The Wayback Machine - https://web.archive.org/web/20210725161327/https://github.com/topics/support-vector-machines
Skip to content
#

support-vector-machines

Here are 767 public repositories matching this topic...

Front-end speech processing aims at extracting proper features from short- term segments of a speech utterance, known as frames. It is a pre-requisite step toward any pattern recognition problem employing speech or audio (e.g., music). Here, we are interesting in voice disorder classification. That is, to develop two-class classifiers, which can discriminate between utterances of a subject suffering from say vocal fold paralysis and utterances of a healthy subject.The mathematical modeling of the speech production system in humans suggests that an all-pole system function is justified [1-3]. As a consequence, linear prediction coefficients (LPCs) constitute a first choice for modeling the magnitute of the short-term spectrum of speech. LPC-derived cepstral coefficients are guaranteed to discriminate between the system (e.g., vocal tract) contribution and that of the excitation. Taking into account the characteristics of the human ear, the mel-frequency cepstral coefficients (MFCCs) emerged as descriptive features of the speech spectral envelope. Similarly to MFCCs, the perceptual linear prediction coefficients (PLPs) could also be derived. The aforementioned sort of speaking tradi- tional features will be tested against agnostic-features extracted by convolu- tive neural networks (CNNs) (e.g., auto-encoders) [4]. The pattern recognition step will be based on Gaussian Mixture Model based classifiers,K-nearest neighbor classifiers, Bayes classifiers, as well as Deep Neural Networks. The Massachussets Eye and Ear Infirmary Dataset (MEEI-Dataset) [5] will be exploited. At the application level, a library for feature extraction and classification in Python will be developed. Credible publicly available resources will be 1used toward achieving our goal, such as KALDI. Comparisons will be made against [6-8].
  • Updated Jul 15, 2020
  • Python

A C++ toolkit for Convex Optimization (Logistic Loss, SVM, SVR, Least Squares etc.), Convex Optimization algorithms (LBFGS, TRON, SGD, AdsGrad, CG, Nesterov etc.) and Classifiers/Regressors (Logistic Regression, SVMs, Least Squares Regression etc.)
  • Updated Nov 15, 2020
  • C++

🏆 A Comparative Study on Handwritten Digits Recognition using Classifiers like K-Nearest Neighbours (K-NN), Multiclass Perceptron/Artificial Neural Network (ANN) and Support Vector Machine (SVM) discussing the pros and cons of each algorithm and providing the comparison results in terms of accuracy and efficiecy of each algorithm.
  • Updated Jan 17, 2021
  • Python

Improve this page

Add a description, image, and links to the support-vector-machines topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the support-vector-machines topic, visit your repo's landing page and select "manage topics."

Learn more