The Wayback Machine - https://web.archive.org/web/20210125131534/https://github.com/grandyang/leetcode/issues/542
Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 542. 01 Matrix #542

Open
grandyang opened this issue May 30, 2019 · 1 comment
Open

[LeetCode] 542. 01 Matrix #542

grandyang opened this issue May 30, 2019 · 1 comment

Comments

@grandyang
Copy link
Owner

@grandyang grandyang commented May 30, 2019

 

Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.

The distance between two adjacent cells is 1.

Example 1: 
Input:

0 0 0
0 1 0
0 0 0

Output:

0 0 0
0 1 0
0 0 0

 

Example 2: 
Input:

0 0 0
0 1 0
1 1 1

Output:

0 0 0
0 1 0
1 2 1

 

Note:

  1. The number of elements of the given matrix will not exceed 10,000.
  2. There are at least one 0 in the given matrix.
  3. The cells are adjacent in only four directions: up, down, left and right.

 

这道题给了我们一个只有0和1的矩阵,让我们求每一个1到离其最近的0的距离,其实也就是求一个距离场,而求距离场那么BFS将是不二之选。刚看到此题时,我以为这跟之前那道 Shortest Distance from All Buildings 是一样的,从每一个0开始遍历,不停的更新每一个1的距离,但是这样写下来TLE了。后来我又改变思路,从每一个1开始BFS,找到最近的0,结果还是TLE,气死人。后来逛论坛发现思路是对的,就是写法上可以进一步优化,我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。之前像什么遍历迷宫啊,起点只有一个,而这道题所有为0的点都是起点,这想法,叼!然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值加1,则直接跳过。因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue,参见代码如下:

 

解法一:

class Solution {
public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
        queue<pair<int, int>> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) q.push({i, j});
                else matrix[i][j] = INT_MAX;
            }
        }
        while (!q.empty()) {
            auto t = q.front(); q.pop();
            for (auto dir : dirs) {
                int x = t.first + dir[0], y = t.second + dir[1];
                if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[t.first][t.second] + 1) continue;
                matrix[x][y] = matrix[t.first][t.second] + 1;
                q.push({x, y});
            }
        }
        return matrix;
    }
};

 

下面这种解法是参考的qswawrq大神的帖子,他想出了一种二次扫描的解法,从而不用使用BFS了。这种解法也相当的巧妙,我们首先建立一个和matrix大小相等的矩阵res,初始化为很大的值,这里我们用INT_MAX-1,为甚么要减1呢,后面再说。然后我们遍历matrix矩阵,当遇到为0的位置,我们将结果res矩阵的对应位置也设为0,这make sense吧,就不多说了。然后就是这个解法的精髓了,如果不是0的地方,我们在第一次扫描的时候,比较其左边和上边的位置,取其中较小的值,再加上1,来更新结果res中的对应位置。这里就明白了为啥我们要初始化为INT_MAX-1了吧,因为这里要加1,如果初始化为INT_MAX就会整型溢出,不过放心,由于是取较小值,res[i][j]永远不会取到INT_MAX,所以不会有再加1溢出的风险。第一次遍历我们比较了左和上的方向,那么我们第二次遍历就要比较右和下的方向,注意两种情况下我们不需要比较,一种是当值为0时,还有一种是当值为1时,这两种情况下值都不可能再变小了,所以没有更新的必要,参见代码如下:

 

解法二:

class Solution {
public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> res(m, vector<int>(n, INT_MAX - 1));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) res[i][j] = 0;
                else {
                    if (i > 0) res[i][j] = min(res[i][j], res[i - 1][j] + 1);
                    if (j > 0) res[i][j] = min(res[i][j], res[i][j - 1] + 1);
                }
            }
        }
        for (int i = m - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                if (res[i][j] != 0 && res[i][j] != 1) {
                    if (i < m - 1) res[i][j] = min(res[i][j], res[i + 1][j] + 1);
                    if (j < n - 1) res[i][j] = min(res[i][j], res[i][j + 1] + 1);
                }
            }
        }
        return res;
    }
};

 

史蒂芬大神的帖子中,他提出了一种变型的方法,没有再区分左上右下,而是每次都跟左边相比,但是需要每次把矩阵旋转90度。他用python写的解法异常的简洁,貌似python中可以一行代码进行矩阵旋转,但是貌似C++没有这么叼,矩阵旋转写起来还是需要两个for循环,写出来估计也不短,这里就不写了,有兴趣的童鞋可以自己试试写一下,可以贴到留言板上哈~

 

参考资料:

https://leetcode.com/problems/01-matrix/

https://leetcode.com/problems/01-matrix/discuss/101021/java-solution-bfs

https://leetcode.com/problems/01-matrix/discuss/101039/java-33ms-solution-with-two-sweeps-in-on

https://leetcode.com/problems/01-matrix/discuss/101023/18-line-c-dp-solution-on-easy-to-understand

https://leetcode.com/problems/01-matrix/discuss/101102/short-solution-each-path-needs-at-most-one-turn

 

LeetCode All in One 题目讲解汇总(持续更新中...)

@bunkerhill
Copy link

@bunkerhill bunkerhill commented Feb 22, 2020

感觉第二种方法是想用DP做,但是DP对于这个问题有点困难就是因为更新matrix的方向不是传统的从左上角到右下角。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Linked pull requests

Successfully merging a pull request may close this issue.

None yet
2 participants