The Wayback Machine - https://web.archive.org/web/20210125131521/https://github.com/grandyang/leetcode/issues/523
Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 523. Continuous Subarray Sum #523

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 523. Continuous Subarray Sum #523

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

@grandyang grandyang commented May 30, 2019

 

Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k , that is, sums up to n*k where n is also an integer.

Example 1:

**Input:** [23, 2, 4, 6, 7],  k=6
**Output:** True
**Explanation:** Because [2, 4] is a continuous subarray of size 2 and sums up to 6.

Example 2:

**Input:** [23, 2, 6, 4, 7],  k=6
**Output:** True
**Explanation:** Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.

Note:

1. The length of the array won't exceed 10,000.
2. You may assume the sum of all the numbers is in the range of a signed 32-bit integer.

 

这道题给了我们一个数组和一个数字k,让我们求是否存在这样的一个连续的子数组,该子数组的数组之和可以整除k。遇到除法问题,我们肯定不能忘了除数为0的情况等处理。还有就是我们如何能快速的遍历所有的子数组,并且求和,我们肯定不能完全的暴力破解,这样OJ肯定不答应。我们需要适当的优化,如果是刷题老司机的话,遇到这种求子数组或者子矩阵之和的题,应该不难想到要建立累加和数组或者累加和矩阵来做。没错,这道题也得这么做,我们要遍历所有的子数组,然后利用累加和来快速求和。在得到每个子数组之和时,我们先和k比较,如果相同直接返回true,否则再判断,若k不为0,且sum能整除k,同样返回true,最后遍历结束返回false,参见代码如下:

 

解法一:

class Solution {
public:
    bool checkSubarraySum(vector<int>& nums, int k) {
        for (int i = 0; i < nums.size(); ++i) {
            int sum = nums[i];
            for (int j = i + 1; j < nums.size(); ++j) {
                sum += nums[j];
                if (sum == k) return true;
                if (k != 0 && sum % k == 0) return true;
            }
        }
        return false;
    }
};

 

下面这种方法用了些技巧,那就是,若数字a和b分别除以数字c,若得到的余数相同,那么(a-b)必定能够整除c。这里就不证明了,博主也不会证明。明白了这条定理,那么我们用一个集合set来保存所有出现过的余数,如果当前的累加和除以k得到的余数在set中已经存在了,那么说明之前必定有一段子数组和可以整除k。需要注意的是k为0的情况,由于无法取余,我们就把当前累加和放入set中。还有就是题目要求子数组至少需要两个数字,那么我们需要一个变量pre来记录之前的和,我们每次存入set中的是pre,而不是当前的累积和,参见代码如下:

 

解法二:

class Solution {
public:
    bool checkSubarraySum(vector<int>& nums, int k) {
        int n = nums.size(), sum = 0, pre = 0;
        unordered_set<int> st;
        for (int i = 0; i < n; ++i) {
            sum += nums[i];
            int t = (k == 0) ? sum : (sum % k);
            if (st.count(t)) return true;
            st.insert(pre);
            pre = t;
        }
        return false;
    }
};

 

既然set可以做,一般来说用哈希表也可以做,这里我们建立余数和当前位置之间的映射,由于有了位置信息,我们就不需要pre变量了,之前用保存的坐标和当前位置i比较判断就可以了,参见代码如下:

 

解法三:

class Solution {
public:
    bool checkSubarraySum(vector<int>& nums, int k) {
        int n = nums.size(), sum = 0;
        unordered_map<int, int> m{{0,-1}};
        for (int i = 0; i < n; ++i) {
            sum += nums[i];
            int t = (k == 0) ? sum : (sum % k);
            if (m.count(t)) {
                if (i - m[t] > 1) return true;
            } else m[t] = i;
        }
        return false;
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/80975/java-solution

https://discuss.leetcode.com/topic/80793/java-o-n-time-o-k-space/2

https://discuss.leetcode.com/topic/80892/concise-c-solution-use-set-instead-of-map

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Linked pull requests

Successfully merging a pull request may close this issue.

None yet
1 participant