The Wayback Machine - https://web.archive.org/web/20210125130841/https://github.com/grandyang/leetcode/issues/18
Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 18. 4Sum #18

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 18. 4Sum #18

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

@grandyang grandyang commented May 30, 2019

 

Given an array S of n integers, are there elements a , b , c , and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

  • Elements in a quadruplet ( a , b , c , d ) must be in non-descending order. (ie, abcd )

  • The solution set must not contain duplicate quadruplets.

    For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
    
    A solution set is:
    (-1,  0, 0, 1)
    (-2, -1, 1, 2)
    (-2,  0, 0, 2)
    

 

LeetCode 中关于数字之和还有其他几道,分别是 Two Sum ,3Sum ,3Sum Closest,虽然难度在递增,但是整体的套路都是一样的,在这里为了避免重复项,我们使用了 STL 中的 TreeSet,其特点是不能有重复,如果新加入的数在 TreeSet 中原本就存在的话,插入操作就会失败,这样能很好的避免的重复项的存在。此题的 O(n^3) 解法的思路跟 3Sum 基本没啥区别,就是多加了一层 for 循环,其他的都一样,代码如下:

 

解法一:

class Solution {
public:
    vector<vector<int>> fourSum(vector<int> &nums, int target) {
        set<vector<int>> res;
        sort(nums.begin(), nums.end());
        for (int i = 0; i < int(nums.size() - 3); ++i) {
            for (int j = i + 1; j < int(nums.size() - 2); ++j) {
                if (j > i + 1 && nums[j] == nums[j - 1]) continue;
                int left = j + 1, right = nums.size() - 1;
                while (left < right) {
                    int sum = nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum == target) {
                        vector<int> out{nums[i], nums[j], nums[left], nums[right]};
                        res.insert(out);
                        ++left; --right;
                    } else if (sum < target) ++left;
                    else --right;
                }
            }
        }
        return vector<vector<int>>(res.begin(), res.end());
    }
};

 

但是毕竟用 TreeSet 来进行去重复的处理还是有些取巧,可能在 Java 中就不能这么做,那么还是来看一种比较正统的做法吧,手动进行去重复处理。主要可以进行的有三个地方,首先在两个 for 循环下可以各放一个,因为一旦当前的数字跟上面处理过的数字相同了,那么找下来肯定还是重复的。之后就是当 sum 等于 target 的时候了,在将四个数字加入结果 res 之后,left 和 right 都需要去重复处理,分别像各自的方面遍历即可,参见代码如下:

 

解法二:

class Solution {
public:
    vector<vector<int>> fourSum(vector<int> &nums, int target) {
        vector<vector<int>> res;
        int n = nums.size();
        sort(nums.begin(), nums.end());
        for (int i = 0; i < n - 3; ++i) {
            if (i > 0 && nums[i] == nums[i - 1]) continue;
            for (int j = i + 1; j < n - 2; ++j) {
                if (j > i + 1 && nums[j] == nums[j - 1]) continue;
                int left = j + 1, right = n - 1;
                while (left < right) {
                    int sum = nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum == target) {
                        vector<int> out{nums[i], nums[j], nums[left], nums[right]};
                        res.push_back(out);
                        while (left < right && nums[left] == nums[left + 1]) ++left;
                        while (left < right && nums[right] == nums[right - 1]) --right;
                        ++left; --right;
                    } else if (sum < target) ++left;
                    else --right;
                }
            }
        }
        return res;
    }
};

 

Github 同步地址:

#18

 

类似题目:

Two Sum

3Sum

4Sum II

 

参考资料:

https://leetcode.com/problems/4sum/

https://leetcode.com/problems/4sum/discuss/8549/My-16ms-c%2B%2B-code

https://leetcode.com/problems/4sum/discuss/8575/Clean-accepted-java-O(n3)-solution-based-on-3sum

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Linked pull requests

Successfully merging a pull request may close this issue.

None yet
1 participant