The Wayback Machine - https://web.archive.org/web/20210125131320/https://github.com/grandyang/leetcode/issues/373
Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 373. Find K Pairs with Smallest Sums #373

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 373. Find K Pairs with Smallest Sums #373

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

@grandyang grandyang commented May 30, 2019

 

You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.

Define a pair (u,v) which consists of one element from the first array and one element from the second array.

Find the k pairs (u1,v1),(u2,v2) ...(uk,vk) with the smallest sums.

Example 1:

Given nums1 = [1,7,11], nums2 = [2,4,6],  k = 3

Return: [1,2],[1,4],[1,6]

The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

 

Example 2:

Given nums1 = [1,1,2], nums2 = [1,2,3],  k = 2

Return: [1,1],[1,1]

The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

 

Example 3:

Given nums1 = [1,2], nums2 = [3],  k = 3 

Return: [1,3],[2,3]

All possible pairs are returned from the sequence:
[1,3],[2,3]

 

Credits:
Special thanks to @elmirap and @StefanPochmann for adding this problem and creating all test cases.

 

这道题给了我们两个数组,让我们从每个数组中任意取出一个数字来组成不同的数字对,返回前K个和最小的数字对。那么这道题有多种解法,我们首先来看brute force的解法,这种方法我们从0循环到数组的个数和k之间的较小值,这样做的好处是如果k远小于数组个数时,我们不需要计算所有的数字对,而是最多计算k*k个数字对,然后将其都保存在res里,这时候我们给res排序,用我们自定义的比较器,就是和的比较,然后把比k多出的数字对删掉即可,参见代码如下:

 

解法一:

class Solution {
public:
    vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        vector<pair<int, int>> res;
        for (int i = 0; i < min((int)nums1.size(), k); ++i) {
            for (int j = 0; j < min((int)nums2.size(), k); ++j) {
                res.push_back({nums1[i], nums2[j]});
            }
        }
        sort(res.begin(), res.end(), [](pair<int, int> &a, pair<int, int> &b){return a.first + a.second < b.first + b.second;});
        if (res.size() > k) res.erase(res.begin() + k, res.end());
        return res;
    }
};

 

我们也可以使用multimap来做,思路是我们将数组对之和作为key存入multimap中,利用其自动排序的机制,这样我们就可以省去sort的步骤,最后把前k个存入res中即可:

 

解法二:

class Solution {
public:
    vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        vector<pair<int, int>> res;
        multimap<int, pair<int, int>> m;
        for (int i = 0; i < min((int)nums1.size(), k); ++i) {
            for (int j = 0; j < min((int)nums2.size(), k); ++j) {
                m.insert({nums1[i] + nums2[j], {nums1[i], nums2[j]}});
            }
        }
        for (auto it = m.begin(); it != m.end(); ++it) {
            res.push_back(it->second);
            if (--k <= 0) return res;
        }
        return res;
    }
};

 

下面这种方式用了priority_queue,也需要我们自定义比较器,整体思路和上面的没有什么区别:

 

解法三:

class Solution {
public:
    vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        vector<pair<int, int>> res;
        priority_queue<pair<int, int>, vector<pair<int, int>>, cmp> q;
        for (int i = 0; i < min((int)nums1.size(), k); ++i) {
            for (int j = 0; j < min((int)nums2.size(), k); ++j) {
                if (q.size() < k) {
                    q.push({nums1[i], nums2[j]});
                } else if (nums1[i] + nums2[j] < q.top().first + q.top().second) {
                    q.push({nums1[i], nums2[j]}); q.pop();
                }
            }
        }
        while (!q.empty()) {
            res.push_back(q.top()); q.pop();
        }
        return res;
    }
    struct cmp {
        bool operator() (pair<int, int> &a, pair<int, int> &b) {
            return a.first + a.second < b.first + b.second;
        }
    };
};

 

下面这种方法比较另类,我们遍历nums1数组,对于nums1数组中的每一个数字,我们并不需要遍历nums2中所有的数字,实际上,对于nums1中的数字,我们只需要记录nums2中下一个可能组成数字对的坐标,这里我们使用一个idx数组,其中idx[i]表示的数字是nums1[i]将从nums2数组上开始寻找的位置,因为 {nums1[i], nums2[i - 1]} 已经被加入到了结果res中,这种方法其实也是一种地毯式搜索,但是并不需要遍历完所有的组合,因为我们有idx数组来进行剪枝。我们suppose需要进行k次循环,但是题目中没有说我们一定能取出k对数字,而我们能取出的对儿数跟数组nums1和nums2的长度有关,最多能取出二者的长度之积的对儿数,所以我们取其跟k之间的较小值为循环次数。我们定义idx数组,长度为nums1的长度,初始化均为0。下面开始循环,在每次循环中,我们新建变量cur,记录从nums1中取数的位置,初始化为0,使用变量sum来记录一个当前最小的两数之和,初始化为正无穷。然后开始遍历数组nums1,更新sum的条件有两个,第一个是idx[i]上的数要小于nums2的长度,因为其是在nums2开始寻找的位置,当然不能越界,第二个条件的候选的两个数组 nums1[i] 和 nums2[idx[i]] 之和小于等于sum。同时满足这两个条件就可以更新sum了,同时更新cur为i,表示当前从nums1取出数字的位置。当遍历nums1的for循环结束后,此时cur的位置就是要从nums1取出的数字的位置,根据idx[cur]从nums2中取出对应的数组,形成数对儿存入结果res中,然后idx[cur]自增1,因为当前位置的数字已经用过了,下次遍历直接从后面一个数字开始吧,这是本解法的设计精髓所在,一定要弄清楚idx数组的意义,参见代码如下:

 

解法四:

class Solution {
public:
    vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        vector<pair<int, int>> res;
        int size = min(k, int(nums1.size() * nums2.size()));
        vector<int> idx(nums1.size(), 0);
        for (int t = 0; t < size; ++t) {
            int cur = 0, sum = INT_MAX;
            for (int i = 0; i < nums1.size(); ++i) {
                if (idx[i] < nums2.size() && sum >= nums1[i] + nums2[idx[i]]) {
                    cur = i;
                    sum = nums1[i] + nums2[idx[i]];
                }
            }
            res.push_back({nums1[cur], nums2[idx[cur]]});
            ++idx[cur];
        }
        return res;
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/50429/c-solution

https://discuss.leetcode.com/topic/50459/c-idea-of-using-multimap

https://discuss.leetcode.com/topic/50422/naive-accepted-solution-c

https://discuss.leetcode.com/topic/50421/c-priority_queue-solution

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Linked pull requests

Successfully merging a pull request may close this issue.

None yet
1 participant