
* [RTPRIO] ceiling on the process's real-time priority (number) (GNU/Linux) | |
* [RTTIME] CPU time for real-time process (us) (GNU/Linux) | |
* [SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD) | |
* [SIGPENDING] number of queued signals allowed (signals) (GNU/Linux) | |
* [STACK] stack size (bytes) (SUSv3) | |
* | |
* _cur_limit_ and _max_limit_ may be | |
* <code>:INFINITY</code>, <code>"INFINITY"</code> or | |
* Process::RLIM_INFINITY, | |
* which means that the resource is not limited. | |
* They may be Process::RLIM_SAVED_MAX, | |
* Process::RLIM_SAVED_CUR and | |
* corresponding symbols and strings too. | |
* See system setrlimit(2) manual for details. | |
* | |
* The following example raises the soft limit of core size to | |
* the hard limit to try to make core dump possible. | |
* | |
* Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1]) | |
* | |
*/ | |
static VALUE | |
proc_setrlimit(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE resource, rlim_cur, rlim_max; | |
struct rlimit rlim; | |
rb_check_arity(argc, 2, 3); | |
resource = argv[0]; | |
rlim_cur = argv[1]; | |
if (argc < 3 || NIL_P(rlim_max = argv[2])) | |
rlim_max = rlim_cur; | |
rlim.rlim_cur = rlimit_resource_value(rlim_cur); | |
rlim.rlim_max = rlimit_resource_value(rlim_max); | |
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) { | |
rb_sys_fail("setrlimit"); | |
} | |
return Qnil; | |
} | |
#else | |
#define proc_setrlimit rb_f_notimplement | |
#endif | |
static int under_uid_switch = 0; | |
static void | |
check_uid_switch(void) | |
{ | |
if (under_uid_switch) { | |
rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method"); | |
} | |
} | |
static int under_gid_switch = 0; | |
static void | |
check_gid_switch(void) | |
{ | |
if (under_gid_switch) { | |
rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method"); | |
} | |
} | |
#if defined(HAVE_PWD_H) | |
/** | |
* Best-effort attempt to obtain the name of the login user, if any, | |
* associated with the process. Processes not descended from login(1) (or | |
* similar) may not have a logged-in user; returns Qnil in that case. | |
*/ | |
VALUE | |
rb_getlogin(void) | |
{ | |
#if ( !defined(USE_GETLOGIN_R) && !defined(USE_GETLOGIN) ) | |
return Qnil; | |
#else | |
char MAYBE_UNUSED(*login) = NULL; | |
# ifdef USE_GETLOGIN_R | |
#if defined(__FreeBSD__) | |
typedef int getlogin_r_size_t; | |
#else | |
typedef size_t getlogin_r_size_t; | |
#endif | |
long loginsize = GETLOGIN_R_SIZE_INIT; /* maybe -1 */ | |
if (loginsize < 0) | |
loginsize = GETLOGIN_R_SIZE_DEFAULT; | |
VALUE maybe_result = rb_str_buf_new(loginsize); | |
login = RSTRING_PTR(maybe_result); | |
loginsize = rb_str_capacity(maybe_result); | |
rb_str_set_len(maybe_result, loginsize); | |
int gle; | |
errno = 0; | |
while ((gle = getlogin_r(login, (getlogin_r_size_t)loginsize)) != 0) { | |
if (gle == ENOTTY || gle == ENXIO || gle == ENOENT) { | |
rb_str_resize(maybe_result, 0); | |
return Qnil; | |
} | |
if (gle != ERANGE || loginsize >= GETLOGIN_R_SIZE_LIMIT) { | |
rb_str_resize(maybe_result, 0); | |
rb_syserr_fail(gle, "getlogin_r"); | |
} | |
rb_str_modify_expand(maybe_result, loginsize); | |
login = RSTRING_PTR(maybe_result); | |
loginsize = rb_str_capacity(maybe_result); | |
} | |
if (login == NULL) { | |
rb_str_resize(maybe_result, 0); | |
return Qnil; | |
} | |
return maybe_result; | |
# elif USE_GETLOGIN | |
errno = 0; | |
login = getlogin(); | |
if (errno) { | |
if (errno == ENOTTY || errno == ENXIO || errno == ENOENT) { | |
return Qnil; | |
} | |
rb_syserr_fail(errno, "getlogin"); | |
} | |
return login ? rb_str_new_cstr(login) : Qnil; | |
# endif | |
#endif | |
} | |
VALUE | |
rb_getpwdirnam_for_login(VALUE login_name) | |
{ | |
#if ( !defined(USE_GETPWNAM_R) && !defined(USE_GETPWNAM) ) | |
return Qnil; | |
#else | |
if (NIL_P(login_name)) { | |
/* nothing to do; no name with which to query the password database */ | |
return Qnil; | |
} | |
char *login = RSTRING_PTR(login_name); | |
struct passwd *pwptr; | |
# ifdef USE_GETPWNAM_R | |
struct passwd pwdnm; | |
char *bufnm; | |
long bufsizenm = GETPW_R_SIZE_INIT; /* maybe -1 */ | |
if (bufsizenm < 0) | |
bufsizenm = GETPW_R_SIZE_DEFAULT; | |
VALUE getpwnm_tmp = rb_str_tmp_new(bufsizenm); | |
bufnm = RSTRING_PTR(getpwnm_tmp); | |
bufsizenm = rb_str_capacity(getpwnm_tmp); | |
rb_str_set_len(getpwnm_tmp, bufsizenm); | |
int enm; | |
errno = 0; | |
while ((enm = getpwnam_r(login, &pwdnm, bufnm, bufsizenm, &pwptr)) != 0) { | |
if (enm == ENOENT || enm== ESRCH || enm == EBADF || enm == EPERM) { | |
/* not found; non-errors */ | |
rb_str_resize(getpwnm_tmp, 0); | |
return Qnil; | |
} | |
if (enm != ERANGE || bufsizenm >= GETPW_R_SIZE_LIMIT) { | |
rb_str_resize(getpwnm_tmp, 0); | |
rb_syserr_fail(enm, "getpwnam_r"); | |
} | |
rb_str_modify_expand(getpwnm_tmp, bufsizenm); | |
bufnm = RSTRING_PTR(getpwnm_tmp); | |
bufsizenm = rb_str_capacity(getpwnm_tmp); | |
} | |
if (pwptr == NULL) { | |
/* no record in the password database for the login name */ | |
rb_str_resize(getpwnm_tmp, 0); | |
return Qnil; | |
} | |
/* found it */ | |
VALUE result = rb_str_new_cstr(pwptr->pw_dir); | |
rb_str_resize(getpwnm_tmp, 0); | |
return result; | |
# elif USE_GETPWNAM | |
errno = 0; | |
pwptr = getpwnam(login); | |
if (pwptr) { | |
/* found it */ | |
return rb_str_new_cstr(pwptr->pw_dir); | |
} | |
if (errno | |
/* avoid treating as errors errno values that indicate "not found" */ | |
&& ( errno != ENOENT && errno != ESRCH && errno != EBADF && errno != EPERM)) { | |
rb_syserr_fail(errno, "getpwnam"); | |
} | |
return Qnil; /* not found */ | |
# endif | |
#endif | |
} | |
/** | |
* Look up the user's dflt home dir in the password db, by uid. | |
*/ | |
VALUE | |
rb_getpwdiruid(void) | |
{ | |
# if !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID) | |
/* Should never happen... </famous-last-words> */ | |
return Qnil; | |
# else | |
uid_t ruid = getuid(); | |
struct passwd *pwptr; | |
# ifdef USE_GETPWUID_R | |
struct passwd pwdid; | |
char *bufid; | |
long bufsizeid = GETPW_R_SIZE_INIT; /* maybe -1 */ | |
if (bufsizeid < 0) | |
bufsizeid = GETPW_R_SIZE_DEFAULT; | |
VALUE getpwid_tmp = rb_str_tmp_new(bufsizeid); | |
bufid = RSTRING_PTR(getpwid_tmp); | |
bufsizeid = rb_str_capacity(getpwid_tmp); | |
rb_str_set_len(getpwid_tmp, bufsizeid); | |
int eid; | |
errno = 0; | |
while ((eid = getpwuid_r(ruid, &pwdid, bufid, bufsizeid, &pwptr)) != 0) { | |
if (eid == ENOENT || eid== ESRCH || eid == EBADF || eid == EPERM) { | |
/* not found; non-errors */ | |
rb_str_resize(getpwid_tmp, 0); | |
return Qnil; | |
} | |
if (eid != ERANGE || bufsizeid >= GETPW_R_SIZE_LIMIT) { | |
rb_str_resize(getpwid_tmp, 0); | |
rb_syserr_fail(eid, "getpwuid_r"); | |
} | |
rb_str_modify_expand(getpwid_tmp, bufsizeid); | |
bufid = RSTRING_PTR(getpwid_tmp); | |
bufsizeid = rb_str_capacity(getpwid_tmp); | |
} | |
if (pwptr == NULL) { | |
/* no record in the password database for the uid */ | |
rb_str_resize(getpwid_tmp, 0); | |
return Qnil; | |
} | |
/* found it */ | |
VALUE result = rb_str_new_cstr(pwptr->pw_dir); | |
rb_str_resize(getpwid_tmp, 0); | |
return result; | |
# elif defined(USE_GETPWUID) | |
errno = 0; | |
pwptr = getpwuid(ruid); | |
if (pwptr) { | |
/* found it */ | |
return rb_str_new_cstr(pwptr->pw_dir); | |
} | |
if (errno | |
/* avoid treating as errors errno values that indicate "not found" */ | |
&& ( errno == ENOENT || errno == ESRCH || errno == EBADF || errno == EPERM)) { | |
rb_syserr_fail(errno, "getpwuid"); | |
} | |
return Qnil; /* not found */ | |
# endif | |
#endif /* !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID) */ | |
} | |
#endif /* HAVE_PWD_H */ | |
/********************************************************************* | |
* Document-class: Process::Sys | |
* | |
* The Process::Sys module contains UID and GID | |
* functions which provide direct bindings to the system calls of the | |
* same names instead of the more-portable versions of the same | |
* functionality found in the Process, | |
* Process::UID, and Process::GID modules. | |
*/ | |
#if defined(HAVE_PWD_H) | |
static rb_uid_t | |
obj2uid(VALUE id | |
# ifdef USE_GETPWNAM_R | |
, VALUE *getpw_tmp | |
# endif | |
) | |
{ | |
rb_uid_t uid; | |
VALUE tmp; | |
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) { | |
uid = NUM2UIDT(id); | |
} | |
else { | |
const char *usrname = StringValueCStr(id); | |
struct passwd *pwptr; | |
#ifdef USE_GETPWNAM_R | |
struct passwd pwbuf; | |
char *getpw_buf; | |
long getpw_buf_len; | |
int e; | |
if (!*getpw_tmp) { | |
getpw_buf_len = GETPW_R_SIZE_INIT; | |
if (getpw_buf_len < 0) getpw_buf_len = GETPW_R_SIZE_DEFAULT; | |
*getpw_tmp = rb_str_tmp_new(getpw_buf_len); | |
} | |
getpw_buf = RSTRING_PTR(*getpw_tmp); | |
getpw_buf_len = rb_str_capacity(*getpw_tmp); | |
rb_str_set_len(*getpw_tmp, getpw_buf_len); | |
errno = 0; | |
while ((e = getpwnam_r(usrname, &pwbuf, getpw_buf, getpw_buf_len, &pwptr)) != 0) { | |
if (e != ERANGE || getpw_buf_len >= GETPW_R_SIZE_LIMIT) { | |
rb_str_resize(*getpw_tmp, 0); | |
rb_syserr_fail(e, "getpwnam_r"); | |
} | |
rb_str_modify_expand(*getpw_tmp, getpw_buf_len); | |
getpw_buf = RSTRING_PTR(*getpw_tmp); | |
getpw_buf_len = rb_str_capacity(*getpw_tmp); | |
} | |
#else | |
pwptr = getpwnam(usrname); | |
#endif | |
if (!pwptr) { | |
#ifndef USE_GETPWNAM_R | |
endpwent(); | |
#endif | |
rb_raise(rb_eArgError, "can't find user for %"PRIsVALUE, id); | |
} | |
uid = pwptr->pw_uid; | |
#ifndef USE_GETPWNAM_R | |
endpwent(); | |
#endif | |
} | |
return uid; | |
} | |
# ifdef p_uid_from_name | |
/* | |
* call-seq: | |
* Process::UID.from_name(name) -> uid | |
* | |
* Get the user ID by the _name_. | |
* If the user is not found, +ArgumentError+ will be raised. | |
* | |
* Process::UID.from_name("root") #=> 0 | |
* Process::UID.from_name("nosuchuser") #=> can't find user for nosuchuser (ArgumentError) | |
*/ | |
static VALUE | |
p_uid_from_name(VALUE self, VALUE id) | |
{ | |
return UIDT2NUM(OBJ2UID(id)); | |
} | |
# endif | |
#endif | |
#if defined(HAVE_GRP_H) | |
static rb_gid_t | |
obj2gid(VALUE id | |
# ifdef USE_GETGRNAM_R | |
, VALUE *getgr_tmp | |
# endif | |
) | |
{ | |
rb_gid_t gid; | |
VALUE tmp; | |
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) { | |
gid = NUM2GIDT(id); | |
} | |
else { | |
const char *grpname = StringValueCStr(id); | |
struct group *grptr; | |
#ifdef USE_GETGRNAM_R | |
struct group grbuf; | |
char *getgr_buf; | |
long getgr_buf_len; | |
int e; | |
if (!*getgr_tmp) { | |
getgr_buf_len = GETGR_R_SIZE_INIT; | |
if (getgr_buf_len < 0) getgr_buf_len = GETGR_R_SIZE_DEFAULT; | |
*getgr_tmp = rb_str_tmp_new(getgr_buf_len); | |
} | |
getgr_buf = RSTRING_PTR(*getgr_tmp); | |
getgr_buf_len = rb_str_capacity(*getgr_tmp); | |
rb_str_set_len(*getgr_tmp, getgr_buf_len); | |
errno = 0; | |
while ((e = getgrnam_r(grpname, &grbuf, getgr_buf, getgr_buf_len, &grptr)) != 0) { | |
if (e != ERANGE || getgr_buf_len >= GETGR_R_SIZE_LIMIT) { | |
rb_str_resize(*getgr_tmp, 0); | |
rb_syserr_fail(e, "getgrnam_r"); | |
} | |
rb_str_modify_expand(*getgr_tmp, getgr_buf_len); | |
getgr_buf = RSTRING_PTR(*getgr_tmp); | |
getgr_buf_len = rb_str_capacity(*getgr_tmp); | |
} | |
#elif defined(HAVE_GETGRNAM) | |
grptr = getgrnam(grpname); | |
#else | |
grptr = NULL; | |
#endif | |
if (!grptr) { | |
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT) | |
endgrent(); | |
#endif | |
rb_raise(rb_eArgError, "can't find group for %"PRIsVALUE, id); | |
} | |
gid = grptr->gr_gid; | |
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT) | |
endgrent(); | |
#endif | |
} | |
return gid; | |
} | |
# ifdef p_gid_from_name | |
/* | |
* call-seq: | |
* Process::GID.from_name(name) -> gid | |
* | |
* Get the group ID by the _name_. | |
* If the group is not found, +ArgumentError+ will be raised. | |
* | |
* Process::GID.from_name("wheel") #=> 0 | |
* Process::GID.from_name("nosuchgroup") #=> can't find group for nosuchgroup (ArgumentError) | |
*/ | |
static VALUE | |
p_gid_from_name(VALUE self, VALUE id) | |
{ | |
return GIDT2NUM(OBJ2GID(id)); | |
} | |
# endif | |
#endif | |
#if defined HAVE_SETUID | |
/* | |
* call-seq: | |
* Process::Sys.setuid(user) -> nil | |
* | |
* Set the user ID of the current process to _user_. Not | |
* available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setuid(VALUE obj, VALUE id) | |
{ | |
check_uid_switch(); | |
if (setuid(OBJ2UID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setuid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETRUID | |
/* | |
* call-seq: | |
* Process::Sys.setruid(user) -> nil | |
* | |
* Set the real user ID of the calling process to _user_. | |
* Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setruid(VALUE obj, VALUE id) | |
{ | |
check_uid_switch(); | |
if (setruid(OBJ2UID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setruid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETEUID | |
/* | |
* call-seq: | |
* Process::Sys.seteuid(user) -> nil | |
* | |
* Set the effective user ID of the calling process to | |
* _user_. Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_seteuid(VALUE obj, VALUE id) | |
{ | |
check_uid_switch(); | |
if (seteuid(OBJ2UID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_seteuid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETREUID | |
/* | |
* call-seq: | |
* Process::Sys.setreuid(rid, eid) -> nil | |
* | |
* Sets the (user) real and/or effective user IDs of the current | |
* process to _rid_ and _eid_, respectively. A value of | |
* <code>-1</code> for either means to leave that ID unchanged. Not | |
* available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid) | |
{ | |
rb_uid_t ruid, euid; | |
PREPARE_GETPWNAM; | |
check_uid_switch(); | |
ruid = OBJ2UID1(rid); | |
euid = OBJ2UID1(eid); | |
FINISH_GETPWNAM; | |
if (setreuid(ruid, euid) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setreuid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETRESUID | |
/* | |
* call-seq: | |
* Process::Sys.setresuid(rid, eid, sid) -> nil | |
* | |
* Sets the (user) real, effective, and saved user IDs of the | |
* current process to _rid_, _eid_, and _sid_ respectively. A | |
* value of <code>-1</code> for any value means to | |
* leave that ID unchanged. Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) | |
{ | |
rb_uid_t ruid, euid, suid; | |
PREPARE_GETPWNAM; | |
check_uid_switch(); | |
ruid = OBJ2UID1(rid); | |
euid = OBJ2UID1(eid); | |
suid = OBJ2UID1(sid); | |
FINISH_GETPWNAM; | |
if (setresuid(ruid, euid, suid) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setresuid rb_f_notimplement | |
#endif | |
/* | |
* call-seq: | |
* Process.uid -> integer | |
* Process::UID.rid -> integer | |
* Process::Sys.getuid -> integer | |
* | |
* Returns the (real) user ID of this process. | |
* | |
* Process.uid #=> 501 | |
*/ | |
static VALUE | |
proc_getuid(VALUE obj) | |
{ | |
rb_uid_t uid = getuid(); | |
return UIDT2NUM(uid); | |
} | |
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETRUID) || defined(HAVE_SETUID) | |
/* | |
* call-seq: | |
* Process.uid= user -> numeric | |
* | |
* Sets the (user) user ID for this process. Not available on all | |
* platforms. | |
*/ | |
static VALUE | |
proc_setuid(VALUE obj, VALUE id) | |
{ | |
rb_uid_t uid; | |
check_uid_switch(); | |
uid = OBJ2UID(id); | |
#if defined(HAVE_SETRESUID) | |
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETREUID | |
if (setreuid(uid, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETRUID | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETUID | |
{ | |
if (geteuid() == uid) { | |
if (setuid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_notimplement(); | |
} | |
} | |
#endif | |
return id; | |
} | |
#else | |
#define proc_setuid rb_f_notimplement | |
#endif | |
/******************************************************************** | |
* | |
* Document-class: Process::UID | |
* | |
* The Process::UID module contains a collection of | |
* module functions which can be used to portably get, set, and | |
* switch the current process's real, effective, and saved user IDs. | |
* | |
*/ | |
static rb_uid_t SAVED_USER_ID = -1; | |
#ifdef BROKEN_SETREUID | |
int | |
setreuid(rb_uid_t ruid, rb_uid_t euid) | |
{ | |
if (ruid != (rb_uid_t)-1 && ruid != getuid()) { | |
if (euid == (rb_uid_t)-1) euid = geteuid(); | |
if (setuid(ruid) < 0) return -1; | |
} | |
if (euid != (rb_uid_t)-1 && euid != geteuid()) { | |
if (seteuid(euid) < 0) return -1; | |
} | |
return 0; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Process::UID.change_privilege(user) -> integer | |
* | |
* Change the current process's real and effective user ID to that | |
* specified by _user_. Returns the new user ID. Not | |
* available on all platforms. | |
* | |
* [Process.uid, Process.euid] #=> [0, 0] | |
* Process::UID.change_privilege(31) #=> 31 | |
* [Process.uid, Process.euid] #=> [31, 31] | |
*/ | |
static VALUE | |
p_uid_change_privilege(VALUE obj, VALUE id) | |
{ | |
rb_uid_t uid; | |
check_uid_switch(); | |
uid = OBJ2UID(id); | |
if (geteuid() == 0) { /* root-user */ | |
#if defined(HAVE_SETRESUID) | |
if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
#elif defined(HAVE_SETUID) | |
if (setuid(uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) | |
if (getuid() == uid) { | |
if (SAVED_USER_ID == uid) { | |
if (setreuid(-1, uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (uid == 0) { /* (r,e,s) == (root, root, x) */ | |
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); | |
if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */ | |
if (setreuid(uid, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
else { | |
if (setreuid(0, -1) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = 0; | |
if (setreuid(uid, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
} | |
} | |
else { | |
if (setreuid(uid, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) | |
if (getuid() == uid) { | |
if (SAVED_USER_ID == uid) { | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (uid == 0) { | |
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = 0; | |
if (setruid(0) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (setruid(0) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = 0; | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
} | |
} | |
else { | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
#else | |
(void)uid; | |
rb_notimplement(); | |
#endif | |
} | |
else { /* unprivileged user */ | |
#if defined(HAVE_SETRESUID) | |
if (setresuid((getuid() == uid)? (rb_uid_t)-1: uid, | |
(geteuid() == uid)? (rb_uid_t)-1: uid, | |
(SAVED_USER_ID == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) | |
if (SAVED_USER_ID == uid) { | |
if (setreuid((getuid() == uid)? (rb_uid_t)-1: uid, | |
(geteuid() == uid)? (rb_uid_t)-1: uid) < 0) | |
rb_sys_fail(0); | |
} | |
else if (getuid() != uid) { | |
if (setreuid(uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0) | |
rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
else if (/* getuid() == uid && */ geteuid() != uid) { | |
if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
if (setreuid(uid, -1) < 0) rb_sys_fail(0); | |
} | |
else { /* getuid() == uid && geteuid() == uid */ | |
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); | |
if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
if (setreuid(uid, -1) < 0) rb_sys_fail(0); | |
} | |
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) | |
if (SAVED_USER_ID == uid) { | |
if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0); | |
if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0); | |
} | |
else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) { | |
if (getuid() != uid) { | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
else { | |
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
} | |
} | |
else if (/* geteuid() != uid && */ getuid() == uid) { | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
if (setruid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_44BSD_SETUID | |
if (getuid() == uid) { | |
/* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */ | |
if (setuid(uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_SETEUID | |
if (getuid() == uid && SAVED_USER_ID == uid) { | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_SETUID | |
if (getuid() == uid && SAVED_USER_ID == uid) { | |
if (setuid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#else | |
rb_notimplement(); | |
#endif | |
} | |
return id; | |
} | |
#if defined HAVE_SETGID | |
/* | |
* call-seq: | |
* Process::Sys.setgid(group) -> nil | |
* | |
* Set the group ID of the current process to _group_. Not | |
* available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setgid(VALUE obj, VALUE id) | |
{ | |
check_gid_switch(); | |
if (setgid(OBJ2GID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setgid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETRGID | |
/* | |
* call-seq: | |
* Process::Sys.setrgid(group) -> nil | |
* | |
* Set the real group ID of the calling process to _group_. | |
* Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setrgid(VALUE obj, VALUE id) | |
{ | |
check_gid_switch(); | |
if (setrgid(OBJ2GID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setrgid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETEGID | |
/* | |
* call-seq: | |
* Process::Sys.setegid(group) -> nil | |
* | |
* Set the effective group ID of the calling process to | |
* _group_. Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setegid(VALUE obj, VALUE id) | |
{ | |
check_gid_switch(); | |
if (setegid(OBJ2GID(id)) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setegid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETREGID | |
/* | |
* call-seq: | |
* Process::Sys.setregid(rid, eid) -> nil | |
* | |
* Sets the (group) real and/or effective group IDs of the current | |
* process to <em>rid</em> and <em>eid</em>, respectively. A value of | |
* <code>-1</code> for either means to leave that ID unchanged. Not | |
* available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setregid(VALUE obj, VALUE rid, VALUE eid) | |
{ | |
rb_gid_t rgid, egid; | |
check_gid_switch(); | |
rgid = OBJ2GID(rid); | |
egid = OBJ2GID(eid); | |
if (setregid(rgid, egid) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setregid rb_f_notimplement | |
#endif | |
#if defined HAVE_SETRESGID | |
/* | |
* call-seq: | |
* Process::Sys.setresgid(rid, eid, sid) -> nil | |
* | |
* Sets the (group) real, effective, and saved user IDs of the | |
* current process to <em>rid</em>, <em>eid</em>, and <em>sid</em> | |
* respectively. A value of <code>-1</code> for any value means to | |
* leave that ID unchanged. Not available on all platforms. | |
* | |
*/ | |
static VALUE | |
p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) | |
{ | |
rb_gid_t rgid, egid, sgid; | |
check_gid_switch(); | |
rgid = OBJ2GID(rid); | |
egid = OBJ2GID(eid); | |
sgid = OBJ2GID(sid); | |
if (setresgid(rgid, egid, sgid) != 0) rb_sys_fail(0); | |
return Qnil; | |
} | |
#else | |
#define p_sys_setresgid rb_f_notimplement | |
#endif | |
#if defined HAVE_ISSETUGID | |
/* | |
* call-seq: | |
* Process::Sys.issetugid -> true or false | |
* | |
* Returns +true+ if the process was created as a result | |
* of an execve(2) system call which had either of the setuid or | |
* setgid bits set (and extra privileges were given as a result) or | |
* if it has changed any of its real, effective or saved user or | |
* group IDs since it began execution. | |
* | |
*/ | |
static VALUE | |
p_sys_issetugid(VALUE obj) | |
{ | |
if (issetugid()) { | |
return Qtrue; | |
} | |
else { | |
return Qfalse; | |
} | |
} | |
#else | |
#define p_sys_issetugid rb_f_notimplement | |
#endif | |
/* | |
* call-seq: | |
* Process.gid -> integer | |
* Process::GID.rid -> integer | |
* Process::Sys.getgid -> integer | |
* | |
* Returns the (real) group ID for this process. | |
* | |
* Process.gid #=> 500 | |
*/ | |
static VALUE | |
proc_getgid(VALUE obj) | |
{ | |
rb_gid_t gid = getgid(); | |
return GIDT2NUM(gid); | |
} | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETRGID) || defined(HAVE_SETGID) | |
/* | |
* call-seq: | |
* Process.gid= integer -> integer | |
* | |
* Sets the group ID for this process. | |
*/ | |
static VALUE | |
proc_setgid(VALUE obj, VALUE id) | |
{ | |
rb_gid_t gid; | |
check_gid_switch(); | |
gid = OBJ2GID(id); | |
#if defined(HAVE_SETRESGID) | |
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETREGID | |
if (setregid(gid, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETRGID | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETGID | |
{ | |
if (getegid() == gid) { | |
if (setgid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_notimplement(); | |
} | |
} | |
#endif | |
return GIDT2NUM(gid); | |
} | |
#else | |
#define proc_setgid rb_f_notimplement | |
#endif | |
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX) | |
/* | |
* Maximum supplementary groups are platform dependent. | |
* FWIW, 65536 is enough big for our supported OSs. | |
* | |
* OS Name max groups | |
* ----------------------------------------------- | |
* Linux Kernel >= 2.6.3 65536 | |
* Linux Kernel < 2.6.3 32 | |
* IBM AIX 5.2 64 | |
* IBM AIX 5.3 ... 6.1 128 | |
* IBM AIX 7.1 128 (can be configured to be up to 2048) | |
* OpenBSD, NetBSD 16 | |
* FreeBSD < 8.0 16 | |
* FreeBSD >=8.0 1023 | |
* Darwin (Mac OS X) 16 | |
* Sun Solaris 7,8,9,10 16 | |
* Sun Solaris 11 / OpenSolaris 1024 | |
* HP-UX 20 | |
* Windows 1015 | |
*/ | |
static int _maxgroups = -1; | |
static int | |
get_sc_ngroups_max(void) | |
{ | |
#ifdef _SC_NGROUPS_MAX | |
return (int)sysconf(_SC_NGROUPS_MAX); | |
#elif defined(NGROUPS_MAX) | |
return (int)NGROUPS_MAX; | |
#else | |
return -1; | |
#endif | |
} | |
static int | |
maxgroups(void) | |
{ | |
if (_maxgroups < 0) { | |
_maxgroups = get_sc_ngroups_max(); | |
if (_maxgroups < 0) | |
_maxgroups = RB_MAX_GROUPS; | |
} | |
return _maxgroups; | |
} | |
#endif | |
#ifdef HAVE_GETGROUPS | |
/* | |
* call-seq: | |
* Process.groups -> array | |
* | |
* Get an Array of the group IDs in the | |
* supplemental group access list for this process. | |
* | |
* Process.groups #=> [27, 6, 10, 11] | |
* | |
* Note that this method is just a wrapper of getgroups(2). | |
* This means that the following characteristics of | |
* the result completely depend on your system: | |
* | |
* - the result is sorted | |
* - the result includes effective GIDs | |
* - the result does not include duplicated GIDs | |
* | |
* You can make sure to get a sorted unique GID list of | |
* the current process by this expression: | |
* | |
* Process.groups.uniq.sort | |
* | |
*/ | |
static VALUE | |
proc_getgroups(VALUE obj) | |
{ | |
VALUE ary, tmp; | |
int i, ngroups; | |
rb_gid_t *groups; | |
ngroups = getgroups(0, NULL); | |
if (ngroups == -1) | |
rb_sys_fail(0); | |
groups = ALLOCV_N(rb_gid_t, tmp, ngroups); | |
ngroups = getgroups(ngroups, groups); | |
if (ngroups == -1) | |
rb_sys_fail(0); | |
ary = rb_ary_new(); | |
for (i = 0; i < ngroups; i++) | |
rb_ary_push(ary, GIDT2NUM(groups[i])); | |
ALLOCV_END(tmp); | |
return ary; | |
} | |
#else | |
#define proc_getgroups rb_f_notimplement | |
#endif | |
#ifdef HAVE_SETGROUPS | |
/* | |
* call-seq: | |
* Process.groups= array -> array | |
* | |
* Set the supplemental group access list to the given | |
* Array of group IDs. | |
* | |
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] | |
* Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] | |
* Process.groups #=> [27, 6, 10, 11] | |
* | |
*/ | |
static VALUE | |
proc_setgroups(VALUE obj, VALUE ary) | |
{ | |
int ngroups, i; | |
rb_gid_t *groups; | |
VALUE tmp; | |
PREPARE_GETGRNAM; | |
Check_Type(ary, T_ARRAY); | |
ngroups = RARRAY_LENINT(ary); | |
if (ngroups > maxgroups()) | |
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups()); | |
groups = ALLOCV_N(rb_gid_t, tmp, ngroups); | |
for (i = 0; i < ngroups; i++) { | |
VALUE g = RARRAY_AREF(ary, i); | |
groups[i] = OBJ2GID1(g); | |
} | |
FINISH_GETGRNAM; | |
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */ | |
rb_sys_fail(0); | |
ALLOCV_END(tmp); | |
return proc_getgroups(obj); | |
} | |
#else | |
#define proc_setgroups rb_f_notimplement | |
#endif | |
#ifdef HAVE_INITGROUPS | |
/* | |
* call-seq: | |
* Process.initgroups(username, gid) -> array | |
* | |
* Initializes the supplemental group access list by reading the | |
* system group database and using all groups of which the given user | |
* is a member. The group with the specified <em>gid</em> is also | |
* added to the list. Returns the resulting Array of the | |
* gids of all the groups in the supplementary group access list. Not | |
* available on all platforms. | |
* | |
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] | |
* Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] | |
* Process.groups #=> [30, 6, 10, 11] | |
* | |
*/ | |
static VALUE | |
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp) | |
{ | |
if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) { | |
rb_sys_fail(0); | |
} | |
return proc_getgroups(obj); | |
} | |
#else | |
#define proc_initgroups rb_f_notimplement | |
#endif | |
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX) | |
/* | |
* call-seq: | |
* Process.maxgroups -> integer | |
* | |
* Returns the maximum number of gids allowed in the supplemental | |
* group access list. | |
* | |
* Process.maxgroups #=> 32 | |
*/ | |
static VALUE | |
proc_getmaxgroups(VALUE obj) | |
{ | |
return INT2FIX(maxgroups()); | |
} | |
#else | |
#define proc_getmaxgroups rb_f_notimplement | |
#endif | |
#ifdef HAVE_SETGROUPS | |
/* | |
* call-seq: | |
* Process.maxgroups= integer -> integer | |
* | |
* Sets the maximum number of gids allowed in the supplemental group | |
* access list. | |
*/ | |
static VALUE | |
proc_setmaxgroups(VALUE obj, VALUE val) | |
{ | |
int ngroups = FIX2INT(val); | |
int ngroups_max = get_sc_ngroups_max(); | |
if (ngroups <= 0) | |
rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups); | |
if (ngroups > RB_MAX_GROUPS) | |
ngroups = RB_MAX_GROUPS; | |
if (ngroups_max > 0 && ngroups > ngroups_max) | |
ngroups = ngroups_max; | |
_maxgroups = ngroups; | |
return INT2FIX(_maxgroups); | |
} | |
#else | |
#define proc_setmaxgroups rb_f_notimplement | |
#endif | |
#if defined(HAVE_DAEMON) || (defined(HAVE_WORKING_FORK) && defined(HAVE_SETSID)) | |
static int rb_daemon(int nochdir, int noclose); | |
/* | |
* call-seq: | |
* Process.daemon() -> 0 | |
* Process.daemon(nochdir=nil,noclose=nil) -> 0 | |
* | |
* Detach the process from controlling terminal and run in | |
* the background as system daemon. Unless the argument | |
* nochdir is true (i.e. non false), it changes the current | |
* working directory to the root ("/"). Unless the argument | |
* noclose is true, daemon() will redirect standard input, | |
* standard output and standard error to /dev/null. | |
* Return zero on success, or raise one of Errno::*. | |
*/ | |
static VALUE | |
proc_daemon(int argc, VALUE *argv, VALUE _) | |
{ | |
int n, nochdir = FALSE, noclose = FALSE; | |
switch (rb_check_arity(argc, 0, 2)) { | |
case 2: noclose = TO_BOOL(argv[1], "noclose"); | |
case 1: nochdir = TO_BOOL(argv[0], "nochdir"); | |
} | |
prefork(); | |
n = rb_daemon(nochdir, noclose); | |
if (n < 0) rb_sys_fail("daemon"); | |
return INT2FIX(n); | |
} | |
static int | |
rb_daemon(int nochdir, int noclose) | |
{ | |
int err = 0; | |
#ifdef HAVE_DAEMON | |
if (mjit_enabled) mjit_pause(false); // Don't leave locked mutex to child. | |
before_fork_ruby(); | |
err = daemon(nochdir, noclose); | |
after_fork_ruby(); | |
rb_thread_atfork(); /* calls mjit_resume() */ | |
#else | |
int n; | |
#define fork_daemon() \ | |
switch (rb_fork_ruby(NULL)) { \ | |
case -1: return -1; \ | |
case 0: break; \ | |
default: _exit(EXIT_SUCCESS); \ | |
} | |
fork_daemon(); | |
if (setsid() < 0) return -1; | |
/* must not be process-leader */ | |
fork_daemon(); | |
if (!nochdir) | |
err = chdir("/"); | |
if (!noclose && (n = rb_cloexec_open("/dev/null", O_RDWR, 0)) != -1) { | |
rb_update_max_fd(n); | |
(void)dup2(n, 0); | |
(void)dup2(n, 1); | |
(void)dup2(n, 2); | |
if (n > 2) | |
(void)close (n); | |
} | |
#endif | |
return err; | |
} | |
#else | |
#define proc_daemon rb_f_notimplement | |
#endif | |
/******************************************************************** | |
* | |
* Document-class: Process::GID | |
* | |
* The Process::GID module contains a collection of | |
* module functions which can be used to portably get, set, and | |
* switch the current process's real, effective, and saved group IDs. | |
* | |
*/ | |
static rb_gid_t SAVED_GROUP_ID = -1; | |
#ifdef BROKEN_SETREGID | |
int | |
setregid(rb_gid_t rgid, rb_gid_t egid) | |
{ | |
if (rgid != (rb_gid_t)-1 && rgid != getgid()) { | |
if (egid == (rb_gid_t)-1) egid = getegid(); | |
if (setgid(rgid) < 0) return -1; | |
} | |
if (egid != (rb_gid_t)-1 && egid != getegid()) { | |
if (setegid(egid) < 0) return -1; | |
} | |
return 0; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Process::GID.change_privilege(group) -> integer | |
* | |
* Change the current process's real and effective group ID to that | |
* specified by _group_. Returns the new group ID. Not | |
* available on all platforms. | |
* | |
* [Process.gid, Process.egid] #=> [0, 0] | |
* Process::GID.change_privilege(33) #=> 33 | |
* [Process.gid, Process.egid] #=> [33, 33] | |
*/ | |
static VALUE | |
p_gid_change_privilege(VALUE obj, VALUE id) | |
{ | |
rb_gid_t gid; | |
check_gid_switch(); | |
gid = OBJ2GID(id); | |
if (geteuid() == 0) { /* root-user */ | |
#if defined(HAVE_SETRESGID) | |
if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
#elif defined HAVE_SETGID | |
if (setgid(gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) | |
if (getgid() == gid) { | |
if (SAVED_GROUP_ID == gid) { | |
if (setregid(-1, gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (gid == 0) { /* (r,e,s) == (root, y, x) */ | |
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); | |
if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */ | |
if (setregid(gid, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
else { /* (r,e,s) == (z, y, x) */ | |
if (setregid(0, 0) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = 0; | |
if (setregid(gid, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
} | |
} | |
else { | |
if (setregid(gid, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
#elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID) | |
if (getgid() == gid) { | |
if (SAVED_GROUP_ID == gid) { | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (gid == 0) { | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = 0; | |
if (setrgid(0) < 0) rb_sys_fail(0); | |
} | |
else { | |
if (setrgid(0) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = 0; | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
} | |
} | |
else { | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
#else | |
rb_notimplement(); | |
#endif | |
} | |
else { /* unprivileged user */ | |
#if defined(HAVE_SETRESGID) | |
if (setresgid((getgid() == gid)? (rb_gid_t)-1: gid, | |
(getegid() == gid)? (rb_gid_t)-1: gid, | |
(SAVED_GROUP_ID == gid)? (rb_gid_t)-1: gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) | |
if (SAVED_GROUP_ID == gid) { | |
if (setregid((getgid() == gid)? (rb_uid_t)-1: gid, | |
(getegid() == gid)? (rb_uid_t)-1: gid) < 0) | |
rb_sys_fail(0); | |
} | |
else if (getgid() != gid) { | |
if (setregid(gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0) | |
rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
else if (/* getgid() == gid && */ getegid() != gid) { | |
if (setregid(getegid(), gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
if (setregid(gid, -1) < 0) rb_sys_fail(0); | |
} | |
else { /* getgid() == gid && getegid() == gid */ | |
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); | |
if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
if (setregid(gid, -1) < 0) rb_sys_fail(0); | |
} | |
#elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID) | |
if (SAVED_GROUP_ID == gid) { | |
if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0); | |
if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0); | |
} | |
else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) { | |
if (getgid() != gid) { | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
else { | |
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
} | |
} | |
else if (/* getegid() != gid && */ getgid() == gid) { | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
if (setrgid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_44BSD_SETGID | |
if (getgid() == gid) { | |
/* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */ | |
if (setgid(gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_SETEGID | |
if (getgid() == gid && SAVED_GROUP_ID == gid) { | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#elif defined HAVE_SETGID | |
if (getgid() == gid && SAVED_GROUP_ID == gid) { | |
if (setgid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
#else | |
(void)gid; | |
rb_notimplement(); | |
#endif | |
} | |
return id; | |
} | |
/* | |
* call-seq: | |
* Process.euid -> integer | |
* Process::UID.eid -> integer | |
* Process::Sys.geteuid -> integer | |
* | |
* Returns the effective user ID for this process. | |
* | |
* Process.euid #=> 501 | |
*/ | |
static VALUE | |
proc_geteuid(VALUE obj) | |
{ | |
rb_uid_t euid = geteuid(); | |
return UIDT2NUM(euid); | |
} | |
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) || defined(_POSIX_SAVED_IDS) | |
static void | |
proc_seteuid(rb_uid_t uid) | |
{ | |
#if defined(HAVE_SETRESUID) | |
if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETREUID | |
if (setreuid(-1, uid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETEUID | |
if (seteuid(uid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETUID | |
if (uid == getuid()) { | |
if (setuid(uid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_notimplement(); | |
} | |
#else | |
rb_notimplement(); | |
#endif | |
} | |
#endif | |
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) | |
/* | |
* call-seq: | |
* Process.euid= user | |
* | |
* Sets the effective user ID for this process. Not available on all | |
* platforms. | |
*/ | |
static VALUE | |
proc_seteuid_m(VALUE mod, VALUE euid) | |
{ | |
check_uid_switch(); | |
proc_seteuid(OBJ2UID(euid)); | |
return euid; | |
} | |
#else | |
#define proc_seteuid_m rb_f_notimplement | |
#endif | |
static rb_uid_t | |
rb_seteuid_core(rb_uid_t euid) | |
{ | |
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) | |
rb_uid_t uid; | |
#endif | |
check_uid_switch(); | |
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) | |
uid = getuid(); | |
#endif | |
#if defined(HAVE_SETRESUID) | |
if (uid != euid) { | |
if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = euid; | |
} | |
else { | |
if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0); | |
} | |
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) | |
if (setreuid(-1, euid) < 0) rb_sys_fail(0); | |
if (uid != euid) { | |
if (setreuid(euid,uid) < 0) rb_sys_fail(0); | |
if (setreuid(uid,euid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = euid; | |
} | |
#elif defined HAVE_SETEUID | |
if (seteuid(euid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETUID | |
if (geteuid() == 0) rb_sys_fail(0); | |
if (setuid(euid) < 0) rb_sys_fail(0); | |
#else | |
rb_notimplement(); | |
#endif | |
return euid; | |
} | |
/* | |
* call-seq: | |
* Process::UID.grant_privilege(user) -> integer | |
* Process::UID.eid= user -> integer | |
* | |
* Set the effective user ID, and if possible, the saved user ID of | |
* the process to the given _user_. Returns the new | |
* effective user ID. Not available on all platforms. | |
* | |
* [Process.uid, Process.euid] #=> [0, 0] | |
* Process::UID.grant_privilege(31) #=> 31 | |
* [Process.uid, Process.euid] #=> [0, 31] | |
*/ | |
static VALUE | |
p_uid_grant_privilege(VALUE obj, VALUE id) | |
{ | |
rb_seteuid_core(OBJ2UID(id)); | |
return id; | |
} | |
/* | |
* call-seq: | |
* Process.egid -> integer | |
* Process::GID.eid -> integer | |
* Process::Sys.geteid -> integer | |
* | |
* Returns the effective group ID for this process. Not available on | |
* all platforms. | |
* | |
* Process.egid #=> 500 | |
*/ | |
static VALUE | |
proc_getegid(VALUE obj) | |
{ | |
rb_gid_t egid = getegid(); | |
return GIDT2NUM(egid); | |
} | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) || defined(_POSIX_SAVED_IDS) | |
/* | |
* call-seq: | |
* Process.egid = integer -> integer | |
* | |
* Sets the effective group ID for this process. Not available on all | |
* platforms. | |
*/ | |
static VALUE | |
proc_setegid(VALUE obj, VALUE egid) | |
{ | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) | |
rb_gid_t gid; | |
#endif | |
check_gid_switch(); | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) | |
gid = OBJ2GID(egid); | |
#endif | |
#if defined(HAVE_SETRESGID) | |
if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETREGID | |
if (setregid(-1, gid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETEGID | |
if (setegid(gid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETGID | |
if (gid == getgid()) { | |
if (setgid(gid) < 0) rb_sys_fail(0); | |
} | |
else { | |
rb_notimplement(); | |
} | |
#else | |
rb_notimplement(); | |
#endif | |
return egid; | |
} | |
#endif | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) | |
#define proc_setegid_m proc_setegid | |
#else | |
#define proc_setegid_m rb_f_notimplement | |
#endif | |
static rb_gid_t | |
rb_setegid_core(rb_gid_t egid) | |
{ | |
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) | |
rb_gid_t gid; | |
#endif | |
check_gid_switch(); | |
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) | |
gid = getgid(); | |
#endif | |
#if defined(HAVE_SETRESGID) | |
if (gid != egid) { | |
if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = egid; | |
} | |
else { | |
if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0); | |
} | |
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) | |
if (setregid(-1, egid) < 0) rb_sys_fail(0); | |
if (gid != egid) { | |
if (setregid(egid,gid) < 0) rb_sys_fail(0); | |
if (setregid(gid,egid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = egid; | |
} | |
#elif defined HAVE_SETEGID | |
if (setegid(egid) < 0) rb_sys_fail(0); | |
#elif defined HAVE_SETGID | |
if (geteuid() == 0 /* root user */) rb_sys_fail(0); | |
if (setgid(egid) < 0) rb_sys_fail(0); | |
#else | |
rb_notimplement(); | |
#endif | |
return egid; | |
} | |
/* | |
* call-seq: | |
* Process::GID.grant_privilege(group) -> integer | |
* Process::GID.eid = group -> integer | |
* | |
* Set the effective group ID, and if possible, the saved group ID of | |
* the process to the given _group_. Returns the new | |
* effective group ID. Not available on all platforms. | |
* | |
* [Process.gid, Process.egid] #=> [0, 0] | |
* Process::GID.grant_privilege(31) #=> 33 | |
* [Process.gid, Process.egid] #=> [0, 33] | |
*/ | |
static VALUE | |
p_gid_grant_privilege(VALUE obj, VALUE id) | |
{ | |
rb_setegid_core(OBJ2GID(id)); | |
return id; | |
} | |
/* | |
* call-seq: | |
* Process::UID.re_exchangeable? -> true or false | |
* | |
* Returns +true+ if the real and effective user IDs of a | |
* process may be exchanged on the current platform. | |
* | |
*/ | |
static VALUE | |
p_uid_exchangeable(VALUE _) | |
{ | |
#if defined(HAVE_SETRESUID) | |
return Qtrue; | |
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) | |
return Qtrue; | |
#else | |
return Qfalse; | |
#endif | |
} | |
/* | |
* call-seq: | |
* Process::UID.re_exchange -> integer | |
* | |
* Exchange real and effective user IDs and return the new effective | |
* user ID. Not available on all platforms. | |
* | |
* [Process.uid, Process.euid] #=> [0, 31] | |
* Process::UID.re_exchange #=> 0 | |
* [Process.uid, Process.euid] #=> [31, 0] | |
*/ | |
static VALUE | |
p_uid_exchange(VALUE obj) | |
{ | |
rb_uid_t uid; | |
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) | |
rb_uid_t euid; | |
#endif | |
check_uid_switch(); | |
uid = getuid(); | |
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)) | |
euid = geteuid(); | |
#endif | |
#if defined(HAVE_SETRESUID) | |
if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) | |
if (setreuid(euid,uid) < 0) rb_sys_fail(0); | |
SAVED_USER_ID = uid; | |
#else | |
rb_notimplement(); | |
#endif | |
return UIDT2NUM(uid); | |
} | |
/* | |
* call-seq: | |
* Process::GID.re_exchangeable? -> true or false | |
* | |
* Returns +true+ if the real and effective group IDs of a | |
* process may be exchanged on the current platform. | |
* | |
*/ | |
static VALUE | |
p_gid_exchangeable(VALUE _) | |
{ | |
#if defined(HAVE_SETRESGID) | |
return Qtrue; | |
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) | |
return Qtrue; | |
#else | |
return Qfalse; | |
#endif | |
} | |
/* | |
* call-seq: | |
* Process::GID.re_exchange -> integer | |
* | |
* Exchange real and effective group IDs and return the new effective | |
* group ID. Not available on all platforms. | |
* | |
* [Process.gid, Process.egid] #=> [0, 33] | |
* Process::GID.re_exchange #=> 0 | |
* [Process.gid, Process.egid] #=> [33, 0] | |
*/ | |
static VALUE | |
p_gid_exchange(VALUE obj) | |
{ | |
rb_gid_t gid; | |
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) | |
rb_gid_t egid; | |
#endif | |
check_gid_switch(); | |
gid = getgid(); | |
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)) | |
egid = getegid(); | |
#endif | |
#if defined(HAVE_SETRESGID) | |
if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) | |
if (setregid(egid,gid) < 0) rb_sys_fail(0); | |
SAVED_GROUP_ID = gid; | |
#else | |
rb_notimplement(); | |
#endif | |
return GIDT2NUM(gid); | |
} | |
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ | |
/* | |
* call-seq: | |
* Process::UID.sid_available? -> true or false | |
* | |
* Returns +true+ if the current platform has saved user | |
* ID functionality. | |
* | |
*/ | |
static VALUE | |
p_uid_have_saved_id(VALUE _) | |
{ | |
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) | |
return Qtrue; | |
#else | |
return Qfalse; | |
#endif | |
} | |
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) | |
static VALUE | |
p_uid_sw_ensure(VALUE i) | |
{ | |
rb_uid_t id = (rb_uid_t/* narrowing */)i; | |
under_uid_switch = 0; | |
id = rb_seteuid_core(id); | |
return UIDT2NUM(id); | |
} | |
/* | |
* call-seq: | |
* Process::UID.switch -> integer | |
* Process::UID.switch {|| block} -> object | |
* | |
* Switch the effective and real user IDs of the current process. If | |
* a <em>block</em> is given, the user IDs will be switched back | |
* after the block is executed. Returns the new effective user ID if | |
* called without a block, and the return value of the block if one | |
* is given. | |
* | |
*/ | |
static VALUE | |
p_uid_switch(VALUE obj) | |
{ | |
rb_uid_t uid, euid; | |
check_uid_switch(); | |
uid = getuid(); | |
euid = geteuid(); | |
if (uid != euid) { | |
proc_seteuid(uid); | |
if (rb_block_given_p()) { | |
under_uid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID); | |
} | |
else { | |
return UIDT2NUM(euid); | |
} | |
} | |
else if (euid != SAVED_USER_ID) { | |
proc_seteuid(SAVED_USER_ID); | |
if (rb_block_given_p()) { | |
under_uid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid); | |
} | |
else { | |
return UIDT2NUM(uid); | |
} | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
UNREACHABLE_RETURN(Qnil); | |
} | |
#else | |
static VALUE | |
p_uid_sw_ensure(VALUE obj) | |
{ | |
under_uid_switch = 0; | |
return p_uid_exchange(obj); | |
} | |
static VALUE | |
p_uid_switch(VALUE obj) | |
{ | |
rb_uid_t uid, euid; | |
check_uid_switch(); | |
uid = getuid(); | |
euid = geteuid(); | |
if (uid == euid) { | |
rb_syserr_fail(EPERM, 0); | |
} | |
p_uid_exchange(obj); | |
if (rb_block_given_p()) { | |
under_uid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj); | |
} | |
else { | |
return UIDT2NUM(euid); | |
} | |
} | |
#endif | |
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ | |
/* | |
* call-seq: | |
* Process::GID.sid_available? -> true or false | |
* | |
* Returns +true+ if the current platform has saved group | |
* ID functionality. | |
* | |
*/ | |
static VALUE | |
p_gid_have_saved_id(VALUE _) | |
{ | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) | |
return Qtrue; | |
#else | |
return Qfalse; | |
#endif | |
} | |
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) | |
static VALUE | |
p_gid_sw_ensure(VALUE i) | |
{ | |
rb_gid_t id = (rb_gid_t/* narrowing */)i; | |
under_gid_switch = 0; | |
id = rb_setegid_core(id); | |
return GIDT2NUM(id); | |
} | |
/* | |
* call-seq: | |
* Process::GID.switch -> integer | |
* Process::GID.switch {|| block} -> object | |
* | |
* Switch the effective and real group IDs of the current process. If | |
* a <em>block</em> is given, the group IDs will be switched back | |
* after the block is executed. Returns the new effective group ID if | |
* called without a block, and the return value of the block if one | |
* is given. | |
* | |
*/ | |
static VALUE | |
p_gid_switch(VALUE obj) | |
{ | |
rb_gid_t gid, egid; | |
check_gid_switch(); | |
gid = getgid(); | |
egid = getegid(); | |
if (gid != egid) { | |
proc_setegid(obj, GIDT2NUM(gid)); | |
if (rb_block_given_p()) { | |
under_gid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID); | |
} | |
else { | |
return GIDT2NUM(egid); | |
} | |
} | |
else if (egid != SAVED_GROUP_ID) { | |
proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID)); | |
if (rb_block_given_p()) { | |
under_gid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid); | |
} | |
else { | |
return GIDT2NUM(gid); | |
} | |
} | |
else { | |
rb_syserr_fail(EPERM, 0); | |
} | |
UNREACHABLE_RETURN(Qnil); | |
} | |
#else | |
static VALUE | |
p_gid_sw_ensure(VALUE obj) | |
{ | |
under_gid_switch = 0; | |
return p_gid_exchange(obj); | |
} | |
static VALUE | |
p_gid_switch(VALUE obj) | |
{ | |
rb_gid_t gid, egid; | |
check_gid_switch(); | |
gid = getgid(); | |
egid = getegid(); | |
if (gid == egid) { | |
rb_syserr_fail(EPERM, 0); | |
} | |
p_gid_exchange(obj); | |
if (rb_block_given_p()) { | |
under_gid_switch = 1; | |
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj); | |
} | |
else { | |
return GIDT2NUM(egid); | |
} | |
} | |
#endif | |
#if defined(HAVE_TIMES) | |
static long | |
get_clk_tck(void) | |
{ | |
#ifdef HAVE__SC_CLK_TCK | |
return sysconf(_SC_CLK_TCK); | |
#elif defined CLK_TCK | |
return CLK_TCK; | |
#elif defined HZ | |
return HZ; | |
#else | |
return 60; | |
#endif | |
} | |
/* | |
* call-seq: | |
* Process.times -> aProcessTms | |
* | |
* Returns a <code>Tms</code> structure (see Process::Tms) | |
* that contains user and system CPU times for this process, | |
* and also for children processes. | |
* | |
* t = Process.times | |
* [ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00] | |
*/ | |
VALUE | |
rb_proc_times(VALUE obj) | |
{ | |
VALUE utime, stime, cutime, cstime, ret; | |
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN) | |
struct rusage usage_s, usage_c; | |
if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0) | |
rb_sys_fail("getrusage"); | |
utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6); | |
stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6); | |
cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6); | |
cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6); | |
#else | |
const double hertz = (double)get_clk_tck(); | |
struct tms buf; | |
times(&buf); | |
utime = DBL2NUM(buf.tms_utime / hertz); | |
stime = DBL2NUM(buf.tms_stime / hertz); | |
cutime = DBL2NUM(buf.tms_cutime / hertz); | |
cstime = DBL2NUM(buf.tms_cstime / hertz); | |
#endif | |
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime); | |
RB_GC_GUARD(utime); | |
RB_GC_GUARD(stime); | |
RB_GC_GUARD(cutime); | |
RB_GC_GUARD(cstime); | |
return ret; | |
} | |
#else | |
#define rb_proc_times rb_f_notimplement | |
#endif | |
#ifdef HAVE_LONG_LONG | |
typedef LONG_LONG timetick_int_t; | |
#define TIMETICK_INT_MIN LLONG_MIN | |
#define TIMETICK_INT_MAX LLONG_MAX | |
#define TIMETICK_INT2NUM(v) LL2NUM(v) | |
#define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_LONG_P(a, b) | |
#else | |
typedef long timetick_int_t; | |
#define TIMETICK_INT_MIN LONG_MIN | |
#define TIMETICK_INT_MAX LONG_MAX | |
#define TIMETICK_INT2NUM(v) LONG2NUM(v) | |
#define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_P(a, b) | |
#endif | |
CONSTFUNC(static timetick_int_t gcd_timetick_int(timetick_int_t, timetick_int_t)); | |
static timetick_int_t | |
gcd_timetick_int(timetick_int_t a, timetick_int_t b) | |
{ | |
timetick_int_t t; | |
if (a < b) { | |
t = a; | |
a = b; | |
b = t; | |
} | |
while (1) { | |
t = a % b; | |
if (t == 0) | |
return b; | |
a = b; | |
b = t; | |
} | |
} | |
static void | |
reduce_fraction(timetick_int_t *np, timetick_int_t *dp) | |
{ | |
timetick_int_t gcd = gcd_timetick_int(*np, *dp); | |
if (gcd != 1) { | |
*np /= gcd; | |
*dp /= gcd; | |
} | |
} | |
static void | |
reduce_factors(timetick_int_t *numerators, int num_numerators, | |
timetick_int_t *denominators, int num_denominators) | |
{ | |
int i, j; | |
for (i = 0; i < num_numerators; i++) { | |
if (numerators[i] == 1) | |
continue; | |
for (j = 0; j < num_denominators; j++) { | |
if (denominators[j] == 1) | |
continue; | |
reduce_fraction(&numerators[i], &denominators[j]); | |
} | |
} | |
} | |
struct timetick { | |
timetick_int_t giga_count; | |
int32_t count; /* 0 .. 999999999 */ | |
}; | |
static VALUE | |
timetick2dblnum(struct timetick *ttp, | |
timetick_int_t *numerators, int num_numerators, | |
timetick_int_t *denominators, int num_denominators) | |
{ | |
double d; | |
int i; | |
reduce_factors(numerators, num_numerators, | |
denominators, num_denominators); | |
d = ttp->giga_count * 1e9 + ttp->count; | |
for (i = 0; i < num_numerators; i++) | |
d *= numerators[i]; | |
for (i = 0; i < num_denominators; i++) | |
d /= denominators[i]; | |
return DBL2NUM(d); | |
} | |
static VALUE | |
timetick2dblnum_reciprocal(struct timetick *ttp, | |
timetick_int_t *numerators, int num_numerators, | |
timetick_int_t *denominators, int num_denominators) | |
{ | |
double d; | |
int i; | |
reduce_factors(numerators, num_numerators, | |
denominators, num_denominators); | |
d = 1.0; | |
for (i = 0; i < num_denominators; i++) | |
d *= denominators[i]; | |
for (i = 0; i < num_numerators; i++) | |
d /= numerators[i]; | |
d /= ttp->giga_count * 1e9 + ttp->count; | |
return DBL2NUM(d); | |
} | |
#define NDIV(x,y) (-(-((x)+1)/(y))-1) | |
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d)) | |
static VALUE | |
timetick2integer(struct timetick *ttp, | |
timetick_int_t *numerators, int num_numerators, | |
timetick_int_t *denominators, int num_denominators) | |
{ | |
VALUE v; | |
int i; | |
reduce_factors(numerators, num_numerators, | |
denominators, num_denominators); | |
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count, | |
TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) { | |
timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count; | |
for (i = 0; i < num_numerators; i++) { | |
timetick_int_t factor = numerators[i]; | |
if (MUL_OVERFLOW_TIMETICK_P(factor, t)) | |
goto generic; | |
t *= factor; | |
} | |
for (i = 0; i < num_denominators; i++) { | |
t = DIV(t, denominators[i]); | |
} | |
return TIMETICK_INT2NUM(t); | |
} | |
generic: | |
v = TIMETICK_INT2NUM(ttp->giga_count); | |
v = rb_funcall(v, '*', 1, LONG2FIX(1000000000)); | |
v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count)); | |
for (i = 0; i < num_numerators; i++) { | |
timetick_int_t factor = numerators[i]; | |
if (factor == 1) | |
continue; | |
v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor)); | |
} | |
for (i = 0; i < num_denominators; i++) { | |
v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominators[i])); /* Ruby's '/' is div. */ | |
} | |
return v; | |
} | |
static VALUE | |
make_clock_result(struct timetick *ttp, | |
timetick_int_t *numerators, int num_numerators, | |
timetick_int_t *denominators, int num_denominators, | |
VALUE unit) | |
{ | |
if (unit == ID2SYM(id_nanosecond)) { | |
numerators[num_numerators++] = 1000000000; | |
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (unit == ID2SYM(id_microsecond)) { | |
numerators[num_numerators++] = 1000000; | |
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (unit == ID2SYM(id_millisecond)) { | |
numerators[num_numerators++] = 1000; | |
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (unit == ID2SYM(id_second)) { | |
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (unit == ID2SYM(id_float_microsecond)) { | |
numerators[num_numerators++] = 1000000; | |
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (unit == ID2SYM(id_float_millisecond)) { | |
numerators[num_numerators++] = 1000; | |
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else if (NIL_P(unit) || unit == ID2SYM(id_float_second)) { | |
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators); | |
} | |
else | |
rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit); | |
} | |
#ifdef __APPLE__ | |
static const mach_timebase_info_data_t * | |
get_mach_timebase_info(void) | |
{ | |
static mach_timebase_info_data_t sTimebaseInfo; | |
if ( sTimebaseInfo.denom == 0 ) { | |
(void) mach_timebase_info(&sTimebaseInfo); | |
} | |
return &sTimebaseInfo; | |
} | |
double | |
ruby_real_ms_time(void) | |
{ | |
const mach_timebase_info_data_t *info = get_mach_timebase_info(); | |
uint64_t t = mach_absolute_time(); | |
return (double)t * info->numer / info->denom / 1e6; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Process.clock_gettime(clock_id [, unit]) -> number | |
* | |
* Returns a time returned by POSIX clock_gettime() function. | |
* | |
* p Process.clock_gettime(Process::CLOCK_MONOTONIC) | |
* #=> 896053.968060096 | |
* | |
* +clock_id+ specifies a kind of clock. | |
* It is specified as a constant which begins with <code>Process::CLOCK_</code> | |
* such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC. | |
* | |
* The supported constants depends on OS and version. | |
* Ruby provides following types of +clock_id+ if available. | |
* | |
* [CLOCK_REALTIME] SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12 | |
* [CLOCK_MONOTONIC] SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12 | |
* [CLOCK_PROCESS_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12 | |
* [CLOCK_THREAD_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12 | |
* [CLOCK_VIRTUAL] FreeBSD 3.0, OpenBSD 2.1 | |
* [CLOCK_PROF] FreeBSD 3.0, OpenBSD 2.1 | |
* [CLOCK_REALTIME_FAST] FreeBSD 8.1 | |
* [CLOCK_REALTIME_PRECISE] FreeBSD 8.1 | |
* [CLOCK_REALTIME_COARSE] Linux 2.6.32 | |
* [CLOCK_REALTIME_ALARM] Linux 3.0 | |
* [CLOCK_MONOTONIC_FAST] FreeBSD 8.1 | |
* [CLOCK_MONOTONIC_PRECISE] FreeBSD 8.1 | |
* [CLOCK_MONOTONIC_COARSE] Linux 2.6.32 | |
* [CLOCK_MONOTONIC_RAW] Linux 2.6.28, macOS 10.12 | |
* [CLOCK_MONOTONIC_RAW_APPROX] macOS 10.12 | |
* [CLOCK_BOOTTIME] Linux 2.6.39 | |
* [CLOCK_BOOTTIME_ALARM] Linux 3.0 | |
* [CLOCK_UPTIME] FreeBSD 7.0, OpenBSD 5.5 | |
* [CLOCK_UPTIME_FAST] FreeBSD 8.1 | |
* [CLOCK_UPTIME_RAW] macOS 10.12 | |
* [CLOCK_UPTIME_RAW_APPROX] macOS 10.12 | |
* [CLOCK_UPTIME_PRECISE] FreeBSD 8.1 | |
* [CLOCK_SECOND] FreeBSD 8.1 | |
* [CLOCK_TAI] Linux 3.10 | |
* | |
* Note that SUS stands for Single Unix Specification. | |
* SUS contains POSIX and clock_gettime is defined in the POSIX part. | |
* SUS defines CLOCK_REALTIME mandatory but | |
* CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional. | |
* | |
* Also, several symbols are accepted as +clock_id+. | |
* There are emulations for clock_gettime(). | |
* | |
* For example, Process::CLOCK_REALTIME is defined as | |
* +:GETTIMEOFDAY_BASED_CLOCK_REALTIME+ when clock_gettime() is not available. | |
* | |
* Emulations for +CLOCK_REALTIME+: | |
* [:GETTIMEOFDAY_BASED_CLOCK_REALTIME] | |
* Use gettimeofday() defined by SUS. | |
* (SUSv4 obsoleted it, though.) | |
* The resolution is 1 microsecond. | |
* [:TIME_BASED_CLOCK_REALTIME] | |
* Use time() defined by ISO C. | |
* The resolution is 1 second. | |
* | |
* Emulations for +CLOCK_MONOTONIC+: | |
* [:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC] | |
* Use mach_absolute_time(), available on Darwin. | |
* The resolution is CPU dependent. | |
* [:TIMES_BASED_CLOCK_MONOTONIC] | |
* Use the result value of times() defined by POSIX. | |
* POSIX defines it as "times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)". | |
* For example, GNU/Linux returns a value based on jiffies and it is monotonic. | |
* However, 4.4BSD uses gettimeofday() and it is not monotonic. | |
* (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) | |
* The resolution is the clock tick. | |
* "getconf CLK_TCK" command shows the clock ticks per second. | |
* (The clock ticks per second is defined by HZ macro in older systems.) | |
* If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and | |
* cannot represent over 497 days. | |
* | |
* Emulations for +CLOCK_PROCESS_CPUTIME_ID+: | |
* [:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID] | |
* Use getrusage() defined by SUS. | |
* getrusage() is used with RUSAGE_SELF to obtain the time only for | |
* the calling process (excluding the time for child processes). | |
* The result is addition of user time (ru_utime) and system time (ru_stime). | |
* The resolution is 1 microsecond. | |
* [:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID] | |
* Use times() defined by POSIX. | |
* The result is addition of user time (tms_utime) and system time (tms_stime). | |
* tms_cutime and tms_cstime are ignored to exclude the time for child processes. | |
* The resolution is the clock tick. | |
* "getconf CLK_TCK" command shows the clock ticks per second. | |
* (The clock ticks per second is defined by HZ macro in older systems.) | |
* If it is 100, the resolution is 10 millisecond. | |
* [:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID] | |
* Use clock() defined by ISO C. | |
* The resolution is 1/CLOCKS_PER_SEC. | |
* CLOCKS_PER_SEC is the C-level macro defined by time.h. | |
* SUS defines CLOCKS_PER_SEC is 1000000. | |
* Non-Unix systems may define it a different value, though. | |
* If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. | |
* If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes. | |
* | |
* If the given +clock_id+ is not supported, Errno::EINVAL is raised. | |
* | |
* +unit+ specifies a type of the return value. | |
* | |
* [:float_second] number of seconds as a float (default) | |
* [:float_millisecond] number of milliseconds as a float | |
* [:float_microsecond] number of microseconds as a float | |
* [:second] number of seconds as an integer | |
* [:millisecond] number of milliseconds as an integer | |
* [:microsecond] number of microseconds as an integer | |
* [:nanosecond] number of nanoseconds as an integer | |
* | |
* The underlying function, clock_gettime(), returns a number of nanoseconds. | |
* Float object (IEEE 754 double) is not enough to represent | |
* the return value for CLOCK_REALTIME. | |
* If the exact nanoseconds value is required, use +:nanoseconds+ as the +unit+. | |
* | |
* The origin (zero) of the returned value varies. | |
* For example, system start up time, process start up time, the Epoch, etc. | |
* | |
* The origin in CLOCK_REALTIME is defined as the Epoch | |
* (1970-01-01 00:00:00 UTC). | |
* But some systems count leap seconds and others doesn't. | |
* So the result can be interpreted differently across systems. | |
* Time.now is recommended over CLOCK_REALTIME. | |
*/ | |
static VALUE | |
rb_clock_gettime(int argc, VALUE *argv, VALUE _) | |
{ | |
int ret; | |
struct timetick tt; | |
timetick_int_t numerators[2]; | |
timetick_int_t denominators[2]; | |
int num_numerators = 0; | |
int num_denominators = 0; | |
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; | |
VALUE clk_id = argv[0]; | |
if (SYMBOL_P(clk_id)) { | |
/* | |
* Non-clock_gettime clocks are provided by symbol clk_id. | |
*/ | |
#ifdef HAVE_GETTIMEOFDAY | |
/* | |
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for | |
* CLOCK_REALTIME if clock_gettime is not available. | |
*/ | |
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME) | |
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { | |
struct timeval tv; | |
ret = gettimeofday(&tv, 0); | |
if (ret != 0) | |
rb_sys_fail("gettimeofday"); | |
tt.giga_count = tv.tv_sec; | |
tt.count = (int32_t)tv.tv_usec * 1000; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME) | |
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { | |
time_t t; | |
t = time(NULL); | |
if (t == (time_t)-1) | |
rb_sys_fail("time"); | |
tt.giga_count = t; | |
tt.count = 0; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#ifdef HAVE_TIMES | |
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \ | |
ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC) | |
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { | |
struct tms buf; | |
clock_t c; | |
unsigned_clock_t uc; | |
c = times(&buf); | |
if (c == (clock_t)-1) | |
rb_sys_fail("times"); | |
uc = (unsigned_clock_t)c; | |
tt.count = (int32_t)(uc % 1000000000); | |
tt.giga_count = (uc / 1000000000); | |
denominators[num_denominators++] = get_clk_tck(); | |
goto success; | |
} | |
#endif | |
#ifdef RUSAGE_SELF | |
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \ | |
ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) | |
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
struct rusage usage; | |
int32_t usec; | |
ret = getrusage(RUSAGE_SELF, &usage); | |
if (ret != 0) | |
rb_sys_fail("getrusage"); | |
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec; | |
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec); | |
if (1000000 <= usec) { | |
tt.giga_count++; | |
usec -= 1000000; | |
} | |
tt.count = usec * 1000; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
#ifdef HAVE_TIMES | |
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \ | |
ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) | |
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
struct tms buf; | |
unsigned_clock_t utime, stime; | |
if (times(&buf) == (clock_t)-1) | |
rb_sys_fail("times"); | |
utime = (unsigned_clock_t)buf.tms_utime; | |
stime = (unsigned_clock_t)buf.tms_stime; | |
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000)); | |
tt.giga_count = (utime / 1000000000) + (stime / 1000000000); | |
if (1000000000 <= tt.count) { | |
tt.count -= 1000000000; | |
tt.giga_count++; | |
} | |
denominators[num_denominators++] = get_clk_tck(); | |
goto success; | |
} | |
#endif | |
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \ | |
ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) | |
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
clock_t c; | |
unsigned_clock_t uc; | |
errno = 0; | |
c = clock(); | |
if (c == (clock_t)-1) | |
rb_sys_fail("clock"); | |
uc = (unsigned_clock_t)c; | |
tt.count = (int32_t)(uc % 1000000000); | |
tt.giga_count = uc / 1000000000; | |
denominators[num_denominators++] = CLOCKS_PER_SEC; | |
goto success; | |
} | |
#ifdef __APPLE__ | |
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) | |
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { | |
const mach_timebase_info_data_t *info = get_mach_timebase_info(); | |
uint64_t t = mach_absolute_time(); | |
tt.count = (int32_t)(t % 1000000000); | |
tt.giga_count = t / 1000000000; | |
numerators[num_numerators++] = info->numer; | |
denominators[num_denominators++] = info->denom; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
} | |
else { | |
#if defined(HAVE_CLOCK_GETTIME) | |
struct timespec ts; | |
clockid_t c; | |
c = NUM2CLOCKID(clk_id); | |
ret = clock_gettime(c, &ts); | |
if (ret == -1) | |
rb_sys_fail("clock_gettime"); | |
tt.count = (int32_t)ts.tv_nsec; | |
tt.giga_count = ts.tv_sec; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
#endif | |
} | |
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */ | |
rb_syserr_fail(EINVAL, 0); | |
success: | |
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); | |
} | |
/* | |
* call-seq: | |
* Process.clock_getres(clock_id [, unit]) -> number | |
* | |
* Returns an estimate of the resolution of a +clock_id+ using the POSIX | |
* <code>clock_getres()</code> function. | |
* | |
* Note the reported resolution is often inaccurate on most platforms due to | |
* underlying bugs for this function and therefore the reported resolution | |
* often differs from the actual resolution of the clock in practice. | |
* Inaccurate reported resolutions have been observed for various clocks including | |
* CLOCK_MONOTONIC and CLOCK_MONOTONIC_RAW when using Linux, macOS, BSD or AIX | |
* platforms, when using ARM processors, or when using virtualization. | |
* | |
* +clock_id+ specifies a kind of clock. | |
* See the document of +Process.clock_gettime+ for details. | |
* +clock_id+ can be a symbol as for +Process.clock_gettime+. | |
* | |
* If the given +clock_id+ is not supported, Errno::EINVAL is raised. | |
* | |
* +unit+ specifies the type of the return value. | |
* +Process.clock_getres+ accepts +unit+ as +Process.clock_gettime+. | |
* The default value, +:float_second+, is also the same as | |
* +Process.clock_gettime+. | |
* | |
* +Process.clock_getres+ also accepts +:hertz+ as +unit+. | |
* +:hertz+ means the reciprocal of +:float_second+. | |
* | |
* +:hertz+ can be used to obtain the exact value of | |
* the clock ticks per second for the times() function and | |
* CLOCKS_PER_SEC for the clock() function. | |
* | |
* <code>Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)</code> | |
* returns the clock ticks per second. | |
* | |
* <code>Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)</code> | |
* returns CLOCKS_PER_SEC. | |
* | |
* p Process.clock_getres(Process::CLOCK_MONOTONIC) | |
* #=> 1.0e-09 | |
* | |
*/ | |
static VALUE | |
rb_clock_getres(int argc, VALUE *argv, VALUE _) | |
{ | |
struct timetick tt; | |
timetick_int_t numerators[2]; | |
timetick_int_t denominators[2]; | |
int num_numerators = 0; | |
int num_denominators = 0; | |
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; | |
VALUE clk_id = argv[0]; | |
if (SYMBOL_P(clk_id)) { | |
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME | |
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { | |
tt.giga_count = 0; | |
tt.count = 1000; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME | |
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { | |
tt.giga_count = 1; | |
tt.count = 0; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC | |
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { | |
tt.count = 1; | |
tt.giga_count = 0; | |
denominators[num_denominators++] = get_clk_tck(); | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID | |
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
tt.giga_count = 0; | |
tt.count = 1000; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID | |
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
tt.count = 1; | |
tt.giga_count = 0; | |
denominators[num_denominators++] = get_clk_tck(); | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID | |
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { | |
tt.count = 1; | |
tt.giga_count = 0; | |
denominators[num_denominators++] = CLOCKS_PER_SEC; | |
goto success; | |
} | |
#endif | |
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC | |
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { | |
const mach_timebase_info_data_t *info = get_mach_timebase_info(); | |
tt.count = 1; | |
tt.giga_count = 0; | |
numerators[num_numerators++] = info->numer; | |
denominators[num_denominators++] = info->denom; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
} | |
#endif | |
} | |
else { | |
#if defined(HAVE_CLOCK_GETRES) | |
struct timespec ts; | |
clockid_t c = NUM2CLOCKID(clk_id); | |
int ret = clock_getres(c, &ts); | |
if (ret == -1) | |
rb_sys_fail("clock_getres"); | |
tt.count = (int32_t)ts.tv_nsec; | |
tt.giga_count = ts.tv_sec; | |
denominators[num_denominators++] = 1000000000; | |
goto success; | |
#endif | |
} | |
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */ | |
rb_syserr_fail(EINVAL, 0); | |
success: | |
if (unit == ID2SYM(id_hertz)) { | |
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators); | |
} | |
else { | |
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); | |
} | |
} | |
static VALUE | |
get_CHILD_STATUS(ID _x, VALUE *_y) | |
{ | |
return rb_last_status_get(); | |
} | |
static VALUE | |
get_PROCESS_ID(ID _x, VALUE *_y) | |
{ | |
return get_pid(); | |
} | |
/* | |
* call-seq: | |
* Process.kill(signal, pid, ...) -> integer | |
* | |
* Sends the given signal to the specified process id(s) if _pid_ is positive. | |
* If _pid_ is zero, _signal_ is sent to all processes whose group ID is equal | |
* to the group ID of the process. If _pid_ is negative, results are dependent | |
* on the operating system. _signal_ may be an integer signal number or | |
* a POSIX signal name (either with or without a +SIG+ prefix). If _signal_ is | |
* negative (or starts with a minus sign), kills process groups instead of | |
* processes. Not all signals are available on all platforms. | |
* The keys and values of Signal.list are known signal names and numbers, | |
* respectively. | |
* | |
* pid = fork do | |
* Signal.trap("HUP") { puts "Ouch!"; exit } | |
* # ... do some work ... | |
* end | |
* # ... | |
* Process.kill("HUP", pid) | |
* Process.wait | |
* | |
* <em>produces:</em> | |
* | |
* Ouch! | |
* | |
* If _signal_ is an integer but wrong for signal, Errno::EINVAL or | |
* RangeError will be raised. Otherwise unless _signal_ is a String | |
* or a Symbol, and a known signal name, ArgumentError will be | |
* raised. | |
* | |
* Also, Errno::ESRCH or RangeError for invalid _pid_, Errno::EPERM | |
* when failed because of no privilege, will be raised. In these | |
* cases, signals may have been sent to preceding processes. | |
*/ | |
static VALUE | |
proc_rb_f_kill(int c, const VALUE *v, VALUE _) | |
{ | |
return rb_f_kill(c, v); | |
} | |
VALUE rb_mProcess; | |
static VALUE rb_mProcUID; | |
static VALUE rb_mProcGID; | |
static VALUE rb_mProcID_Syscall; | |
/* | |
* The Process module is a collection of methods used to | |
* manipulate processes. | |
*/ | |
void | |
InitVM_process(void) | |
{ | |
rb_define_virtual_variable("$?", get_CHILD_STATUS, 0); | |
rb_define_virtual_variable("$$", get_PROCESS_ID, 0); | |
rb_gvar_ractor_local("$$"); | |
rb_gvar_ractor_local("$?"); | |
rb_define_global_function("exec", f_exec, -1); | |
rb_define_global_function("fork", rb_f_fork, 0); | |
rb_define_global_function("exit!", rb_f_exit_bang, -1); | |
rb_define_global_function("system", rb_f_system, -1); | |
rb_define_global_function("spawn", rb_f_spawn, -1); | |
rb_define_global_function("sleep", rb_f_sleep, -1); | |
rb_define_global_function("exit", f_exit, -1); | |
rb_define_global_function("abort", f_abort, -1); | |
rb_mProcess = rb_define_module("Process"); | |
#ifdef WNOHANG | |
/* see Process.wait */ | |
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG)); | |
#else | |
/* see Process.wait */ | |
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0)); | |
#endif | |
#ifdef WUNTRACED | |
/* see Process.wait */ | |
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED)); | |
#else | |
/* see Process.wait */ | |
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0)); | |
#endif | |
rb_define_singleton_method(rb_mProcess, "exec", f_exec, -1); | |
rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0); | |
rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1); | |
rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1); | |
rb_define_singleton_method(rb_mProcess, "exit", f_exit, -1); | |
rb_define_singleton_method(rb_mProcess, "abort", f_abort, -1); | |
rb_define_singleton_method(rb_mProcess, "last_status", proc_s_last_status, 0); | |
rb_define_module_function(rb_mProcess, "kill", proc_rb_f_kill, -1); | |
rb_define_module_function(rb_mProcess, "wait", proc_m_wait, -1); | |
rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1); | |
rb_define_module_function(rb_mProcess, "waitpid", proc_m_wait, -1); | |
rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1); | |
rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0); | |
rb_define_module_function(rb_mProcess, "detach", proc_detach, 1); | |
/* :nodoc: */ | |
rb_cWaiter = rb_define_class_under(rb_mProcess, "Waiter", rb_cThread); | |
rb_undef_alloc_func(rb_cWaiter); | |
rb_undef_method(CLASS_OF(rb_cWaiter), "new"); | |
rb_define_method(rb_cWaiter, "pid", detach_process_pid, 0); | |
rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject); | |
rb_define_alloc_func(rb_cProcessStatus, rb_process_status_allocate); | |
rb_undef_method(CLASS_OF(rb_cProcessStatus), "new"); | |
rb_marshal_define_compat(rb_cProcessStatus, rb_cObject, | |
process_status_dump, process_status_load); | |
rb_define_singleton_method(rb_cProcessStatus, "wait", rb_process_status_waitv, -1); | |
rb_define_method(rb_cProcessStatus, "==", pst_equal, 1); | |
rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1); | |
rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1); | |
rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0); | |
rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0); | |
rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0); | |
rb_define_method(rb_cProcessStatus, "pid", pst_pid_m, 0); | |
rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0); | |
rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0); | |
rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0); | |
rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0); | |
rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0); | |
rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0); | |
rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0); | |
rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0); | |
rb_define_module_function(rb_mProcess, "pid", proc_get_pid, 0); | |
rb_define_module_function(rb_mProcess, "ppid", proc_get_ppid, 0); | |
rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0); | |
rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0); | |
rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1); | |
rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2); | |
rb_define_module_function(rb_mProcess, "getsid", proc_getsid, -1); | |
rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0); | |
rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2); | |
rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3); | |
#ifdef HAVE_GETPRIORITY | |
/* see Process.setpriority */ | |
rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS)); | |
/* see Process.setpriority */ | |
rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP)); | |
/* see Process.setpriority */ | |
rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER)); | |
#endif | |
rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1); | |
rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1); | |
#if defined(RLIM2NUM) && defined(RLIM_INFINITY) | |
{ | |
VALUE inf = RLIM2NUM(RLIM_INFINITY); | |
#ifdef RLIM_SAVED_MAX | |
{ | |
VALUE v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX); | |
/* see Process.setrlimit */ | |
rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v); | |
} | |
#endif | |
/* see Process.setrlimit */ | |
rb_define_const(rb_mProcess, "RLIM_INFINITY", inf); | |
#ifdef RLIM_SAVED_CUR | |
{ | |
VALUE v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR); | |
/* see Process.setrlimit */ | |
rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v); | |
} | |
#endif | |
} | |
#ifdef RLIMIT_AS | |
/* Maximum size of the process's virtual memory (address space) in bytes. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS)); | |
#endif | |
#ifdef RLIMIT_CORE | |
/* Maximum size of the core file. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE)); | |
#endif | |
#ifdef RLIMIT_CPU | |
/* CPU time limit in seconds. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU)); | |
#endif | |
#ifdef RLIMIT_DATA | |
/* Maximum size of the process's data segment. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA)); | |
#endif | |
#ifdef RLIMIT_FSIZE | |
/* Maximum size of files that the process may create. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE)); | |
#endif | |
#ifdef RLIMIT_MEMLOCK | |
/* Maximum number of bytes of memory that may be locked into RAM. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK)); | |
#endif | |
#ifdef RLIMIT_MSGQUEUE | |
/* Specifies the limit on the number of bytes that can be allocated | |
* for POSIX message queues for the real user ID of the calling process. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_MSGQUEUE", INT2FIX(RLIMIT_MSGQUEUE)); | |
#endif | |
#ifdef RLIMIT_NICE | |
/* Specifies a ceiling to which the process's nice value can be raised. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_NICE", INT2FIX(RLIMIT_NICE)); | |
#endif | |
#ifdef RLIMIT_NOFILE | |
/* Specifies a value one greater than the maximum file descriptor | |
* number that can be opened by this process. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE)); | |
#endif | |
#ifdef RLIMIT_NPROC | |
/* The maximum number of processes that can be created for the | |
* real user ID of the calling process. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC)); | |
#endif | |
#ifdef RLIMIT_RSS | |
/* Specifies the limit (in pages) of the process's resident set. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS)); | |
#endif | |
#ifdef RLIMIT_RTPRIO | |
/* Specifies a ceiling on the real-time priority that may be set for this process. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_RTPRIO", INT2FIX(RLIMIT_RTPRIO)); | |
#endif | |
#ifdef RLIMIT_RTTIME | |
/* Specifies limit on CPU time this process scheduled under a real-time | |
* scheduling policy can consume. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_RTTIME", INT2FIX(RLIMIT_RTTIME)); | |
#endif | |
#ifdef RLIMIT_SBSIZE | |
/* Maximum size of the socket buffer. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE)); | |
#endif | |
#ifdef RLIMIT_SIGPENDING | |
/* Specifies a limit on the number of signals that may be queued for | |
* the real user ID of the calling process. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_SIGPENDING", INT2FIX(RLIMIT_SIGPENDING)); | |
#endif | |
#ifdef RLIMIT_STACK | |
/* Maximum size of the stack, in bytes. | |
* | |
* see the system getrlimit(2) manual for details. | |
*/ | |
rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK)); | |
#endif | |
#endif | |
rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0); | |
rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1); | |
rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0); | |
rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1); | |
rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0); | |
rb_define_module_function(rb_mProcess, "euid=", proc_seteuid_m, 1); | |
rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0); | |
rb_define_module_function(rb_mProcess, "egid=", proc_setegid_m, 1); | |
rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2); | |
rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0); | |
rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1); | |
rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0); | |
rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1); | |
rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1); | |
rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0); | |
#ifdef CLOCK_REALTIME | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME", CLOCKID2NUM(CLOCK_REALTIME)); | |
#elif defined(RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME", RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME); | |
#endif | |
#ifdef CLOCK_MONOTONIC | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", CLOCKID2NUM(CLOCK_MONOTONIC)); | |
#elif defined(RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC); | |
#endif | |
#ifdef CLOCK_PROCESS_CPUTIME_ID | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", CLOCKID2NUM(CLOCK_PROCESS_CPUTIME_ID)); | |
#elif defined(RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID); | |
#endif | |
#ifdef CLOCK_THREAD_CPUTIME_ID | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_THREAD_CPUTIME_ID", CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)); | |
#endif | |
#ifdef CLOCK_VIRTUAL | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_VIRTUAL", CLOCKID2NUM(CLOCK_VIRTUAL)); | |
#endif | |
#ifdef CLOCK_PROF | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_PROF", CLOCKID2NUM(CLOCK_PROF)); | |
#endif | |
#ifdef CLOCK_REALTIME_FAST | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME_FAST", CLOCKID2NUM(CLOCK_REALTIME_FAST)); | |
#endif | |
#ifdef CLOCK_REALTIME_PRECISE | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME_PRECISE", CLOCKID2NUM(CLOCK_REALTIME_PRECISE)); | |
#endif | |
#ifdef CLOCK_REALTIME_COARSE | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME_COARSE", CLOCKID2NUM(CLOCK_REALTIME_COARSE)); | |
#endif | |
#ifdef CLOCK_REALTIME_ALARM | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_REALTIME_ALARM", CLOCKID2NUM(CLOCK_REALTIME_ALARM)); | |
#endif | |
#ifdef CLOCK_MONOTONIC_FAST | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_FAST", CLOCKID2NUM(CLOCK_MONOTONIC_FAST)); | |
#endif | |
#ifdef CLOCK_MONOTONIC_PRECISE | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_PRECISE", CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)); | |
#endif | |
#ifdef CLOCK_MONOTONIC_RAW | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW", CLOCKID2NUM(CLOCK_MONOTONIC_RAW)); | |
#endif | |
#ifdef CLOCK_MONOTONIC_RAW_APPROX | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW_APPROX", CLOCKID2NUM(CLOCK_MONOTONIC_RAW_APPROX)); | |
#endif | |
#ifdef CLOCK_MONOTONIC_COARSE | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_COARSE", CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)); | |
#endif | |
#ifdef CLOCK_BOOTTIME | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME", CLOCKID2NUM(CLOCK_BOOTTIME)); | |
#endif | |
#ifdef CLOCK_BOOTTIME_ALARM | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME_ALARM", CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)); | |
#endif | |
#ifdef CLOCK_UPTIME | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_UPTIME", CLOCKID2NUM(CLOCK_UPTIME)); | |
#endif | |
#ifdef CLOCK_UPTIME_FAST | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_UPTIME_FAST", CLOCKID2NUM(CLOCK_UPTIME_FAST)); | |
#endif | |
#ifdef CLOCK_UPTIME_PRECISE | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_UPTIME_PRECISE", CLOCKID2NUM(CLOCK_UPTIME_PRECISE)); | |
#endif | |
#ifdef CLOCK_UPTIME_RAW | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW", CLOCKID2NUM(CLOCK_UPTIME_RAW)); | |
#endif | |
#ifdef CLOCK_UPTIME_RAW_APPROX | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW_APPROX", CLOCKID2NUM(CLOCK_UPTIME_RAW_APPROX)); | |
#endif | |
#ifdef CLOCK_SECOND | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_SECOND", CLOCKID2NUM(CLOCK_SECOND)); | |
#endif | |
#ifdef CLOCK_TAI | |
/* see Process.clock_gettime */ | |
rb_define_const(rb_mProcess, "CLOCK_TAI", CLOCKID2NUM(CLOCK_TAI)); | |
#endif | |
rb_define_module_function(rb_mProcess, "clock_gettime", rb_clock_gettime, -1); | |
rb_define_module_function(rb_mProcess, "clock_getres", rb_clock_getres, -1); | |
#if defined(HAVE_TIMES) || defined(_WIN32) | |
/* Placeholder for rusage */ | |
rb_cProcessTms = rb_struct_define_under(rb_mProcess, "Tms", "utime", "stime", "cutime", "cstime", NULL); | |
#endif | |
SAVED_USER_ID = geteuid(); | |
SAVED_GROUP_ID = getegid(); | |
rb_mProcUID = rb_define_module_under(rb_mProcess, "UID"); | |
rb_mProcGID = rb_define_module_under(rb_mProcess, "GID"); | |
rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0); | |
rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0); | |
rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0); | |
rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0); | |
rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1); | |
rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1); | |
rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1); | |
rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1); | |
rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege"); | |
rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege"); | |
rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0); | |
rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0); | |
rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0); | |
rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0); | |
rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0); | |
rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0); | |
rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0); | |
rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0); | |
#ifdef p_uid_from_name | |
rb_define_module_function(rb_mProcUID, "from_name", p_uid_from_name, 1); | |
#endif | |
#ifdef p_gid_from_name | |
rb_define_module_function(rb_mProcGID, "from_name", p_gid_from_name, 1); | |
#endif | |
rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys"); | |
rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0); | |
rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0); | |
rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0); | |
rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0); | |
rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1); | |
rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2); | |
rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2); | |
rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3); | |
rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3); | |
rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0); | |
} | |
void | |
Init_process(void) | |
{ | |
id_in = rb_intern_const("in"); | |
id_out = rb_intern_const("out"); | |
id_err = rb_intern_const("err"); | |
id_pid = rb_intern_const("pid"); | |
id_uid = rb_intern_const("uid"); | |
id_gid = rb_intern_const("gid"); | |
id_close = rb_intern_const("close"); | |
id_child = rb_intern_const("child"); | |
#ifdef HAVE_SETPGID | |
id_pgroup = rb_intern_const("pgroup"); | |
#endif | |
#ifdef _WIN32 | |
id_new_pgroup = rb_intern_const("new_pgroup"); | |
#endif | |
id_unsetenv_others = rb_intern_const("unsetenv_others"); | |
id_chdir = rb_intern_const("chdir"); | |
id_umask = rb_intern_const("umask"); | |
id_close_others = rb_intern_const("close_others"); | |
id_ENV = rb_intern_const("ENV"); | |
id_nanosecond = rb_intern_const("nanosecond"); | |
id_microsecond = rb_intern_const("microsecond"); | |
id_millisecond = rb_intern_const("millisecond"); | |
id_second = rb_intern_const("second"); | |
id_float_microsecond = rb_intern_const("float_microsecond"); | |
id_float_millisecond = rb_intern_const("float_millisecond"); | |
id_float_second = rb_intern_const("float_second"); | |
id_GETTIMEOFDAY_BASED_CLOCK_REALTIME = rb_intern_const("GETTIMEOFDAY_BASED_CLOCK_REALTIME"); | |
id_TIME_BASED_CLOCK_REALTIME = rb_intern_const("TIME_BASED_CLOCK_REALTIME"); | |
#ifdef HAVE_TIMES | |
id_TIMES_BASED_CLOCK_MONOTONIC = rb_intern_const("TIMES_BASED_CLOCK_MONOTONIC"); | |
id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern_const("TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID"); | |
#endif | |
#ifdef RUSAGE_SELF | |
id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern_const("GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID"); | |
#endif | |
id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern_const("CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID"); | |
#ifdef __APPLE__ | |
id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC = rb_intern_const("MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC"); | |
#endif | |
id_hertz = rb_intern_const("hertz"); | |
InitVM(process); | |
} |