Permalink
Cannot retrieve contributors at this time
4250 lines (3843 sloc)
117 KB
/********************************************************************** | |
proc.c - Proc, Binding, Env | |
$Author$ | |
created at: Wed Jan 17 12:13:14 2007 | |
Copyright (C) 2004-2007 Koichi Sasada | |
**********************************************************************/ | |
#include "eval_intern.h" | |
#include "gc.h" | |
#include "internal.h" | |
#include "internal/class.h" | |
#include "internal/error.h" | |
#include "internal/eval.h" | |
#include "internal/object.h" | |
#include "internal/proc.h" | |
#include "internal/symbol.h" | |
#include "method.h" | |
#include "iseq.h" | |
#include "vm_core.h" | |
#if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__) | |
# define NO_CLOBBERED(v) (*(volatile VALUE *)&(v)) | |
#else | |
# define NO_CLOBBERED(v) (v) | |
#endif | |
#define UPDATE_TYPED_REFERENCE(_type, _ref) *(_type*)&_ref = (_type)rb_gc_location((VALUE)_ref) | |
#define UPDATE_REFERENCE(_ref) UPDATE_TYPED_REFERENCE(VALUE, _ref) | |
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase); | |
struct METHOD { | |
const VALUE recv; | |
const VALUE klass; | |
const VALUE iclass; | |
const rb_method_entry_t * const me; | |
/* for bound methods, `me' should be rb_callable_method_entry_t * */ | |
}; | |
VALUE rb_cUnboundMethod; | |
VALUE rb_cMethod; | |
VALUE rb_cBinding; | |
VALUE rb_cProc; | |
static rb_block_call_func bmcall; | |
static int method_arity(VALUE); | |
static int method_min_max_arity(VALUE, int *max); | |
static VALUE proc_binding(VALUE self); | |
#define attached id__attached__ | |
/* Proc */ | |
#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall) | |
/* :FIXME: The way procs are cloned has been historically different from the | |
* way everything else are. @shyouhei is not sure for the intention though. | |
*/ | |
#undef CLONESETUP | |
static inline void | |
CLONESETUP(VALUE clone, VALUE obj) | |
{ | |
RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(obj)); | |
RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(clone)); | |
const VALUE flags = RUBY_FL_PROMOTED0 | RUBY_FL_PROMOTED1 | RUBY_FL_FINALIZE; | |
rb_obj_setup(clone, rb_singleton_class_clone(obj), | |
RB_FL_TEST_RAW(obj, ~flags)); | |
rb_singleton_class_attached(RBASIC_CLASS(clone), clone); | |
if (RB_FL_TEST(obj, RUBY_FL_EXIVAR)) rb_copy_generic_ivar(clone, obj); | |
} | |
static void | |
block_mark(const struct rb_block *block) | |
{ | |
switch (vm_block_type(block)) { | |
case block_type_iseq: | |
case block_type_ifunc: | |
{ | |
const struct rb_captured_block *captured = &block->as.captured; | |
RUBY_MARK_MOVABLE_UNLESS_NULL(captured->self); | |
RUBY_MARK_MOVABLE_UNLESS_NULL((VALUE)captured->code.val); | |
if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) { | |
rb_gc_mark(VM_ENV_ENVVAL(captured->ep)); | |
} | |
} | |
break; | |
case block_type_symbol: | |
RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.symbol); | |
break; | |
case block_type_proc: | |
RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.proc); | |
break; | |
} | |
} | |
static void | |
block_compact(struct rb_block *block) | |
{ | |
switch (block->type) { | |
case block_type_iseq: | |
case block_type_ifunc: | |
{ | |
struct rb_captured_block *captured = &block->as.captured; | |
captured->self = rb_gc_location(captured->self); | |
captured->code.val = rb_gc_location(captured->code.val); | |
} | |
break; | |
case block_type_symbol: | |
block->as.symbol = rb_gc_location(block->as.symbol); | |
break; | |
case block_type_proc: | |
block->as.proc = rb_gc_location(block->as.proc); | |
break; | |
} | |
} | |
static void | |
proc_compact(void *ptr) | |
{ | |
rb_proc_t *proc = ptr; | |
block_compact((struct rb_block *)&proc->block); | |
} | |
static void | |
proc_mark(void *ptr) | |
{ | |
rb_proc_t *proc = ptr; | |
block_mark(&proc->block); | |
RUBY_MARK_LEAVE("proc"); | |
} | |
typedef struct { | |
rb_proc_t basic; | |
VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */ | |
} cfunc_proc_t; | |
static size_t | |
proc_memsize(const void *ptr) | |
{ | |
const rb_proc_t *proc = ptr; | |
if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1) | |
return sizeof(cfunc_proc_t); | |
return sizeof(rb_proc_t); | |
} | |
static const rb_data_type_t proc_data_type = { | |
"proc", | |
{ | |
proc_mark, | |
RUBY_TYPED_DEFAULT_FREE, | |
proc_memsize, | |
proc_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | |
}; | |
VALUE | |
rb_proc_alloc(VALUE klass) | |
{ | |
rb_proc_t *proc; | |
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc); | |
} | |
VALUE | |
rb_obj_is_proc(VALUE proc) | |
{ | |
return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type)); | |
} | |
/* :nodoc: */ | |
static VALUE | |
proc_clone(VALUE self) | |
{ | |
VALUE procval = rb_proc_dup(self); | |
CLONESETUP(procval, self); | |
return procval; | |
} | |
/* | |
* call-seq: | |
* prc.lambda? -> true or false | |
* | |
* Returns +true+ if a Proc object is lambda. | |
* +false+ if non-lambda. | |
* | |
* The lambda-ness affects argument handling and the behavior of +return+ and +break+. | |
* | |
* A Proc object generated by +proc+ ignores extra arguments. | |
* | |
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2] | |
* | |
* It provides +nil+ for missing arguments. | |
* | |
* proc {|a,b| [a,b] }.call(1) #=> [1,nil] | |
* | |
* It expands a single array argument. | |
* | |
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2] | |
* | |
* A Proc object generated by +lambda+ doesn't have such tricks. | |
* | |
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError | |
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError | |
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError | |
* | |
* Proc#lambda? is a predicate for the tricks. | |
* It returns +true+ if no tricks apply. | |
* | |
* lambda {}.lambda? #=> true | |
* proc {}.lambda? #=> false | |
* | |
* Proc.new is the same as +proc+. | |
* | |
* Proc.new {}.lambda? #=> false | |
* | |
* +lambda+, +proc+ and Proc.new preserve the tricks of | |
* a Proc object given by <code>&</code> argument. | |
* | |
* lambda(&lambda {}).lambda? #=> true | |
* proc(&lambda {}).lambda? #=> true | |
* Proc.new(&lambda {}).lambda? #=> true | |
* | |
* lambda(&proc {}).lambda? #=> false | |
* proc(&proc {}).lambda? #=> false | |
* Proc.new(&proc {}).lambda? #=> false | |
* | |
* A Proc object generated by <code>&</code> argument has the tricks | |
* | |
* def n(&b) b.lambda? end | |
* n {} #=> false | |
* | |
* The <code>&</code> argument preserves the tricks if a Proc object | |
* is given by <code>&</code> argument. | |
* | |
* n(&lambda {}) #=> true | |
* n(&proc {}) #=> false | |
* n(&Proc.new {}) #=> false | |
* | |
* A Proc object converted from a method has no tricks. | |
* | |
* def m() end | |
* method(:m).to_proc.lambda? #=> true | |
* | |
* n(&method(:m)) #=> true | |
* n(&method(:m).to_proc) #=> true | |
* | |
* +define_method+ is treated the same as method definition. | |
* The defined method has no tricks. | |
* | |
* class C | |
* define_method(:d) {} | |
* end | |
* C.new.d(1,2) #=> ArgumentError | |
* C.new.method(:d).to_proc.lambda? #=> true | |
* | |
* +define_method+ always defines a method without the tricks, | |
* even if a non-lambda Proc object is given. | |
* This is the only exception for which the tricks are not preserved. | |
* | |
* class C | |
* define_method(:e, &proc {}) | |
* end | |
* C.new.e(1,2) #=> ArgumentError | |
* C.new.method(:e).to_proc.lambda? #=> true | |
* | |
* This exception ensures that methods never have tricks | |
* and makes it easy to have wrappers to define methods that behave as usual. | |
* | |
* class C | |
* def self.def2(name, &body) | |
* define_method(name, &body) | |
* end | |
* | |
* def2(:f) {} | |
* end | |
* C.new.f(1,2) #=> ArgumentError | |
* | |
* The wrapper <i>def2</i> defines a method which has no tricks. | |
* | |
*/ | |
VALUE | |
rb_proc_lambda_p(VALUE procval) | |
{ | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
return RBOOL(proc->is_lambda); | |
} | |
/* Binding */ | |
static void | |
binding_free(void *ptr) | |
{ | |
RUBY_FREE_ENTER("binding"); | |
ruby_xfree(ptr); | |
RUBY_FREE_LEAVE("binding"); | |
} | |
static void | |
binding_mark(void *ptr) | |
{ | |
rb_binding_t *bind = ptr; | |
RUBY_MARK_ENTER("binding"); | |
block_mark(&bind->block); | |
rb_gc_mark_movable(bind->pathobj); | |
RUBY_MARK_LEAVE("binding"); | |
} | |
static void | |
binding_compact(void *ptr) | |
{ | |
rb_binding_t *bind = ptr; | |
block_compact((struct rb_block *)&bind->block); | |
UPDATE_REFERENCE(bind->pathobj); | |
} | |
static size_t | |
binding_memsize(const void *ptr) | |
{ | |
return sizeof(rb_binding_t); | |
} | |
const rb_data_type_t ruby_binding_data_type = { | |
"binding", | |
{ | |
binding_mark, | |
binding_free, | |
binding_memsize, | |
binding_compact, | |
}, | |
0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
VALUE | |
rb_binding_alloc(VALUE klass) | |
{ | |
VALUE obj; | |
rb_binding_t *bind; | |
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind); | |
return obj; | |
} | |
/* :nodoc: */ | |
static VALUE | |
binding_dup(VALUE self) | |
{ | |
VALUE bindval = rb_binding_alloc(rb_cBinding); | |
rb_binding_t *src, *dst; | |
GetBindingPtr(self, src); | |
GetBindingPtr(bindval, dst); | |
rb_vm_block_copy(bindval, &dst->block, &src->block); | |
RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj); | |
dst->first_lineno = src->first_lineno; | |
return bindval; | |
} | |
/* :nodoc: */ | |
static VALUE | |
binding_clone(VALUE self) | |
{ | |
VALUE bindval = binding_dup(self); | |
CLONESETUP(bindval, self); | |
return bindval; | |
} | |
VALUE | |
rb_binding_new(void) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
return rb_vm_make_binding(ec, ec->cfp); | |
} | |
/* | |
* call-seq: | |
* binding -> a_binding | |
* | |
* Returns a +Binding+ object, describing the variable and | |
* method bindings at the point of call. This object can be used when | |
* calling +eval+ to execute the evaluated command in this | |
* environment. See also the description of class +Binding+. | |
* | |
* def get_binding(param) | |
* binding | |
* end | |
* b = get_binding("hello") | |
* eval("param", b) #=> "hello" | |
*/ | |
static VALUE | |
rb_f_binding(VALUE self) | |
{ | |
return rb_binding_new(); | |
} | |
/* | |
* call-seq: | |
* binding.eval(string [, filename [,lineno]]) -> obj | |
* | |
* Evaluates the Ruby expression(s) in <em>string</em>, in the | |
* <em>binding</em>'s context. If the optional <em>filename</em> and | |
* <em>lineno</em> parameters are present, they will be used when | |
* reporting syntax errors. | |
* | |
* def get_binding(param) | |
* binding | |
* end | |
* b = get_binding("hello") | |
* b.eval("param") #=> "hello" | |
*/ | |
static VALUE | |
bind_eval(int argc, VALUE *argv, VALUE bindval) | |
{ | |
VALUE args[4]; | |
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]); | |
args[1] = bindval; | |
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */); | |
} | |
static const VALUE * | |
get_local_variable_ptr(const rb_env_t **envp, ID lid) | |
{ | |
const rb_env_t *env = *envp; | |
do { | |
if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) { | |
if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) { | |
return NULL; | |
} | |
const rb_iseq_t *iseq = env->iseq; | |
unsigned int i; | |
VM_ASSERT(rb_obj_is_iseq((VALUE)iseq)); | |
for (i=0; i<iseq->body->local_table_size; i++) { | |
if (iseq->body->local_table[i] == lid) { | |
if (iseq->body->local_iseq == iseq && | |
iseq->body->param.flags.has_block && | |
(unsigned int)iseq->body->param.block_start == i) { | |
const VALUE *ep = env->ep; | |
if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) { | |
RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep))); | |
VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM); | |
} | |
} | |
*envp = env; | |
return &env->env[i]; | |
} | |
} | |
} | |
else { | |
*envp = NULL; | |
return NULL; | |
} | |
} while ((env = rb_vm_env_prev_env(env)) != NULL); | |
*envp = NULL; | |
return NULL; | |
} | |
/* | |
* check local variable name. | |
* returns ID if it's an already interned symbol, or 0 with setting | |
* local name in String to *namep. | |
*/ | |
static ID | |
check_local_id(VALUE bindval, volatile VALUE *pname) | |
{ | |
ID lid = rb_check_id(pname); | |
VALUE name = *pname; | |
if (lid) { | |
if (!rb_is_local_id(lid)) { | |
rb_name_err_raise("wrong local variable name `%1$s' for %2$s", | |
bindval, ID2SYM(lid)); | |
} | |
} | |
else { | |
if (!rb_is_local_name(name)) { | |
rb_name_err_raise("wrong local variable name `%1$s' for %2$s", | |
bindval, name); | |
} | |
return 0; | |
} | |
return lid; | |
} | |
/* | |
* call-seq: | |
* binding.local_variables -> Array | |
* | |
* Returns the names of the binding's local variables as symbols. | |
* | |
* def foo | |
* a = 1 | |
* 2.times do |n| | |
* binding.local_variables #=> [:a, :n] | |
* end | |
* end | |
* | |
* This method is the short version of the following code: | |
* | |
* binding.eval("local_variables") | |
* | |
*/ | |
static VALUE | |
bind_local_variables(VALUE bindval) | |
{ | |
const rb_binding_t *bind; | |
const rb_env_t *env; | |
GetBindingPtr(bindval, bind); | |
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); | |
return rb_vm_env_local_variables(env); | |
} | |
/* | |
* call-seq: | |
* binding.local_variable_get(symbol) -> obj | |
* | |
* Returns the value of the local variable +symbol+. | |
* | |
* def foo | |
* a = 1 | |
* binding.local_variable_get(:a) #=> 1 | |
* binding.local_variable_get(:b) #=> NameError | |
* end | |
* | |
* This method is the short version of the following code: | |
* | |
* binding.eval("#{symbol}") | |
* | |
*/ | |
static VALUE | |
bind_local_variable_get(VALUE bindval, VALUE sym) | |
{ | |
ID lid = check_local_id(bindval, &sym); | |
const rb_binding_t *bind; | |
const VALUE *ptr; | |
const rb_env_t *env; | |
if (!lid) goto undefined; | |
GetBindingPtr(bindval, bind); | |
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); | |
if ((ptr = get_local_variable_ptr(&env, lid)) != NULL) { | |
return *ptr; | |
} | |
sym = ID2SYM(lid); | |
undefined: | |
rb_name_err_raise("local variable `%1$s' is not defined for %2$s", | |
bindval, sym); | |
UNREACHABLE_RETURN(Qundef); | |
} | |
/* | |
* call-seq: | |
* binding.local_variable_set(symbol, obj) -> obj | |
* | |
* Set local variable named +symbol+ as +obj+. | |
* | |
* def foo | |
* a = 1 | |
* bind = binding | |
* bind.local_variable_set(:a, 2) # set existing local variable `a' | |
* bind.local_variable_set(:b, 3) # create new local variable `b' | |
* # `b' exists only in binding | |
* | |
* p bind.local_variable_get(:a) #=> 2 | |
* p bind.local_variable_get(:b) #=> 3 | |
* p a #=> 2 | |
* p b #=> NameError | |
* end | |
* | |
* This method behaves similarly to the following code: | |
* | |
* binding.eval("#{symbol} = #{obj}") | |
* | |
* if +obj+ can be dumped in Ruby code. | |
*/ | |
static VALUE | |
bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val) | |
{ | |
ID lid = check_local_id(bindval, &sym); | |
rb_binding_t *bind; | |
const VALUE *ptr; | |
const rb_env_t *env; | |
if (!lid) lid = rb_intern_str(sym); | |
GetBindingPtr(bindval, bind); | |
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); | |
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) { | |
/* not found. create new env */ | |
ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid); | |
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); | |
} | |
RB_OBJ_WRITE(env, ptr, val); | |
return val; | |
} | |
/* | |
* call-seq: | |
* binding.local_variable_defined?(symbol) -> obj | |
* | |
* Returns +true+ if a local variable +symbol+ exists. | |
* | |
* def foo | |
* a = 1 | |
* binding.local_variable_defined?(:a) #=> true | |
* binding.local_variable_defined?(:b) #=> false | |
* end | |
* | |
* This method is the short version of the following code: | |
* | |
* binding.eval("defined?(#{symbol}) == 'local-variable'") | |
* | |
*/ | |
static VALUE | |
bind_local_variable_defined_p(VALUE bindval, VALUE sym) | |
{ | |
ID lid = check_local_id(bindval, &sym); | |
const rb_binding_t *bind; | |
const rb_env_t *env; | |
if (!lid) return Qfalse; | |
GetBindingPtr(bindval, bind); | |
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); | |
return RBOOL(get_local_variable_ptr(&env, lid)); | |
} | |
/* | |
* call-seq: | |
* binding.receiver -> object | |
* | |
* Returns the bound receiver of the binding object. | |
*/ | |
static VALUE | |
bind_receiver(VALUE bindval) | |
{ | |
const rb_binding_t *bind; | |
GetBindingPtr(bindval, bind); | |
return vm_block_self(&bind->block); | |
} | |
/* | |
* call-seq: | |
* binding.source_location -> [String, Integer] | |
* | |
* Returns the Ruby source filename and line number of the binding object. | |
*/ | |
static VALUE | |
bind_location(VALUE bindval) | |
{ | |
VALUE loc[2]; | |
const rb_binding_t *bind; | |
GetBindingPtr(bindval, bind); | |
loc[0] = pathobj_path(bind->pathobj); | |
loc[1] = INT2FIX(bind->first_lineno); | |
return rb_ary_new4(2, loc); | |
} | |
static VALUE | |
cfunc_proc_new(VALUE klass, VALUE ifunc) | |
{ | |
rb_proc_t *proc; | |
cfunc_proc_t *sproc; | |
VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc); | |
VALUE *ep; | |
proc = &sproc->basic; | |
vm_block_type_set(&proc->block, block_type_ifunc); | |
*(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1; | |
ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED; | |
ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse; | |
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE; | |
ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */ | |
/* self? */ | |
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc); | |
proc->is_lambda = TRUE; | |
return procval; | |
} | |
static VALUE | |
sym_proc_new(VALUE klass, VALUE sym) | |
{ | |
VALUE procval = rb_proc_alloc(klass); | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
vm_block_type_set(&proc->block, block_type_symbol); | |
proc->is_lambda = TRUE; | |
RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym); | |
return procval; | |
} | |
struct vm_ifunc * | |
rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc) | |
{ | |
union { | |
struct vm_ifunc_argc argc; | |
VALUE packed; | |
} arity; | |
if (min_argc < UNLIMITED_ARGUMENTS || | |
#if SIZEOF_INT * 2 > SIZEOF_VALUE | |
min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || | |
#endif | |
0) { | |
rb_raise(rb_eRangeError, "minimum argument number out of range: %d", | |
min_argc); | |
} | |
if (max_argc < UNLIMITED_ARGUMENTS || | |
#if SIZEOF_INT * 2 > SIZEOF_VALUE | |
max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || | |
#endif | |
0) { | |
rb_raise(rb_eRangeError, "maximum argument number out of range: %d", | |
max_argc); | |
} | |
arity.argc.min = min_argc; | |
arity.argc.max = max_argc; | |
VALUE ret = rb_imemo_new(imemo_ifunc, (VALUE)func, (VALUE)data, arity.packed, 0); | |
return (struct vm_ifunc *)ret; | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_func_proc_new(rb_block_call_func_t func, VALUE val) | |
{ | |
struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val); | |
return cfunc_proc_new(rb_cProc, (VALUE)ifunc); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc) | |
{ | |
struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc); | |
return cfunc_proc_new(rb_cProc, (VALUE)ifunc); | |
} | |
static const char proc_without_block[] = "tried to create Proc object without a block"; | |
static VALUE | |
proc_new(VALUE klass, int8_t is_lambda, int8_t kernel) | |
{ | |
VALUE procval; | |
const rb_execution_context_t *ec = GET_EC(); | |
rb_control_frame_t *cfp = ec->cfp; | |
VALUE block_handler; | |
if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) { | |
rb_raise(rb_eArgError, proc_without_block); | |
} | |
/* block is in cf */ | |
switch (vm_block_handler_type(block_handler)) { | |
case block_handler_type_proc: | |
procval = VM_BH_TO_PROC(block_handler); | |
if (RBASIC_CLASS(procval) == klass) { | |
return procval; | |
} | |
else { | |
VALUE newprocval = rb_proc_dup(procval); | |
RBASIC_SET_CLASS(newprocval, klass); | |
return newprocval; | |
} | |
break; | |
case block_handler_type_symbol: | |
return (klass != rb_cProc) ? | |
sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) : | |
rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler)); | |
break; | |
case block_handler_type_ifunc: | |
return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda); | |
case block_handler_type_iseq: | |
{ | |
const struct rb_captured_block *captured = VM_BH_TO_CAPT_BLOCK(block_handler); | |
rb_control_frame_t *last_ruby_cfp = rb_vm_get_ruby_level_next_cfp(ec, cfp); | |
if (is_lambda && last_ruby_cfp && vm_cfp_forwarded_bh_p(last_ruby_cfp, block_handler)) { | |
is_lambda = false; | |
} | |
return rb_vm_make_proc_lambda(ec, captured, klass, is_lambda); | |
} | |
} | |
VM_UNREACHABLE(proc_new); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* Proc.new {|...| block } -> a_proc | |
* | |
* Creates a new Proc object, bound to the current context. | |
* | |
* proc = Proc.new { "hello" } | |
* proc.call #=> "hello" | |
* | |
* Raises ArgumentError if called without a block. | |
* | |
* Proc.new #=> ArgumentError | |
*/ | |
static VALUE | |
rb_proc_s_new(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE block = proc_new(klass, FALSE, FALSE); | |
rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS); | |
return block; | |
} | |
VALUE | |
rb_block_proc(void) | |
{ | |
return proc_new(rb_cProc, FALSE, FALSE); | |
} | |
/* | |
* call-seq: | |
* proc { |...| block } -> a_proc | |
* | |
* Equivalent to Proc.new. | |
*/ | |
static VALUE | |
f_proc(VALUE _) | |
{ | |
return proc_new(rb_cProc, FALSE, TRUE); | |
} | |
VALUE | |
rb_block_lambda(void) | |
{ | |
return proc_new(rb_cProc, TRUE, FALSE); | |
} | |
static void | |
f_lambda_warn(void) | |
{ | |
rb_control_frame_t *cfp = GET_EC()->cfp; | |
VALUE block_handler = rb_vm_frame_block_handler(cfp); | |
if (block_handler != VM_BLOCK_HANDLER_NONE) { | |
switch (vm_block_handler_type(block_handler)) { | |
case block_handler_type_iseq: | |
if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) { | |
return; | |
} | |
break; | |
case block_handler_type_symbol: | |
return; | |
case block_handler_type_proc: | |
if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) { | |
return; | |
} | |
break; | |
case block_handler_type_ifunc: | |
break; | |
} | |
} | |
rb_warn_deprecated("lambda without a literal block", "the proc without lambda"); | |
} | |
/* | |
* call-seq: | |
* lambda { |...| block } -> a_proc | |
* | |
* Equivalent to Proc.new, except the resulting Proc objects check the | |
* number of parameters passed when called. | |
*/ | |
static VALUE | |
f_lambda(VALUE _) | |
{ | |
f_lambda_warn(); | |
return rb_block_lambda(); | |
} | |
/* Document-method: Proc#=== | |
* | |
* call-seq: | |
* proc === obj -> result_of_proc | |
* | |
* Invokes the block with +obj+ as the proc's parameter like Proc#call. | |
* This allows a proc object to be the target of a +when+ clause | |
* in a case statement. | |
*/ | |
/* CHECKME: are the argument checking semantics correct? */ | |
/* | |
* Document-method: Proc#[] | |
* Document-method: Proc#call | |
* Document-method: Proc#yield | |
* | |
* call-seq: | |
* prc.call(params,...) -> obj | |
* prc[params,...] -> obj | |
* prc.(params,...) -> obj | |
* prc.yield(params,...) -> obj | |
* | |
* Invokes the block, setting the block's parameters to the values in | |
* <i>params</i> using something close to method calling semantics. | |
* Returns the value of the last expression evaluated in the block. | |
* | |
* a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } | |
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] | |
* a_proc[9, 1, 2, 3] #=> [9, 18, 27] | |
* a_proc.(9, 1, 2, 3) #=> [9, 18, 27] | |
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27] | |
* | |
* Note that <code>prc.()</code> invokes <code>prc.call()</code> with | |
* the parameters given. It's syntactic sugar to hide "call". | |
* | |
* For procs created using #lambda or <code>->()</code> an error is | |
* generated if the wrong number of parameters are passed to the | |
* proc. For procs created using Proc.new or Kernel.proc, extra | |
* parameters are silently discarded and missing parameters are set | |
* to +nil+. | |
* | |
* a_proc = proc {|a,b| [a,b] } | |
* a_proc.call(1) #=> [1, nil] | |
* | |
* a_proc = lambda {|a,b| [a,b] } | |
* a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) | |
* | |
* See also Proc#lambda?. | |
*/ | |
#if 0 | |
static VALUE | |
proc_call(int argc, VALUE *argv, VALUE procval) | |
{ | |
/* removed */ | |
} | |
#endif | |
#if SIZEOF_LONG > SIZEOF_INT | |
static inline int | |
check_argc(long argc) | |
{ | |
if (argc > INT_MAX || argc < 0) { | |
rb_raise(rb_eArgError, "too many arguments (%lu)", | |
(unsigned long)argc); | |
} | |
return (int)argc; | |
} | |
#else | |
#define check_argc(argc) (argc) | |
#endif | |
VALUE | |
rb_proc_call_kw(VALUE self, VALUE args, int kw_splat) | |
{ | |
VALUE vret; | |
rb_proc_t *proc; | |
int argc = check_argc(RARRAY_LEN(args)); | |
const VALUE *argv = RARRAY_CONST_PTR(args); | |
GetProcPtr(self, proc); | |
vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv, | |
kw_splat, VM_BLOCK_HANDLER_NONE); | |
RB_GC_GUARD(self); | |
RB_GC_GUARD(args); | |
return vret; | |
} | |
VALUE | |
rb_proc_call(VALUE self, VALUE args) | |
{ | |
VALUE vret; | |
rb_proc_t *proc; | |
GetProcPtr(self, proc); | |
vret = rb_vm_invoke_proc(GET_EC(), proc, | |
check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args), | |
RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE); | |
RB_GC_GUARD(self); | |
RB_GC_GUARD(args); | |
return vret; | |
} | |
static VALUE | |
proc_to_block_handler(VALUE procval) | |
{ | |
return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval; | |
} | |
VALUE | |
rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
VALUE vret; | |
rb_proc_t *proc; | |
GetProcPtr(self, proc); | |
vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval)); | |
RB_GC_GUARD(self); | |
return vret; | |
} | |
VALUE | |
rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval) | |
{ | |
return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS); | |
} | |
/* | |
* call-seq: | |
* prc.arity -> integer | |
* | |
* Returns the number of mandatory arguments. If the block | |
* is declared to take no arguments, returns 0. If the block is known | |
* to take exactly n arguments, returns n. | |
* If the block has optional arguments, returns -n-1, where n is the | |
* number of mandatory arguments, with the exception for blocks that | |
* are not lambdas and have only a finite number of optional arguments; | |
* in this latter case, returns n. | |
* Keyword arguments will be considered as a single additional argument, | |
* that argument being mandatory if any keyword argument is mandatory. | |
* A #proc with no argument declarations is the same as a block | |
* declaring <code>||</code> as its arguments. | |
* | |
* proc {}.arity #=> 0 | |
* proc { || }.arity #=> 0 | |
* proc { |a| }.arity #=> 1 | |
* proc { |a, b| }.arity #=> 2 | |
* proc { |a, b, c| }.arity #=> 3 | |
* proc { |*a| }.arity #=> -1 | |
* proc { |a, *b| }.arity #=> -2 | |
* proc { |a, *b, c| }.arity #=> -3 | |
* proc { |x:, y:, z:0| }.arity #=> 1 | |
* proc { |*a, x:, y:0| }.arity #=> -2 | |
* | |
* proc { |a=0| }.arity #=> 0 | |
* lambda { |a=0| }.arity #=> -1 | |
* proc { |a=0, b| }.arity #=> 1 | |
* lambda { |a=0, b| }.arity #=> -2 | |
* proc { |a=0, b=0| }.arity #=> 0 | |
* lambda { |a=0, b=0| }.arity #=> -1 | |
* proc { |a, b=0| }.arity #=> 1 | |
* lambda { |a, b=0| }.arity #=> -2 | |
* proc { |(a, b), c=0| }.arity #=> 1 | |
* lambda { |(a, b), c=0| }.arity #=> -2 | |
* proc { |a, x:0, y:0| }.arity #=> 1 | |
* lambda { |a, x:0, y:0| }.arity #=> -2 | |
*/ | |
static VALUE | |
proc_arity(VALUE self) | |
{ | |
int arity = rb_proc_arity(self); | |
return INT2FIX(arity); | |
} | |
static inline int | |
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max) | |
{ | |
*max = iseq->body->param.flags.has_rest == FALSE ? | |
iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num + | |
(iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE) | |
: UNLIMITED_ARGUMENTS; | |
return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0); | |
} | |
static int | |
rb_vm_block_min_max_arity(const struct rb_block *block, int *max) | |
{ | |
again: | |
switch (vm_block_type(block)) { | |
case block_type_iseq: | |
return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max); | |
case block_type_proc: | |
block = vm_proc_block(block->as.proc); | |
goto again; | |
case block_type_ifunc: | |
{ | |
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; | |
if (IS_METHOD_PROC_IFUNC(ifunc)) { | |
/* e.g. method(:foo).to_proc.arity */ | |
return method_min_max_arity((VALUE)ifunc->data, max); | |
} | |
*max = ifunc->argc.max; | |
return ifunc->argc.min; | |
} | |
case block_type_symbol: | |
*max = UNLIMITED_ARGUMENTS; | |
return 1; | |
} | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
} | |
/* | |
* Returns the number of required parameters and stores the maximum | |
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max. | |
* For non-lambda procs, the maximum is the number of non-ignored | |
* parameters even though there is no actual limit to the number of parameters | |
*/ | |
static int | |
rb_proc_min_max_arity(VALUE self, int *max) | |
{ | |
rb_proc_t *proc; | |
GetProcPtr(self, proc); | |
return rb_vm_block_min_max_arity(&proc->block, max); | |
} | |
int | |
rb_proc_arity(VALUE self) | |
{ | |
rb_proc_t *proc; | |
int max, min; | |
GetProcPtr(self, proc); | |
min = rb_vm_block_min_max_arity(&proc->block, &max); | |
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; | |
} | |
static void | |
block_setup(struct rb_block *block, VALUE block_handler) | |
{ | |
switch (vm_block_handler_type(block_handler)) { | |
case block_handler_type_iseq: | |
block->type = block_type_iseq; | |
block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler); | |
break; | |
case block_handler_type_ifunc: | |
block->type = block_type_ifunc; | |
block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler); | |
break; | |
case block_handler_type_symbol: | |
block->type = block_type_symbol; | |
block->as.symbol = VM_BH_TO_SYMBOL(block_handler); | |
break; | |
case block_handler_type_proc: | |
block->type = block_type_proc; | |
block->as.proc = VM_BH_TO_PROC(block_handler); | |
} | |
} | |
int | |
rb_block_pair_yield_optimizable(void) | |
{ | |
int min, max; | |
const rb_execution_context_t *ec = GET_EC(); | |
rb_control_frame_t *cfp = ec->cfp; | |
VALUE block_handler = rb_vm_frame_block_handler(cfp); | |
struct rb_block block; | |
if (block_handler == VM_BLOCK_HANDLER_NONE) { | |
rb_raise(rb_eArgError, "no block given"); | |
} | |
block_setup(&block, block_handler); | |
min = rb_vm_block_min_max_arity(&block, &max); | |
switch (vm_block_type(&block)) { | |
case block_handler_type_symbol: | |
return 0; | |
case block_handler_type_proc: | |
{ | |
VALUE procval = block_handler; | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
if (proc->is_lambda) return 0; | |
if (min != max) return 0; | |
return min > 1; | |
} | |
default: | |
return min > 1; | |
} | |
} | |
int | |
rb_block_arity(void) | |
{ | |
int min, max; | |
const rb_execution_context_t *ec = GET_EC(); | |
rb_control_frame_t *cfp = ec->cfp; | |
VALUE block_handler = rb_vm_frame_block_handler(cfp); | |
struct rb_block block; | |
if (block_handler == VM_BLOCK_HANDLER_NONE) { | |
rb_raise(rb_eArgError, "no block given"); | |
} | |
block_setup(&block, block_handler); | |
min = rb_vm_block_min_max_arity(&block, &max); | |
switch (vm_block_type(&block)) { | |
case block_handler_type_symbol: | |
return -1; | |
case block_handler_type_proc: | |
{ | |
VALUE procval = block_handler; | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; | |
} | |
default: | |
return max != UNLIMITED_ARGUMENTS ? min : -min-1; | |
} | |
} | |
int | |
rb_block_min_max_arity(int *max) | |
{ | |
const rb_execution_context_t *ec = GET_EC(); | |
rb_control_frame_t *cfp = ec->cfp; | |
VALUE block_handler = rb_vm_frame_block_handler(cfp); | |
struct rb_block block; | |
if (block_handler == VM_BLOCK_HANDLER_NONE) { | |
rb_raise(rb_eArgError, "no block given"); | |
} | |
block_setup(&block, block_handler); | |
return rb_vm_block_min_max_arity(&block, max); | |
} | |
const rb_iseq_t * | |
rb_proc_get_iseq(VALUE self, int *is_proc) | |
{ | |
const rb_proc_t *proc; | |
const struct rb_block *block; | |
GetProcPtr(self, proc); | |
block = &proc->block; | |
if (is_proc) *is_proc = !proc->is_lambda; | |
switch (vm_block_type(block)) { | |
case block_type_iseq: | |
return rb_iseq_check(block->as.captured.code.iseq); | |
case block_type_proc: | |
return rb_proc_get_iseq(block->as.proc, is_proc); | |
case block_type_ifunc: | |
{ | |
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; | |
if (IS_METHOD_PROC_IFUNC(ifunc)) { | |
/* method(:foo).to_proc */ | |
if (is_proc) *is_proc = 0; | |
return rb_method_iseq((VALUE)ifunc->data); | |
} | |
else { | |
return NULL; | |
} | |
} | |
case block_type_symbol: | |
return NULL; | |
} | |
VM_UNREACHABLE(rb_proc_get_iseq); | |
return NULL; | |
} | |
/* call-seq: | |
* prc == other -> true or false | |
* prc.eql?(other) -> true or false | |
* | |
* Two procs are the same if, and only if, they were created from the same code block. | |
* | |
* def return_block(&block) | |
* block | |
* end | |
* | |
* def pass_block_twice(&block) | |
* [return_block(&block), return_block(&block)] | |
* end | |
* | |
* block1, block2 = pass_block_twice { puts 'test' } | |
* # Blocks might be instantiated into Proc's lazily, so they may, or may not, | |
* # be the same object. | |
* # But they are produced from the same code block, so they are equal | |
* block1 == block2 | |
* #=> true | |
* | |
* # Another Proc will never be equal, even if the code is the "same" | |
* block1 == proc { puts 'test' } | |
* #=> false | |
* | |
*/ | |
static VALUE | |
proc_eq(VALUE self, VALUE other) | |
{ | |
const rb_proc_t *self_proc, *other_proc; | |
const struct rb_block *self_block, *other_block; | |
if (rb_obj_class(self) != rb_obj_class(other)) { | |
return Qfalse; | |
} | |
GetProcPtr(self, self_proc); | |
GetProcPtr(other, other_proc); | |
if (self_proc->is_from_method != other_proc->is_from_method || | |
self_proc->is_lambda != other_proc->is_lambda) { | |
return Qfalse; | |
} | |
self_block = &self_proc->block; | |
other_block = &other_proc->block; | |
if (vm_block_type(self_block) != vm_block_type(other_block)) { | |
return Qfalse; | |
} | |
switch (vm_block_type(self_block)) { | |
case block_type_iseq: | |
if (self_block->as.captured.ep != \ | |
other_block->as.captured.ep || | |
self_block->as.captured.code.iseq != \ | |
other_block->as.captured.code.iseq) { | |
return Qfalse; | |
} | |
break; | |
case block_type_ifunc: | |
if (self_block->as.captured.ep != \ | |
other_block->as.captured.ep || | |
self_block->as.captured.code.ifunc != \ | |
other_block->as.captured.code.ifunc) { | |
return Qfalse; | |
} | |
break; | |
case block_type_proc: | |
if (self_block->as.proc != other_block->as.proc) { | |
return Qfalse; | |
} | |
break; | |
case block_type_symbol: | |
if (self_block->as.symbol != other_block->as.symbol) { | |
return Qfalse; | |
} | |
break; | |
} | |
return Qtrue; | |
} | |
static VALUE | |
iseq_location(const rb_iseq_t *iseq) | |
{ | |
VALUE loc[2]; | |
if (!iseq) return Qnil; | |
rb_iseq_check(iseq); | |
loc[0] = rb_iseq_path(iseq); | |
loc[1] = iseq->body->location.first_lineno; | |
return rb_ary_new4(2, loc); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_iseq_location(const rb_iseq_t *iseq) | |
{ | |
return iseq_location(iseq); | |
} | |
/* | |
* call-seq: | |
* prc.source_location -> [String, Integer] | |
* | |
* Returns the Ruby source filename and line number containing this proc | |
* or +nil+ if this proc was not defined in Ruby (i.e. native). | |
*/ | |
VALUE | |
rb_proc_location(VALUE self) | |
{ | |
return iseq_location(rb_proc_get_iseq(self, 0)); | |
} | |
VALUE | |
rb_unnamed_parameters(int arity) | |
{ | |
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity); | |
int n = (arity < 0) ? ~arity : arity; | |
ID req, rest; | |
CONST_ID(req, "req"); | |
a = rb_ary_new3(1, ID2SYM(req)); | |
OBJ_FREEZE(a); | |
for (; n; --n) { | |
rb_ary_push(param, a); | |
} | |
if (arity < 0) { | |
CONST_ID(rest, "rest"); | |
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest))); | |
} | |
return param; | |
} | |
/* | |
* call-seq: | |
* prc.parameters -> array | |
* | |
* Returns the parameter information of this proc. | |
* | |
* prc = lambda{|x, y=42, *other|} | |
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] | |
*/ | |
static VALUE | |
rb_proc_parameters(VALUE self) | |
{ | |
int is_proc; | |
const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc); | |
if (!iseq) { | |
return rb_unnamed_parameters(rb_proc_arity(self)); | |
} | |
return rb_iseq_parameters(iseq, is_proc); | |
} | |
st_index_t | |
rb_hash_proc(st_index_t hash, VALUE prc) | |
{ | |
rb_proc_t *proc; | |
GetProcPtr(prc, proc); | |
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val); | |
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self); | |
return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_sym_to_proc(VALUE sym) | |
{ | |
static VALUE sym_proc_cache = Qfalse; | |
enum {SYM_PROC_CACHE_SIZE = 67}; | |
VALUE proc; | |
long index; | |
ID id; | |
if (!sym_proc_cache) { | |
sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2); | |
rb_gc_register_mark_object(sym_proc_cache); | |
rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil); | |
} | |
id = SYM2ID(sym); | |
index = (id % SYM_PROC_CACHE_SIZE) << 1; | |
if (RARRAY_AREF(sym_proc_cache, index) == sym) { | |
return RARRAY_AREF(sym_proc_cache, index + 1); | |
} | |
else { | |
proc = sym_proc_new(rb_cProc, ID2SYM(id)); | |
RARRAY_ASET(sym_proc_cache, index, sym); | |
RARRAY_ASET(sym_proc_cache, index + 1, proc); | |
return proc; | |
} | |
} | |
/* | |
* call-seq: | |
* prc.hash -> integer | |
* | |
* Returns a hash value corresponding to proc body. | |
* | |
* See also Object#hash. | |
*/ | |
static VALUE | |
proc_hash(VALUE self) | |
{ | |
st_index_t hash; | |
hash = rb_hash_start(0); | |
hash = rb_hash_proc(hash, self); | |
hash = rb_hash_end(hash); | |
return ST2FIX(hash); | |
} | |
VALUE | |
rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info) | |
{ | |
VALUE cname = rb_obj_class(self); | |
VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname); | |
again: | |
switch (vm_block_type(block)) { | |
case block_type_proc: | |
block = vm_proc_block(block->as.proc); | |
goto again; | |
case block_type_iseq: | |
{ | |
const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq); | |
rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self, | |
rb_iseq_path(iseq), | |
FIX2INT(iseq->body->location.first_lineno)); | |
} | |
break; | |
case block_type_symbol: | |
rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol); | |
break; | |
case block_type_ifunc: | |
rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc); | |
break; | |
} | |
if (additional_info) rb_str_cat_cstr(str, additional_info); | |
rb_str_cat_cstr(str, ">"); | |
return str; | |
} | |
/* | |
* call-seq: | |
* prc.to_s -> string | |
* | |
* Returns the unique identifier for this proc, along with | |
* an indication of where the proc was defined. | |
*/ | |
static VALUE | |
proc_to_s(VALUE self) | |
{ | |
const rb_proc_t *proc; | |
GetProcPtr(self, proc); | |
return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL); | |
} | |
/* | |
* call-seq: | |
* prc.to_proc -> proc | |
* | |
* Part of the protocol for converting objects to Proc objects. | |
* Instances of class Proc simply return themselves. | |
*/ | |
static VALUE | |
proc_to_proc(VALUE self) | |
{ | |
return self; | |
} | |
static void | |
bm_mark(void *ptr) | |
{ | |
struct METHOD *data = ptr; | |
rb_gc_mark_movable(data->recv); | |
rb_gc_mark_movable(data->klass); | |
rb_gc_mark_movable(data->iclass); | |
rb_gc_mark_movable((VALUE)data->me); | |
} | |
static void | |
bm_compact(void *ptr) | |
{ | |
struct METHOD *data = ptr; | |
UPDATE_REFERENCE(data->recv); | |
UPDATE_REFERENCE(data->klass); | |
UPDATE_REFERENCE(data->iclass); | |
UPDATE_TYPED_REFERENCE(rb_method_entry_t *, data->me); | |
} | |
static size_t | |
bm_memsize(const void *ptr) | |
{ | |
return sizeof(struct METHOD); | |
} | |
static const rb_data_type_t method_data_type = { | |
"method", | |
{ | |
bm_mark, | |
RUBY_TYPED_DEFAULT_FREE, | |
bm_memsize, | |
bm_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
VALUE | |
rb_obj_is_method(VALUE m) | |
{ | |
return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type)); | |
} | |
static int | |
respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope) | |
{ | |
/* TODO: merge with obj_respond_to() */ | |
ID rmiss = idRespond_to_missing; | |
if (obj == Qundef) return 0; | |
if (rb_method_basic_definition_p(klass, rmiss)) return 0; | |
return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue)); | |
} | |
static VALUE | |
mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass) | |
{ | |
struct METHOD *data; | |
VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); | |
rb_method_entry_t *me; | |
rb_method_definition_t *def; | |
RB_OBJ_WRITE(method, &data->recv, obj); | |
RB_OBJ_WRITE(method, &data->klass, klass); | |
def = ZALLOC(rb_method_definition_t); | |
def->type = VM_METHOD_TYPE_MISSING; | |
def->original_id = id; | |
me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def); | |
RB_OBJ_WRITE(method, &data->me, me); | |
return method; | |
} | |
static VALUE | |
mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass) | |
{ | |
VALUE vid = rb_str_intern(*name); | |
*name = vid; | |
if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse; | |
return mnew_missing(klass, obj, SYM2ID(vid), mclass); | |
} | |
static VALUE | |
mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass, | |
VALUE obj, ID id, VALUE mclass, int scope, int error) | |
{ | |
struct METHOD *data; | |
VALUE method; | |
rb_method_visibility_t visi = METHOD_VISI_UNDEF; | |
again: | |
if (UNDEFINED_METHOD_ENTRY_P(me)) { | |
if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) { | |
return mnew_missing(klass, obj, id, mclass); | |
} | |
if (!error) return Qnil; | |
rb_print_undef(klass, id, METHOD_VISI_UNDEF); | |
} | |
if (visi == METHOD_VISI_UNDEF) { | |
visi = METHOD_ENTRY_VISI(me); | |
RUBY_ASSERT(visi != METHOD_VISI_UNDEF); /* !UNDEFINED_METHOD_ENTRY_P(me) */ | |
if (scope && (visi != METHOD_VISI_PUBLIC)) { | |
if (!error) return Qnil; | |
rb_print_inaccessible(klass, id, visi); | |
} | |
} | |
if (me->def->type == VM_METHOD_TYPE_ZSUPER) { | |
if (me->defined_class) { | |
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class)); | |
id = me->def->original_id; | |
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); | |
} | |
else { | |
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner)); | |
id = me->def->original_id; | |
me = rb_method_entry_without_refinements(klass, id, &iclass); | |
} | |
goto again; | |
} | |
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); | |
RB_OBJ_WRITE(method, &data->recv, obj); | |
RB_OBJ_WRITE(method, &data->klass, klass); | |
RB_OBJ_WRITE(method, &data->iclass, iclass); | |
RB_OBJ_WRITE(method, &data->me, me); | |
return method; | |
} | |
static VALUE | |
mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass, | |
VALUE obj, ID id, VALUE mclass, int scope) | |
{ | |
return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE); | |
} | |
static VALUE | |
mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) | |
{ | |
const rb_method_entry_t *me; | |
VALUE iclass = Qnil; | |
ASSUME(obj != Qundef); | |
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); | |
return mnew_from_me(me, klass, iclass, obj, id, mclass, scope); | |
} | |
static VALUE | |
mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope) | |
{ | |
const rb_method_entry_t *me; | |
VALUE iclass = Qnil; | |
me = rb_method_entry_with_refinements(klass, id, &iclass); | |
return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope); | |
} | |
static inline VALUE | |
method_entry_defined_class(const rb_method_entry_t *me) | |
{ | |
VALUE defined_class = me->defined_class; | |
return defined_class ? defined_class : me->owner; | |
} | |
/********************************************************************** | |
* | |
* Document-class: Method | |
* | |
* Method objects are created by Object#method, and are associated | |
* with a particular object (not just with a class). They may be | |
* used to invoke the method within the object, and as a block | |
* associated with an iterator. They may also be unbound from one | |
* object (creating an UnboundMethod) and bound to another. | |
* | |
* class Thing | |
* def square(n) | |
* n*n | |
* end | |
* end | |
* thing = Thing.new | |
* meth = thing.method(:square) | |
* | |
* meth.call(9) #=> 81 | |
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] | |
* | |
* [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3 | |
* | |
* require 'date' | |
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) | |
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] | |
*/ | |
/* | |
* call-seq: | |
* meth.eql?(other_meth) -> true or false | |
* meth == other_meth -> true or false | |
* | |
* Two method objects are equal if they are bound to the same | |
* object and refer to the same method definition and the classes | |
* defining the methods are the same class or module. | |
*/ | |
static VALUE | |
method_eq(VALUE method, VALUE other) | |
{ | |
struct METHOD *m1, *m2; | |
VALUE klass1, klass2; | |
if (!rb_obj_is_method(other)) | |
return Qfalse; | |
if (CLASS_OF(method) != CLASS_OF(other)) | |
return Qfalse; | |
Check_TypedStruct(method, &method_data_type); | |
m1 = (struct METHOD *)DATA_PTR(method); | |
m2 = (struct METHOD *)DATA_PTR(other); | |
klass1 = method_entry_defined_class(m1->me); | |
klass2 = method_entry_defined_class(m2->me); | |
if (!rb_method_entry_eq(m1->me, m2->me) || | |
klass1 != klass2 || | |
m1->klass != m2->klass || | |
m1->recv != m2->recv) { | |
return Qfalse; | |
} | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* meth.hash -> integer | |
* | |
* Returns a hash value corresponding to the method object. | |
* | |
* See also Object#hash. | |
*/ | |
static VALUE | |
method_hash(VALUE method) | |
{ | |
struct METHOD *m; | |
st_index_t hash; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); | |
hash = rb_hash_start((st_index_t)m->recv); | |
hash = rb_hash_method_entry(hash, m->me); | |
hash = rb_hash_end(hash); | |
return ST2FIX(hash); | |
} | |
/* | |
* call-seq: | |
* meth.unbind -> unbound_method | |
* | |
* Dissociates <i>meth</i> from its current receiver. The resulting | |
* UnboundMethod can subsequently be bound to a new object of the | |
* same class (see UnboundMethod). | |
*/ | |
static VALUE | |
method_unbind(VALUE obj) | |
{ | |
VALUE method; | |
struct METHOD *orig, *data; | |
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig); | |
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD, | |
&method_data_type, data); | |
RB_OBJ_WRITE(method, &data->recv, Qundef); | |
RB_OBJ_WRITE(method, &data->klass, orig->klass); | |
RB_OBJ_WRITE(method, &data->iclass, orig->iclass); | |
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me)); | |
return method; | |
} | |
/* | |
* call-seq: | |
* meth.receiver -> object | |
* | |
* Returns the bound receiver of the method object. | |
* | |
* (1..3).method(:map).receiver # => 1..3 | |
*/ | |
static VALUE | |
method_receiver(VALUE obj) | |
{ | |
struct METHOD *data; | |
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); | |
return data->recv; | |
} | |
/* | |
* call-seq: | |
* meth.name -> symbol | |
* | |
* Returns the name of the method. | |
*/ | |
static VALUE | |
method_name(VALUE obj) | |
{ | |
struct METHOD *data; | |
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); | |
return ID2SYM(data->me->called_id); | |
} | |
/* | |
* call-seq: | |
* meth.original_name -> symbol | |
* | |
* Returns the original name of the method. | |
* | |
* class C | |
* def foo; end | |
* alias bar foo | |
* end | |
* C.instance_method(:bar).original_name # => :foo | |
*/ | |
static VALUE | |
method_original_name(VALUE obj) | |
{ | |
struct METHOD *data; | |
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); | |
return ID2SYM(data->me->def->original_id); | |
} | |
/* | |
* call-seq: | |
* meth.owner -> class_or_module | |
* | |
* Returns the class or module that defines the method. | |
* See also Method#receiver. | |
* | |
* (1..3).method(:map).owner #=> Enumerable | |
*/ | |
static VALUE | |
method_owner(VALUE obj) | |
{ | |
struct METHOD *data; | |
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); | |
return data->me->owner; | |
} | |
void | |
rb_method_name_error(VALUE klass, VALUE str) | |
{ | |
#define MSG(s) rb_fstring_lit("undefined method `%1$s' for"s" `%2$s'") | |
VALUE c = klass; | |
VALUE s = Qundef; | |
if (FL_TEST(c, FL_SINGLETON)) { | |
VALUE obj = rb_ivar_get(klass, attached); | |
switch (BUILTIN_TYPE(obj)) { | |
case T_MODULE: | |
case T_CLASS: | |
c = obj; | |
break; | |
default: | |
break; | |
} | |
} | |
else if (RB_TYPE_P(c, T_MODULE)) { | |
s = MSG(" module"); | |
} | |
if (s == Qundef) { | |
s = MSG(" class"); | |
} | |
rb_name_err_raise_str(s, c, str); | |
#undef MSG | |
} | |
static VALUE | |
obj_method(VALUE obj, VALUE vid, int scope) | |
{ | |
ID id = rb_check_id(&vid); | |
const VALUE klass = CLASS_OF(obj); | |
const VALUE mclass = rb_cMethod; | |
if (!id) { | |
VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass); | |
if (m) return m; | |
rb_method_name_error(klass, vid); | |
} | |
return mnew_callable(klass, obj, id, mclass, scope); | |
} | |
/* | |
* call-seq: | |
* obj.method(sym) -> method | |
* | |
* Looks up the named method as a receiver in <i>obj</i>, returning a | |
* Method object (or raising NameError). The Method object acts as a | |
* closure in <i>obj</i>'s object instance, so instance variables and | |
* the value of <code>self</code> remain available. | |
* | |
* class Demo | |
* def initialize(n) | |
* @iv = n | |
* end | |
* def hello() | |
* "Hello, @iv = #{@iv}" | |
* end | |
* end | |
* | |
* k = Demo.new(99) | |
* m = k.method(:hello) | |
* m.call #=> "Hello, @iv = 99" | |
* | |
* l = Demo.new('Fred') | |
* m = l.method("hello") | |
* m.call #=> "Hello, @iv = Fred" | |
* | |
* Note that Method implements <code>to_proc</code> method, which | |
* means it can be used with iterators. | |
* | |
* [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout | |
* | |
* out = File.open('test.txt', 'w') | |
* [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file | |
* | |
* require 'date' | |
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) | |
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] | |
*/ | |
VALUE | |
rb_obj_method(VALUE obj, VALUE vid) | |
{ | |
return obj_method(obj, vid, FALSE); | |
} | |
/* | |
* call-seq: | |
* obj.public_method(sym) -> method | |
* | |
* Similar to _method_, searches public method only. | |
*/ | |
VALUE | |
rb_obj_public_method(VALUE obj, VALUE vid) | |
{ | |
return obj_method(obj, vid, TRUE); | |
} | |
/* | |
* call-seq: | |
* obj.singleton_method(sym) -> method | |
* | |
* Similar to _method_, searches singleton method only. | |
* | |
* class Demo | |
* def initialize(n) | |
* @iv = n | |
* end | |
* def hello() | |
* "Hello, @iv = #{@iv}" | |
* end | |
* end | |
* | |
* k = Demo.new(99) | |
* def k.hi | |
* "Hi, @iv = #{@iv}" | |
* end | |
* m = k.singleton_method(:hi) | |
* m.call #=> "Hi, @iv = 99" | |
* m = k.singleton_method(:hello) #=> NameError | |
*/ | |
VALUE | |
rb_obj_singleton_method(VALUE obj, VALUE vid) | |
{ | |
VALUE klass = rb_singleton_class_get(obj); | |
ID id = rb_check_id(&vid); | |
if (NIL_P(klass)) { | |
/* goto undef; */ | |
} | |
else if (NIL_P(klass = RCLASS_ORIGIN(klass))) { | |
/* goto undef; */ | |
} | |
else if (! id) { | |
VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod); | |
if (m) return m; | |
/* else goto undef; */ | |
} | |
else { | |
const rb_method_entry_t *me = rb_method_entry_at(klass, id); | |
vid = ID2SYM(id); | |
if (UNDEFINED_METHOD_ENTRY_P(me)) { | |
/* goto undef; */ | |
} | |
else if (UNDEFINED_REFINED_METHOD_P(me->def)) { | |
/* goto undef; */ | |
} | |
else { | |
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE); | |
} | |
} | |
/* undef: */ | |
rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'", | |
obj, vid); | |
UNREACHABLE_RETURN(Qundef); | |
} | |
/* | |
* call-seq: | |
* mod.instance_method(symbol) -> unbound_method | |
* | |
* Returns an +UnboundMethod+ representing the given | |
* instance method in _mod_. | |
* | |
* class Interpreter | |
* def do_a() print "there, "; end | |
* def do_d() print "Hello "; end | |
* def do_e() print "!\n"; end | |
* def do_v() print "Dave"; end | |
* Dispatcher = { | |
* "a" => instance_method(:do_a), | |
* "d" => instance_method(:do_d), | |
* "e" => instance_method(:do_e), | |
* "v" => instance_method(:do_v) | |
* } | |
* def interpret(string) | |
* string.each_char {|b| Dispatcher[b].bind(self).call } | |
* end | |
* end | |
* | |
* interpreter = Interpreter.new | |
* interpreter.interpret('dave') | |
* | |
* <em>produces:</em> | |
* | |
* Hello there, Dave! | |
*/ | |
static VALUE | |
rb_mod_instance_method(VALUE mod, VALUE vid) | |
{ | |
ID id = rb_check_id(&vid); | |
if (!id) { | |
rb_method_name_error(mod, vid); | |
} | |
return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE); | |
} | |
/* | |
* call-seq: | |
* mod.public_instance_method(symbol) -> unbound_method | |
* | |
* Similar to _instance_method_, searches public method only. | |
*/ | |
static VALUE | |
rb_mod_public_instance_method(VALUE mod, VALUE vid) | |
{ | |
ID id = rb_check_id(&vid); | |
if (!id) { | |
rb_method_name_error(mod, vid); | |
} | |
return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE); | |
} | |
/* | |
* call-seq: | |
* define_method(symbol, method) -> symbol | |
* define_method(symbol) { block } -> symbol | |
* | |
* Defines an instance method in the receiver. The _method_ | |
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. | |
* If a block is specified, it is used as the method body. | |
* If a block or the _method_ parameter has parameters, | |
* they're used as method parameters. | |
* This block is evaluated using #instance_eval. | |
* | |
* class A | |
* def fred | |
* puts "In Fred" | |
* end | |
* def create_method(name, &block) | |
* self.class.define_method(name, &block) | |
* end | |
* define_method(:wilma) { puts "Charge it!" } | |
* define_method(:flint) {|name| puts "I'm #{name}!"} | |
* end | |
* class B < A | |
* define_method(:barney, instance_method(:fred)) | |
* end | |
* a = B.new | |
* a.barney | |
* a.wilma | |
* a.flint('Dino') | |
* a.create_method(:betty) { p self } | |
* a.betty | |
* | |
* <em>produces:</em> | |
* | |
* In Fred | |
* Charge it! | |
* I'm Dino! | |
* #<B:0x401b39e8> | |
*/ | |
static VALUE | |
rb_mod_define_method(int argc, VALUE *argv, VALUE mod) | |
{ | |
ID id; | |
VALUE body; | |
VALUE name; | |
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod); | |
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE}; | |
const rb_scope_visibility_t *scope_visi = &default_scope_visi; | |
int is_method = FALSE; | |
if (cref) { | |
scope_visi = CREF_SCOPE_VISI(cref); | |
} | |
rb_check_arity(argc, 1, 2); | |
name = argv[0]; | |
id = rb_check_id(&name); | |
if (argc == 1) { | |
body = rb_block_lambda(); | |
} | |
else { | |
body = argv[1]; | |
if (rb_obj_is_method(body)) { | |
is_method = TRUE; | |
} | |
else if (rb_obj_is_proc(body)) { | |
is_method = FALSE; | |
} | |
else { | |
rb_raise(rb_eTypeError, | |
"wrong argument type %s (expected Proc/Method/UnboundMethod)", | |
rb_obj_classname(body)); | |
} | |
} | |
if (!id) id = rb_to_id(name); | |
if (is_method) { | |
struct METHOD *method = (struct METHOD *)DATA_PTR(body); | |
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) && | |
!RTEST(rb_class_inherited_p(mod, method->me->owner))) { | |
if (FL_TEST(method->me->owner, FL_SINGLETON)) { | |
rb_raise(rb_eTypeError, | |
"can't bind singleton method to a different class"); | |
} | |
else { | |
rb_raise(rb_eTypeError, | |
"bind argument must be a subclass of % "PRIsVALUE, | |
method->me->owner); | |
} | |
} | |
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi); | |
if (scope_visi->module_func) { | |
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC); | |
} | |
RB_GC_GUARD(body); | |
} | |
else { | |
VALUE procval = rb_proc_dup(body); | |
if (vm_proc_iseq(procval) != NULL) { | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
proc->is_lambda = TRUE; | |
proc->is_from_method = TRUE; | |
} | |
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi); | |
if (scope_visi->module_func) { | |
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC); | |
} | |
} | |
return ID2SYM(id); | |
} | |
/* | |
* call-seq: | |
* define_singleton_method(symbol, method) -> symbol | |
* define_singleton_method(symbol) { block } -> symbol | |
* | |
* Defines a singleton method in the receiver. The _method_ | |
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. | |
* If a block is specified, it is used as the method body. | |
* If a block or a method has parameters, they're used as method parameters. | |
* | |
* class A | |
* class << self | |
* def class_name | |
* to_s | |
* end | |
* end | |
* end | |
* A.define_singleton_method(:who_am_i) do | |
* "I am: #{class_name}" | |
* end | |
* A.who_am_i # ==> "I am: A" | |
* | |
* guy = "Bob" | |
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" } | |
* guy.hello #=> "Bob: Hello there!" | |
* | |
* chris = "Chris" | |
* chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" } | |
* chris.greet("Hi") #=> "Hi, I'm Chris!" | |
*/ | |
static VALUE | |
rb_obj_define_method(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE klass = rb_singleton_class(obj); | |
return rb_mod_define_method(argc, argv, klass); | |
} | |
/* | |
* define_method(symbol, method) -> symbol | |
* define_method(symbol) { block } -> symbol | |
* | |
* Defines a global function by _method_ or the block. | |
*/ | |
static VALUE | |
top_define_method(int argc, VALUE *argv, VALUE obj) | |
{ | |
rb_thread_t *th = GET_THREAD(); | |
VALUE klass; | |
klass = th->top_wrapper; | |
if (klass) { | |
rb_warning("main.define_method in the wrapped load is effective only in wrapper module"); | |
} | |
else { | |
klass = rb_cObject; | |
} | |
return rb_mod_define_method(argc, argv, klass); | |
} | |
/* | |
* call-seq: | |
* method.clone -> new_method | |
* | |
* Returns a clone of this method. | |
* | |
* class A | |
* def foo | |
* return "bar" | |
* end | |
* end | |
* | |
* m = A.new.method(:foo) | |
* m.call # => "bar" | |
* n = m.clone.call # => "bar" | |
*/ | |
static VALUE | |
method_clone(VALUE self) | |
{ | |
VALUE clone; | |
struct METHOD *orig, *data; | |
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); | |
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); | |
CLONESETUP(clone, self); | |
RB_OBJ_WRITE(clone, &data->recv, orig->recv); | |
RB_OBJ_WRITE(clone, &data->klass, orig->klass); | |
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass); | |
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); | |
return clone; | |
} | |
/* Document-method: Method#=== | |
* | |
* call-seq: | |
* method === obj -> result_of_method | |
* | |
* Invokes the method with +obj+ as the parameter like #call. | |
* This allows a method object to be the target of a +when+ clause | |
* in a case statement. | |
* | |
* require 'prime' | |
* | |
* case 1373 | |
* when Prime.method(:prime?) | |
* # ... | |
* end | |
*/ | |
/* Document-method: Method#[] | |
* | |
* call-seq: | |
* meth[args, ...] -> obj | |
* | |
* Invokes the <i>meth</i> with the specified arguments, returning the | |
* method's return value, like #call. | |
* | |
* m = 12.method("+") | |
* m[3] #=> 15 | |
* m[20] #=> 32 | |
*/ | |
/* | |
* call-seq: | |
* meth.call(args, ...) -> obj | |
* | |
* Invokes the <i>meth</i> with the specified arguments, returning the | |
* method's return value. | |
* | |
* m = 12.method("+") | |
* m.call(3) #=> 15 | |
* m.call(20) #=> 32 | |
*/ | |
static VALUE | |
rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method) | |
{ | |
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; | |
return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS); | |
} | |
VALUE | |
rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat) | |
{ | |
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; | |
return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat); | |
} | |
VALUE | |
rb_method_call(int argc, const VALUE *argv, VALUE method) | |
{ | |
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; | |
return rb_method_call_with_block(argc, argv, method, procval); | |
} | |
static const rb_callable_method_entry_t * | |
method_callable_method_entry(const struct METHOD *data) | |
{ | |
if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable."); | |
return (const rb_callable_method_entry_t *)data->me; | |
} | |
static inline VALUE | |
call_method_data(rb_execution_context_t *ec, const struct METHOD *data, | |
int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) | |
{ | |
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); | |
return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv, | |
method_callable_method_entry(data), kw_splat); | |
} | |
VALUE | |
rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat) | |
{ | |
const struct METHOD *data; | |
rb_execution_context_t *ec = GET_EC(); | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
if (data->recv == Qundef) { | |
rb_raise(rb_eTypeError, "can't call unbound method; bind first"); | |
} | |
return call_method_data(ec, data, argc, argv, passed_procval, kw_splat); | |
} | |
VALUE | |
rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval) | |
{ | |
return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS); | |
} | |
/********************************************************************** | |
* | |
* Document-class: UnboundMethod | |
* | |
* Ruby supports two forms of objectified methods. Class Method is | |
* used to represent methods that are associated with a particular | |
* object: these method objects are bound to that object. Bound | |
* method objects for an object can be created using Object#method. | |
* | |
* Ruby also supports unbound methods; methods objects that are not | |
* associated with a particular object. These can be created either | |
* by calling Module#instance_method or by calling #unbind on a bound | |
* method object. The result of both of these is an UnboundMethod | |
* object. | |
* | |
* Unbound methods can only be called after they are bound to an | |
* object. That object must be a kind_of? the method's original | |
* class. | |
* | |
* class Square | |
* def area | |
* @side * @side | |
* end | |
* def initialize(side) | |
* @side = side | |
* end | |
* end | |
* | |
* area_un = Square.instance_method(:area) | |
* | |
* s = Square.new(12) | |
* area = area_un.bind(s) | |
* area.call #=> 144 | |
* | |
* Unbound methods are a reference to the method at the time it was | |
* objectified: subsequent changes to the underlying class will not | |
* affect the unbound method. | |
* | |
* class Test | |
* def test | |
* :original | |
* end | |
* end | |
* um = Test.instance_method(:test) | |
* class Test | |
* def test | |
* :modified | |
* end | |
* end | |
* t = Test.new | |
* t.test #=> :modified | |
* um.bind(t).call #=> :original | |
* | |
*/ | |
static void | |
convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out) | |
{ | |
VALUE methclass = data->me->owner; | |
VALUE iclass = data->me->defined_class; | |
VALUE klass = CLASS_OF(recv); | |
if (RB_TYPE_P(methclass, T_MODULE)) { | |
VALUE refined_class = rb_refinement_module_get_refined_class(methclass); | |
if (!NIL_P(refined_class)) methclass = refined_class; | |
} | |
if (!RB_TYPE_P(methclass, T_MODULE) && | |
methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) { | |
if (FL_TEST(methclass, FL_SINGLETON)) { | |
rb_raise(rb_eTypeError, | |
"singleton method called for a different object"); | |
} | |
else { | |
rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE, | |
methclass); | |
} | |
} | |
const rb_method_entry_t *me = rb_method_entry_clone(data->me); | |
if (RB_TYPE_P(me->owner, T_MODULE)) { | |
VALUE ic = rb_class_search_ancestor(klass, me->owner); | |
if (ic) { | |
klass = ic; | |
iclass = ic; | |
} | |
else { | |
klass = rb_include_class_new(methclass, klass); | |
} | |
me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass); | |
} | |
*methclass_out = methclass; | |
*klass_out = klass; | |
*iclass_out = iclass; | |
*me_out = me; | |
} | |
/* | |
* call-seq: | |
* umeth.bind(obj) -> method | |
* | |
* Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which | |
* <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must | |
* be true. | |
* | |
* class A | |
* def test | |
* puts "In test, class = #{self.class}" | |
* end | |
* end | |
* class B < A | |
* end | |
* class C < B | |
* end | |
* | |
* | |
* um = B.instance_method(:test) | |
* bm = um.bind(C.new) | |
* bm.call | |
* bm = um.bind(B.new) | |
* bm.call | |
* bm = um.bind(A.new) | |
* bm.call | |
* | |
* <em>produces:</em> | |
* | |
* In test, class = C | |
* In test, class = B | |
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) | |
* from prog.rb:16 | |
*/ | |
static VALUE | |
umethod_bind(VALUE method, VALUE recv) | |
{ | |
VALUE methclass, klass, iclass; | |
const rb_method_entry_t *me; | |
const struct METHOD *data; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me); | |
struct METHOD *bound; | |
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); | |
RB_OBJ_WRITE(method, &bound->recv, recv); | |
RB_OBJ_WRITE(method, &bound->klass, klass); | |
RB_OBJ_WRITE(method, &bound->iclass, iclass); | |
RB_OBJ_WRITE(method, &bound->me, me); | |
return method; | |
} | |
/* | |
* call-seq: | |
* umeth.bind_call(recv, args, ...) -> obj | |
* | |
* Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the | |
* specified arguments. | |
* This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>. | |
*/ | |
static VALUE | |
umethod_bind_call(int argc, VALUE *argv, VALUE method) | |
{ | |
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); | |
VALUE recv = argv[0]; | |
argc--; | |
argv++; | |
VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil; | |
rb_execution_context_t *ec = GET_EC(); | |
const struct METHOD *data; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id); | |
if (data->me == (const rb_method_entry_t *)cme) { | |
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); | |
return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS); | |
} | |
else { | |
VALUE methclass, klass, iclass; | |
const rb_method_entry_t *me; | |
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me); | |
struct METHOD bound = { recv, klass, 0, me }; | |
return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS); | |
} | |
} | |
/* | |
* Returns the number of required parameters and stores the maximum | |
* number of parameters in max, or UNLIMITED_ARGUMENTS | |
* if there is no maximum. | |
*/ | |
static int | |
rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max) | |
{ | |
const rb_method_definition_t *def = me->def; | |
again: | |
if (!def) return *max = 0; | |
switch (def->type) { | |
case VM_METHOD_TYPE_CFUNC: | |
if (def->body.cfunc.argc < 0) { | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
} | |
return *max = check_argc(def->body.cfunc.argc); | |
case VM_METHOD_TYPE_ZSUPER: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
case VM_METHOD_TYPE_ATTRSET: | |
return *max = 1; | |
case VM_METHOD_TYPE_IVAR: | |
return *max = 0; | |
case VM_METHOD_TYPE_ALIAS: | |
def = def->body.alias.original_me->def; | |
goto again; | |
case VM_METHOD_TYPE_BMETHOD: | |
return rb_proc_min_max_arity(def->body.bmethod.proc, max); | |
case VM_METHOD_TYPE_ISEQ: | |
return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max); | |
case VM_METHOD_TYPE_UNDEF: | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: | |
return *max = 0; | |
case VM_METHOD_TYPE_MISSING: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
case VM_METHOD_TYPE_OPTIMIZED: { | |
switch (def->body.optimize_type) { | |
case OPTIMIZED_METHOD_TYPE_SEND: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
case OPTIMIZED_METHOD_TYPE_CALL: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
default: | |
break; | |
} | |
break; | |
} | |
case VM_METHOD_TYPE_REFINED: | |
*max = UNLIMITED_ARGUMENTS; | |
return 0; | |
} | |
rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
int | |
rb_method_entry_arity(const rb_method_entry_t *me) | |
{ | |
int max, min = rb_method_entry_min_max_arity(me, &max); | |
return min == max ? min : -min-1; | |
} | |
/* | |
* call-seq: | |
* meth.arity -> integer | |
* | |
* Returns an indication of the number of arguments accepted by a | |
* method. Returns a nonnegative integer for methods that take a fixed | |
* number of arguments. For Ruby methods that take a variable number of | |
* arguments, returns -n-1, where n is the number of required arguments. | |
* Keyword arguments will be considered as a single additional argument, | |
* that argument being mandatory if any keyword argument is mandatory. | |
* For methods written in C, returns -1 if the call takes a | |
* variable number of arguments. | |
* | |
* class C | |
* def one; end | |
* def two(a); end | |
* def three(*a); end | |
* def four(a, b); end | |
* def five(a, b, *c); end | |
* def six(a, b, *c, &d); end | |
* def seven(a, b, x:0); end | |
* def eight(x:, y:); end | |
* def nine(x:, y:, **z); end | |
* def ten(*a, x:, y:); end | |
* end | |
* c = C.new | |
* c.method(:one).arity #=> 0 | |
* c.method(:two).arity #=> 1 | |
* c.method(:three).arity #=> -1 | |
* c.method(:four).arity #=> 2 | |
* c.method(:five).arity #=> -3 | |
* c.method(:six).arity #=> -3 | |
* c.method(:seven).arity #=> -3 | |
* c.method(:eight).arity #=> 1 | |
* c.method(:nine).arity #=> 1 | |
* c.method(:ten).arity #=> -2 | |
* | |
* "cat".method(:size).arity #=> 0 | |
* "cat".method(:replace).arity #=> 1 | |
* "cat".method(:squeeze).arity #=> -1 | |
* "cat".method(:count).arity #=> -1 | |
*/ | |
static VALUE | |
method_arity_m(VALUE method) | |
{ | |
int n = method_arity(method); | |
return INT2FIX(n); | |
} | |
static int | |
method_arity(VALUE method) | |
{ | |
struct METHOD *data; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
return rb_method_entry_arity(data->me); | |
} | |
static const rb_method_entry_t * | |
original_method_entry(VALUE mod, ID id) | |
{ | |
const rb_method_entry_t *me; | |
while ((me = rb_method_entry(mod, id)) != 0) { | |
const rb_method_definition_t *def = me->def; | |
if (def->type != VM_METHOD_TYPE_ZSUPER) break; | |
mod = RCLASS_SUPER(me->owner); | |
id = def->original_id; | |
} | |
return me; | |
} | |
static int | |
method_min_max_arity(VALUE method, int *max) | |
{ | |
const struct METHOD *data; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
return rb_method_entry_min_max_arity(data->me, max); | |
} | |
int | |
rb_mod_method_arity(VALUE mod, ID id) | |
{ | |
const rb_method_entry_t *me = original_method_entry(mod, id); | |
if (!me) return 0; /* should raise? */ | |
return rb_method_entry_arity(me); | |
} | |
int | |
rb_obj_method_arity(VALUE obj, ID id) | |
{ | |
return rb_mod_method_arity(CLASS_OF(obj), id); | |
} | |
VALUE | |
rb_callable_receiver(VALUE callable) | |
{ | |
if (rb_obj_is_proc(callable)) { | |
VALUE binding = proc_binding(callable); | |
return rb_funcall(binding, rb_intern("receiver"), 0); | |
} | |
else if (rb_obj_is_method(callable)) { | |
return method_receiver(callable); | |
} | |
else { | |
return Qundef; | |
} | |
} | |
const rb_method_definition_t * | |
rb_method_def(VALUE method) | |
{ | |
const struct METHOD *data; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
return data->me->def; | |
} | |
static const rb_iseq_t * | |
method_def_iseq(const rb_method_definition_t *def) | |
{ | |
switch (def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
return rb_iseq_check(def->body.iseq.iseqptr); | |
case VM_METHOD_TYPE_BMETHOD: | |
return rb_proc_get_iseq(def->body.bmethod.proc, 0); | |
case VM_METHOD_TYPE_ALIAS: | |
return method_def_iseq(def->body.alias.original_me->def); | |
case VM_METHOD_TYPE_CFUNC: | |
case VM_METHOD_TYPE_ATTRSET: | |
case VM_METHOD_TYPE_IVAR: | |
case VM_METHOD_TYPE_ZSUPER: | |
case VM_METHOD_TYPE_UNDEF: | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: | |
case VM_METHOD_TYPE_OPTIMIZED: | |
case VM_METHOD_TYPE_MISSING: | |
case VM_METHOD_TYPE_REFINED: | |
break; | |
} | |
return NULL; | |
} | |
const rb_iseq_t * | |
rb_method_iseq(VALUE method) | |
{ | |
return method_def_iseq(rb_method_def(method)); | |
} | |
static const rb_cref_t * | |
method_cref(VALUE method) | |
{ | |
const rb_method_definition_t *def = rb_method_def(method); | |
again: | |
switch (def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
return def->body.iseq.cref; | |
case VM_METHOD_TYPE_ALIAS: | |
def = def->body.alias.original_me->def; | |
goto again; | |
default: | |
return NULL; | |
} | |
} | |
static VALUE | |
method_def_location(const rb_method_definition_t *def) | |
{ | |
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) { | |
if (!def->body.attr.location) | |
return Qnil; | |
return rb_ary_dup(def->body.attr.location); | |
} | |
return iseq_location(method_def_iseq(def)); | |
} | |
VALUE | |
rb_method_entry_location(const rb_method_entry_t *me) | |
{ | |
if (!me) return Qnil; | |
return method_def_location(me->def); | |
} | |
/* | |
* call-seq: | |
* meth.source_location -> [String, Integer] | |
* | |
* Returns the Ruby source filename and line number containing this method | |
* or nil if this method was not defined in Ruby (i.e. native). | |
*/ | |
VALUE | |
rb_method_location(VALUE method) | |
{ | |
return method_def_location(rb_method_def(method)); | |
} | |
/* | |
* call-seq: | |
* meth.parameters -> array | |
* | |
* Returns the parameter information of this method. | |
* | |
* def foo(bar); end | |
* method(:foo).parameters #=> [[:req, :bar]] | |
* | |
* def foo(bar, baz, bat, &blk); end | |
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] | |
* | |
* def foo(bar, *args); end | |
* method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] | |
* | |
* def foo(bar, baz, *args, &blk); end | |
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]] | |
*/ | |
static VALUE | |
rb_method_parameters(VALUE method) | |
{ | |
const rb_iseq_t *iseq = rb_method_iseq(method); | |
if (!iseq) { | |
return rb_unnamed_parameters(method_arity(method)); | |
} | |
return rb_iseq_parameters(iseq, 0); | |
} | |
/* | |
* call-seq: | |
* meth.to_s -> string | |
* meth.inspect -> string | |
* | |
* Returns a human-readable description of the underlying method. | |
* | |
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>" | |
* (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>" | |
* | |
* In the latter case, the method description includes the "owner" of the | |
* original method (+Enumerable+ module, which is included into +Range+). | |
* | |
* +inspect+ also provides, when possible, method argument names (call | |
* sequence) and source location. | |
* | |
* require 'net/http' | |
* Net::HTTP.method(:get).inspect | |
* #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>" | |
* | |
* <code>...</code> in argument definition means argument is optional (has | |
* some default value). | |
* | |
* For methods defined in C (language core and extensions), location and | |
* argument names can't be extracted, and only generic information is provided | |
* in form of <code>*</code> (any number of arguments) or <code>_</code> (some | |
* positional argument). | |
* | |
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>" | |
* "cat".method(:+).inspect #=> "#<Method: String#+(_)>"" | |
*/ | |
static VALUE | |
method_inspect(VALUE method) | |
{ | |
struct METHOD *data; | |
VALUE str; | |
const char *sharp = "#"; | |
VALUE mklass; | |
VALUE defined_class; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method)); | |
mklass = data->iclass; | |
if (!mklass) mklass = data->klass; | |
if (RB_TYPE_P(mklass, T_ICLASS)) { | |
/* TODO: I'm not sure why mklass is T_ICLASS. | |
* UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components() | |
* but not sure it is needed. | |
*/ | |
mklass = RBASIC_CLASS(mklass); | |
} | |
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { | |
defined_class = data->me->def->body.alias.original_me->owner; | |
} | |
else { | |
defined_class = method_entry_defined_class(data->me); | |
} | |
if (RB_TYPE_P(defined_class, T_ICLASS)) { | |
defined_class = RBASIC_CLASS(defined_class); | |
} | |
if (FL_TEST(mklass, FL_SINGLETON)) { | |
VALUE v = rb_ivar_get(mklass, attached); | |
if (data->recv == Qundef) { | |
rb_str_buf_append(str, rb_inspect(mklass)); | |
} | |
else if (data->recv == v) { | |
rb_str_buf_append(str, rb_inspect(v)); | |
sharp = "."; | |
} | |
else { | |
rb_str_buf_append(str, rb_inspect(data->recv)); | |
rb_str_buf_cat2(str, "("); | |
rb_str_buf_append(str, rb_inspect(v)); | |
rb_str_buf_cat2(str, ")"); | |
sharp = "."; | |
} | |
} | |
else { | |
mklass = data->klass; | |
if (FL_TEST(mklass, FL_SINGLETON)) { | |
VALUE v = rb_ivar_get(mklass, attached); | |
if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) { | |
do { | |
mklass = RCLASS_SUPER(mklass); | |
} while (RB_TYPE_P(mklass, T_ICLASS)); | |
} | |
} | |
rb_str_buf_append(str, rb_inspect(mklass)); | |
if (defined_class != mklass) { | |
rb_str_catf(str, "(% "PRIsVALUE")", defined_class); | |
} | |
} | |
rb_str_buf_cat2(str, sharp); | |
rb_str_append(str, rb_id2str(data->me->called_id)); | |
if (data->me->called_id != data->me->def->original_id) { | |
rb_str_catf(str, "(%"PRIsVALUE")", | |
rb_id2str(data->me->def->original_id)); | |
} | |
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { | |
rb_str_buf_cat2(str, " (not-implemented)"); | |
} | |
// parameter information | |
{ | |
VALUE params = rb_method_parameters(method); | |
VALUE pair, name, kind; | |
const VALUE req = ID2SYM(rb_intern("req")); | |
const VALUE opt = ID2SYM(rb_intern("opt")); | |
const VALUE keyreq = ID2SYM(rb_intern("keyreq")); | |
const VALUE key = ID2SYM(rb_intern("key")); | |
const VALUE rest = ID2SYM(rb_intern("rest")); | |
const VALUE keyrest = ID2SYM(rb_intern("keyrest")); | |
const VALUE block = ID2SYM(rb_intern("block")); | |
const VALUE nokey = ID2SYM(rb_intern("nokey")); | |
int forwarding = 0; | |
rb_str_buf_cat2(str, "("); | |
for (int i = 0; i < RARRAY_LEN(params); i++) { | |
pair = RARRAY_AREF(params, i); | |
kind = RARRAY_AREF(pair, 0); | |
name = RARRAY_AREF(pair, 1); | |
// FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?.. | |
if (NIL_P(name) || name == Qfalse) { | |
// FIXME: can it be reduced to switch/case? | |
if (kind == req || kind == opt) { | |
name = rb_str_new2("_"); | |
} | |
else if (kind == rest || kind == keyrest) { | |
name = rb_str_new2(""); | |
} | |
else if (kind == block) { | |
name = rb_str_new2("block"); | |
} | |
else if (kind == nokey) { | |
name = rb_str_new2("nil"); | |
} | |
} | |
if (kind == req) { | |
rb_str_catf(str, "%"PRIsVALUE, name); | |
} | |
else if (kind == opt) { | |
rb_str_catf(str, "%"PRIsVALUE"=...", name); | |
} | |
else if (kind == keyreq) { | |
rb_str_catf(str, "%"PRIsVALUE":", name); | |
} | |
else if (kind == key) { | |
rb_str_catf(str, "%"PRIsVALUE": ...", name); | |
} | |
else if (kind == rest) { | |
if (name == ID2SYM('*')) { | |
forwarding = 1; | |
rb_str_cat_cstr(str, "..."); | |
} | |
else { | |
rb_str_catf(str, "*%"PRIsVALUE, name); | |
} | |
} | |
else if (kind == keyrest) { | |
if (name != ID2SYM(idPow)) { | |
rb_str_catf(str, "**%"PRIsVALUE, name); | |
} | |
else if (i > 0) { | |
rb_str_set_len(str, RSTRING_LEN(str) - 2); | |
} | |
} | |
else if (kind == block) { | |
if (name == ID2SYM('&')) { | |
if (forwarding) { | |
rb_str_set_len(str, RSTRING_LEN(str) - 2); | |
} | |
else { | |
rb_str_cat_cstr(str, "..."); | |
} | |
} | |
else { | |
rb_str_catf(str, "&%"PRIsVALUE, name); | |
} | |
} | |
else if (kind == nokey) { | |
rb_str_buf_cat2(str, "**nil"); | |
} | |
if (i < RARRAY_LEN(params) - 1) { | |
rb_str_buf_cat2(str, ", "); | |
} | |
} | |
rb_str_buf_cat2(str, ")"); | |
} | |
{ // source location | |
VALUE loc = rb_method_location(method); | |
if (!NIL_P(loc)) { | |
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, | |
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); | |
} | |
} | |
rb_str_buf_cat2(str, ">"); | |
return str; | |
} | |
static VALUE | |
bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method)) | |
{ | |
return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS); | |
} | |
VALUE | |
rb_proc_new( | |
rb_block_call_func_t func, | |
VALUE val) | |
{ | |
VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val); | |
return procval; | |
} | |
/* | |
* call-seq: | |
* meth.to_proc -> proc | |
* | |
* Returns a Proc object corresponding to this method. | |
*/ | |
static VALUE | |
method_to_proc(VALUE method) | |
{ | |
VALUE procval; | |
rb_proc_t *proc; | |
/* | |
* class Method | |
* def to_proc | |
* lambda{|*args| | |
* self.call(*args) | |
* } | |
* end | |
* end | |
*/ | |
procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method); | |
GetProcPtr(procval, proc); | |
proc->is_from_method = 1; | |
return procval; | |
} | |
extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner); | |
/* | |
* call-seq: | |
* meth.super_method -> method | |
* | |
* Returns a Method of superclass which would be called when super is used | |
* or nil if there is no method on superclass. | |
*/ | |
static VALUE | |
method_super_method(VALUE method) | |
{ | |
const struct METHOD *data; | |
VALUE super_class, iclass; | |
ID mid; | |
const rb_method_entry_t *me; | |
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); | |
iclass = data->iclass; | |
if (!iclass) return Qnil; | |
if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) { | |
super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class, | |
data->me->def->body.alias.original_me->owner)); | |
mid = data->me->def->body.alias.original_me->def->original_id; | |
} | |
else { | |
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass)); | |
mid = data->me->def->original_id; | |
} | |
if (!super_class) return Qnil; | |
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass); | |
if (!me) return Qnil; | |
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE); | |
} | |
/* | |
* call-seq: | |
* local_jump_error.exit_value -> obj | |
* | |
* Returns the exit value associated with this +LocalJumpError+. | |
*/ | |
static VALUE | |
localjump_xvalue(VALUE exc) | |
{ | |
return rb_iv_get(exc, "@exit_value"); | |
} | |
/* | |
* call-seq: | |
* local_jump_error.reason -> symbol | |
* | |
* The reason this block was terminated: | |
* :break, :redo, :retry, :next, :return, or :noreason. | |
*/ | |
static VALUE | |
localjump_reason(VALUE exc) | |
{ | |
return rb_iv_get(exc, "@reason"); | |
} | |
rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */ | |
static const rb_env_t * | |
env_clone(const rb_env_t *env, const rb_cref_t *cref) | |
{ | |
VALUE *new_ep; | |
VALUE *new_body; | |
const rb_env_t *new_env; | |
VM_ASSERT(env->ep > env->env); | |
VM_ASSERT(VM_ENV_ESCAPED_P(env->ep)); | |
if (cref == NULL) { | |
cref = rb_vm_cref_new_toplevel(); | |
} | |
new_body = ALLOC_N(VALUE, env->env_size); | |
MEMCPY(new_body, env->env, VALUE, env->env_size); | |
new_ep = &new_body[env->ep - env->env]; | |
new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq); | |
RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref); | |
VM_ASSERT(VM_ENV_ESCAPED_P(new_ep)); | |
return new_env; | |
} | |
/* | |
* call-seq: | |
* prc.binding -> binding | |
* | |
* Returns the binding associated with <i>prc</i>. | |
* | |
* def fred(param) | |
* proc {} | |
* end | |
* | |
* b = fred(99) | |
* eval("param", b.binding) #=> 99 | |
*/ | |
static VALUE | |
proc_binding(VALUE self) | |
{ | |
VALUE bindval, binding_self = Qundef; | |
rb_binding_t *bind; | |
const rb_proc_t *proc; | |
const rb_iseq_t *iseq = NULL; | |
const struct rb_block *block; | |
const rb_env_t *env = NULL; | |
GetProcPtr(self, proc); | |
block = &proc->block; | |
if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc"); | |
again: | |
switch (vm_block_type(block)) { | |
case block_type_iseq: | |
iseq = block->as.captured.code.iseq; | |
binding_self = block->as.captured.self; | |
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); | |
break; | |
case block_type_proc: | |
GetProcPtr(block->as.proc, proc); | |
block = &proc->block; | |
goto again; | |
case block_type_ifunc: | |
{ | |
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; | |
if (IS_METHOD_PROC_IFUNC(ifunc)) { | |
VALUE method = (VALUE)ifunc->data; | |
VALUE name = rb_fstring_lit("<empty_iseq>"); | |
rb_iseq_t *empty; | |
binding_self = method_receiver(method); | |
iseq = rb_method_iseq(method); | |
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); | |
env = env_clone(env, method_cref(method)); | |
/* set empty iseq */ | |
empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP); | |
RB_OBJ_WRITE(env, &env->iseq, empty); | |
break; | |
} | |
} | |
/* FALLTHROUGH */ | |
case block_type_symbol: | |
rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
bindval = rb_binding_alloc(rb_cBinding); | |
GetBindingPtr(bindval, bind); | |
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self); | |
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); | |
rb_vm_block_ep_update(bindval, &bind->block, env->ep); | |
RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep)); | |
if (iseq) { | |
rb_iseq_check(iseq); | |
RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj); | |
bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq)); | |
} | |
else { | |
RB_OBJ_WRITE(bindval, &bind->pathobj, | |
rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil)); | |
bind->first_lineno = 1; | |
} | |
return bindval; | |
} | |
static rb_block_call_func curry; | |
static VALUE | |
make_curry_proc(VALUE proc, VALUE passed, VALUE arity) | |
{ | |
VALUE args = rb_ary_new3(3, proc, passed, arity); | |
rb_proc_t *procp; | |
int is_lambda; | |
GetProcPtr(proc, procp); | |
is_lambda = procp->is_lambda; | |
rb_ary_freeze(passed); | |
rb_ary_freeze(args); | |
proc = rb_proc_new(curry, args); | |
GetProcPtr(proc, procp); | |
procp->is_lambda = is_lambda; | |
return proc; | |
} | |
static VALUE | |
curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) | |
{ | |
VALUE proc, passed, arity; | |
proc = RARRAY_AREF(args, 0); | |
passed = RARRAY_AREF(args, 1); | |
arity = RARRAY_AREF(args, 2); | |
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv)); | |
rb_ary_freeze(passed); | |
if (RARRAY_LEN(passed) < FIX2INT(arity)) { | |
if (!NIL_P(blockarg)) { | |
rb_warn("given block not used"); | |
} | |
arity = make_curry_proc(proc, passed, arity); | |
return arity; | |
} | |
else { | |
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg); | |
} | |
} | |
/* | |
* call-seq: | |
* prc.curry -> a_proc | |
* prc.curry(arity) -> a_proc | |
* | |
* Returns a curried proc. If the optional <i>arity</i> argument is given, | |
* it determines the number of arguments. | |
* A curried proc receives some arguments. If a sufficient number of | |
* arguments are supplied, it passes the supplied arguments to the original | |
* proc and returns the result. Otherwise, returns another curried proc that | |
* takes the rest of arguments. | |
* | |
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } | |
* p b.curry[1][2][3] #=> 6 | |
* p b.curry[1, 2][3, 4] #=> 6 | |
* p b.curry(5)[1][2][3][4][5] #=> 6 | |
* p b.curry(5)[1, 2][3, 4][5] #=> 6 | |
* p b.curry(1)[1] #=> 1 | |
* | |
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } | |
* p b.curry[1][2][3] #=> 6 | |
* p b.curry[1, 2][3, 4] #=> 10 | |
* p b.curry(5)[1][2][3][4][5] #=> 15 | |
* p b.curry(5)[1, 2][3, 4][5] #=> 15 | |
* p b.curry(1)[1] #=> 1 | |
* | |
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } | |
* p b.curry[1][2][3] #=> 6 | |
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3) | |
* p b.curry(5) #=> wrong number of arguments (given 5, expected 3) | |
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3) | |
* | |
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } | |
* p b.curry[1][2][3] #=> 6 | |
* p b.curry[1, 2][3, 4] #=> 10 | |
* p b.curry(5)[1][2][3][4][5] #=> 15 | |
* p b.curry(5)[1, 2][3, 4][5] #=> 15 | |
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3) | |
* | |
* b = proc { :foo } | |
* p b.curry[] #=> :foo | |
*/ | |
static VALUE | |
proc_curry(int argc, const VALUE *argv, VALUE self) | |
{ | |
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity); | |
VALUE arity; | |
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) { | |
arity = INT2FIX(min_arity); | |
} | |
else { | |
sarity = FIX2INT(arity); | |
if (rb_proc_lambda_p(self)) { | |
rb_check_arity(sarity, min_arity, max_arity); | |
} | |
} | |
return make_curry_proc(self, rb_ary_new(), arity); | |
} | |
/* | |
* call-seq: | |
* meth.curry -> proc | |
* meth.curry(arity) -> proc | |
* | |
* Returns a curried proc based on the method. When the proc is called with a number of | |
* arguments that is lower than the method's arity, then another curried proc is returned. | |
* Only when enough arguments have been supplied to satisfy the method signature, will the | |
* method actually be called. | |
* | |
* The optional <i>arity</i> argument should be supplied when currying methods with | |
* variable arguments to determine how many arguments are needed before the method is | |
* called. | |
* | |
* def foo(a,b,c) | |
* [a, b, c] | |
* end | |
* | |
* proc = self.method(:foo).curry | |
* proc2 = proc.call(1, 2) #=> #<Proc> | |
* proc2.call(3) #=> [1,2,3] | |
* | |
* def vararg(*args) | |
* args | |
* end | |
* | |
* proc = self.method(:vararg).curry(4) | |
* proc2 = proc.call(:x) #=> #<Proc> | |
* proc3 = proc2.call(:y, :z) #=> #<Proc> | |
* proc3.call(:a) #=> [:x, :y, :z, :a] | |
*/ | |
static VALUE | |
rb_method_curry(int argc, const VALUE *argv, VALUE self) | |
{ | |
VALUE proc = method_to_proc(self); | |
return proc_curry(argc, argv, proc); | |
} | |
static VALUE | |
compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) | |
{ | |
VALUE f, g, fargs; | |
f = RARRAY_AREF(args, 0); | |
g = RARRAY_AREF(args, 1); | |
if (rb_obj_is_proc(g)) | |
fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); | |
else | |
fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); | |
if (rb_obj_is_proc(f)) | |
return rb_proc_call(f, rb_ary_new3(1, fargs)); | |
else | |
return rb_funcallv(f, idCall, 1, &fargs); | |
} | |
static VALUE | |
to_callable(VALUE f) | |
{ | |
VALUE mesg; | |
if (rb_obj_is_proc(f)) return f; | |
if (rb_obj_is_method(f)) return f; | |
if (rb_obj_respond_to(f, idCall, TRUE)) return f; | |
mesg = rb_fstring_lit("callable object is expected"); | |
rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg)); | |
} | |
static VALUE rb_proc_compose_to_left(VALUE self, VALUE g); | |
static VALUE rb_proc_compose_to_right(VALUE self, VALUE g); | |
/* | |
* call-seq: | |
* prc << g -> a_proc | |
* | |
* Returns a proc that is the composition of this proc and the given <i>g</i>. | |
* The returned proc takes a variable number of arguments, calls <i>g</i> with them | |
* then calls this proc with the result. | |
* | |
* f = proc {|x| x * x } | |
* g = proc {|x| x + x } | |
* p (f << g).call(2) #=> 16 | |
* | |
* See Proc#>> for detailed explanations. | |
*/ | |
static VALUE | |
proc_compose_to_left(VALUE self, VALUE g) | |
{ | |
return rb_proc_compose_to_left(self, to_callable(g)); | |
} | |
static VALUE | |
rb_proc_compose_to_left(VALUE self, VALUE g) | |
{ | |
VALUE proc, args, procs[2]; | |
rb_proc_t *procp; | |
int is_lambda; | |
procs[0] = self; | |
procs[1] = g; | |
args = rb_ary_tmp_new_from_values(0, 2, procs); | |
if (rb_obj_is_proc(g)) { | |
GetProcPtr(g, procp); | |
is_lambda = procp->is_lambda; | |
} | |
else { | |
VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE)); | |
is_lambda = 1; | |
} | |
proc = rb_proc_new(compose, args); | |
GetProcPtr(proc, procp); | |
procp->is_lambda = is_lambda; | |
return proc; | |
} | |
/* | |
* call-seq: | |
* prc >> g -> a_proc | |
* | |
* Returns a proc that is the composition of this proc and the given <i>g</i>. | |
* The returned proc takes a variable number of arguments, calls this proc with them | |
* then calls <i>g</i> with the result. | |
* | |
* f = proc {|x| x * x } | |
* g = proc {|x| x + x } | |
* p (f >> g).call(2) #=> 8 | |
* | |
* <i>g</i> could be other Proc, or Method, or any other object responding to | |
* +call+ method: | |
* | |
* class Parser | |
* def self.call(text) | |
* # ...some complicated parsing logic... | |
* end | |
* end | |
* | |
* pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" } | |
* pipeline.call('data.json') | |
* | |
* See also Method#>> and Method#<<. | |
*/ | |
static VALUE | |
proc_compose_to_right(VALUE self, VALUE g) | |
{ | |
return rb_proc_compose_to_right(self, to_callable(g)); | |
} | |
static VALUE | |
rb_proc_compose_to_right(VALUE self, VALUE g) | |
{ | |
VALUE proc, args, procs[2]; | |
rb_proc_t *procp; | |
int is_lambda; | |
procs[0] = g; | |
procs[1] = self; | |
args = rb_ary_tmp_new_from_values(0, 2, procs); | |
GetProcPtr(self, procp); | |
is_lambda = procp->is_lambda; | |
proc = rb_proc_new(compose, args); | |
GetProcPtr(proc, procp); | |
procp->is_lambda = is_lambda; | |
return proc; | |
} | |
/* | |
* call-seq: | |
* meth << g -> a_proc | |
* | |
* Returns a proc that is the composition of this method and the given <i>g</i>. | |
* The returned proc takes a variable number of arguments, calls <i>g</i> with them | |
* then calls this method with the result. | |
* | |
* def f(x) | |
* x * x | |
* end | |
* | |
* f = self.method(:f) | |
* g = proc {|x| x + x } | |
* p (f << g).call(2) #=> 16 | |
*/ | |
static VALUE | |
rb_method_compose_to_left(VALUE self, VALUE g) | |
{ | |
g = to_callable(g); | |
self = method_to_proc(self); | |
return proc_compose_to_left(self, g); | |
} | |
/* | |
* call-seq: | |
* meth >> g -> a_proc | |
* | |
* Returns a proc that is the composition of this method and the given <i>g</i>. | |
* The returned proc takes a variable number of arguments, calls this method | |
* with them then calls <i>g</i> with the result. | |
* | |
* def f(x) | |
* x * x | |
* end | |
* | |
* f = self.method(:f) | |
* g = proc {|x| x + x } | |
* p (f >> g).call(2) #=> 8 | |
*/ | |
static VALUE | |
rb_method_compose_to_right(VALUE self, VALUE g) | |
{ | |
g = to_callable(g); | |
self = method_to_proc(self); | |
return proc_compose_to_right(self, g); | |
} | |
/* | |
* call-seq: | |
* proc.ruby2_keywords -> proc | |
* | |
* Marks the proc as passing keywords through a normal argument splat. | |
* This should only be called on procs that accept an argument splat | |
* (<tt>*args</tt>) but not explicit keywords or a keyword splat. It | |
* marks the proc such that if the proc is called with keyword arguments, | |
* the final hash argument is marked with a special flag such that if it | |
* is the final element of a normal argument splat to another method call, | |
* and that method call does not include explicit keywords or a keyword | |
* splat, the final element is interpreted as keywords. In other words, | |
* keywords will be passed through the proc to other methods. | |
* | |
* This should only be used for procs that delegate keywords to another | |
* method, and only for backwards compatibility with Ruby versions before | |
* 2.7. | |
* | |
* This method will probably be removed at some point, as it exists only | |
* for backwards compatibility. As it does not exist in Ruby versions | |
* before 2.7, check that the proc responds to this method before calling | |
* it. Also, be aware that if this method is removed, the behavior of the | |
* proc will change so that it does not pass through keywords. | |
* | |
* module Mod | |
* foo = ->(meth, *args, &block) do | |
* send(:"do_#{meth}", *args, &block) | |
* end | |
* foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords) | |
* end | |
*/ | |
static VALUE | |
proc_ruby2_keywords(VALUE procval) | |
{ | |
rb_proc_t *proc; | |
GetProcPtr(procval, proc); | |
rb_check_frozen(procval); | |
if (proc->is_from_method) { | |
rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)"); | |
return procval; | |
} | |
switch (proc->block.type) { | |
case block_type_iseq: | |
if (proc->block.as.captured.code.iseq->body->param.flags.has_rest && | |
!proc->block.as.captured.code.iseq->body->param.flags.has_kw && | |
!proc->block.as.captured.code.iseq->body->param.flags.has_kwrest) { | |
proc->block.as.captured.code.iseq->body->param.flags.ruby2_keywords = 1; | |
} | |
else { | |
rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)"); | |
} | |
break; | |
default: | |
rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)"); | |
break; | |
} | |
return procval; | |
} | |
/* | |
* Document-class: LocalJumpError | |
* | |
* Raised when Ruby can't yield as requested. | |
* | |
* A typical scenario is attempting to yield when no block is given: | |
* | |
* def call_block | |
* yield 42 | |
* end | |
* call_block | |
* | |
* <em>raises the exception:</em> | |
* | |
* LocalJumpError: no block given (yield) | |
* | |
* A more subtle example: | |
* | |
* def get_me_a_return | |
* Proc.new { return 42 } | |
* end | |
* get_me_a_return.call | |
* | |
* <em>raises the exception:</em> | |
* | |
* LocalJumpError: unexpected return | |
*/ | |
/* | |
* Document-class: SystemStackError | |
* | |
* Raised in case of a stack overflow. | |
* | |
* def me_myself_and_i | |
* me_myself_and_i | |
* end | |
* me_myself_and_i | |
* | |
* <em>raises the exception:</em> | |
* | |
* SystemStackError: stack level too deep | |
*/ | |
/* | |
* Document-class: Proc | |
* | |
* A +Proc+ object is an encapsulation of a block of code, which can be stored | |
* in a local variable, passed to a method or another Proc, and can be called. | |
* Proc is an essential concept in Ruby and a core of its functional | |
* programming features. | |
* | |
* square = Proc.new {|x| x**2 } | |
* | |
* square.call(3) #=> 9 | |
* # shorthands: | |
* square.(3) #=> 9 | |
* square[3] #=> 9 | |
* | |
* Proc objects are _closures_, meaning they remember and can use the entire | |
* context in which they were created. | |
* | |
* def gen_times(factor) | |
* Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation | |
* end | |
* | |
* times3 = gen_times(3) | |
* times5 = gen_times(5) | |
* | |
* times3.call(12) #=> 36 | |
* times5.call(5) #=> 25 | |
* times3.call(times5.call(4)) #=> 60 | |
* | |
* == Creation | |
* | |
* There are several methods to create a Proc | |
* | |
* * Use the Proc class constructor: | |
* | |
* proc1 = Proc.new {|x| x**2 } | |
* | |
* * Use the Kernel#proc method as a shorthand of Proc.new: | |
* | |
* proc2 = proc {|x| x**2 } | |
* | |
* * Receiving a block of code into proc argument (note the <code>&</code>): | |
* | |
* def make_proc(&block) | |
* block | |
* end | |
* | |
* proc3 = make_proc {|x| x**2 } | |
* | |
* * Construct a proc with lambda semantics using the Kernel#lambda method | |
* (see below for explanations about lambdas): | |
* | |
* lambda1 = lambda {|x| x**2 } | |
* | |
* * Use the Lambda literal syntax (also constructs a proc with lambda semantics): | |
* | |
* lambda2 = ->(x) { x**2 } | |
* | |
* == Lambda and non-lambda semantics | |
* | |
* Procs are coming in two flavors: lambda and non-lambda (regular procs). | |
* Differences are: | |
* | |
* * In lambdas, +return+ and +break+ means exit from this lambda; | |
* * In non-lambda procs, +return+ means exit from embracing method | |
* (and will throw +LocalJumpError+ if invoked outside the method); | |
* * In non-lambda procs, +break+ means exit from the method which the block given for. | |
* (and will throw +LocalJumpError+ if invoked after the method returns); | |
* * In lambdas, arguments are treated in the same way as in methods: strict, | |
* with +ArgumentError+ for mismatching argument number, | |
* and no additional argument processing; | |
* * Regular procs accept arguments more generously: missing arguments | |
* are filled with +nil+, single Array arguments are deconstructed if the | |
* proc has multiple arguments, and there is no error raised on extra | |
* arguments. | |
* | |
* Examples: | |
* | |
* # +return+ in non-lambda proc, +b+, exits +m2+. | |
* # (The block +{ return }+ is given for +m1+ and embraced by +m2+.) | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a | |
* #=> [] | |
* | |
* # +break+ in non-lambda proc, +b+, exits +m1+. | |
* # (The block +{ break }+ is given for +m1+ and embraced by +m2+.) | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a | |
* #=> [:m2] | |
* | |
* # +next+ in non-lambda proc, +b+, exits the block. | |
* # (The block +{ next }+ is given for +m1+ and embraced by +m2+.) | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a | |
* #=> [:m1, :m2] | |
* | |
* # Using +proc+ method changes the behavior as follows because | |
* # The block is given for +proc+ method and embraced by +m2+. | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a | |
* #=> [] | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a | |
* # break from proc-closure (LocalJumpError) | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a | |
* #=> [:m1, :m2] | |
* | |
* # +return+, +break+ and +next+ in the stubby lambda exits the block. | |
* # (+lambda+ method behaves same.) | |
* # (The block is given for stubby lambda syntax and embraced by +m2+.) | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a | |
* #=> [:m1, :m2] | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a | |
* #=> [:m1, :m2] | |
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a | |
* #=> [:m1, :m2] | |
* | |
* p = proc {|x, y| "x=#{x}, y=#{y}" } | |
* p.call(1, 2) #=> "x=1, y=2" | |
* p.call([1, 2]) #=> "x=1, y=2", array deconstructed | |
* p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded | |
* p.call(1) #=> "x=1, y=", nil substituted instead of error | |
* | |
* l = lambda {|x, y| "x=#{x}, y=#{y}" } | |
* l.call(1, 2) #=> "x=1, y=2" | |
* l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2) | |
* l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2) | |
* l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) | |
* | |
* def test_return | |
* -> { return 3 }.call # just returns from lambda into method body | |
* proc { return 4 }.call # returns from method | |
* return 5 | |
* end | |
* | |
* test_return # => 4, return from proc | |
* | |
* Lambdas are useful as self-sufficient functions, in particular useful as | |
* arguments to higher-order functions, behaving exactly like Ruby methods. | |
* | |
* Procs are useful for implementing iterators: | |
* | |
* def test | |
* [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 } | |
* # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
* end | |
* | |
* Inside +map+, the block of code is treated as a regular (non-lambda) proc, | |
* which means that the internal arrays will be deconstructed to pairs of | |
* arguments, and +return+ will exit from the method +test+. That would | |
* not be possible with a stricter lambda. | |
* | |
* You can tell a lambda from a regular proc by using the #lambda? instance method. | |
* | |
* Lambda semantics is typically preserved during the proc lifetime, including | |
* <code>&</code>-deconstruction to a block of code: | |
* | |
* p = proc {|x, y| x } | |
* l = lambda {|x, y| x } | |
* [[1, 2], [3, 4]].map(&p) #=> [1, 3] | |
* [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2) | |
* | |
* The only exception is dynamic method definition: even if defined by | |
* passing a non-lambda proc, methods still have normal semantics of argument | |
* checking. | |
* | |
* class C | |
* define_method(:e, &proc {}) | |
* end | |
* C.new.e(1,2) #=> ArgumentError | |
* C.new.method(:e).to_proc.lambda? #=> true | |
* | |
* This exception ensures that methods never have unusual argument passing | |
* conventions, and makes it easy to have wrappers defining methods that | |
* behave as usual. | |
* | |
* class C | |
* def self.def2(name, &body) | |
* define_method(name, &body) | |
* end | |
* | |
* def2(:f) {} | |
* end | |
* C.new.f(1,2) #=> ArgumentError | |
* | |
* The wrapper <code>def2</code> receives _body_ as a non-lambda proc, | |
* yet defines a method which has normal semantics. | |
* | |
* == Conversion of other objects to procs | |
* | |
* Any object that implements the +to_proc+ method can be converted into | |
* a proc by the <code>&</code> operator, and therefore can be | |
* consumed by iterators. | |
* | |
* class Greeter | |
* def initialize(greeting) | |
* @greeting = greeting | |
* end | |
* | |
* def to_proc | |
* proc {|name| "#{@greeting}, #{name}!" } | |
* end | |
* end | |
* | |
* hi = Greeter.new("Hi") | |
* hey = Greeter.new("Hey") | |
* ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"] | |
* ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"] | |
* | |
* Of the Ruby core classes, this method is implemented by Symbol, | |
* Method, and Hash. | |
* | |
* :to_s.to_proc.call(1) #=> "1" | |
* [1, 2].map(&:to_s) #=> ["1", "2"] | |
* | |
* method(:puts).to_proc.call(1) # prints 1 | |
* [1, 2].each(&method(:puts)) # prints 1, 2 | |
* | |
* {test: 1}.to_proc.call(:test) #=> 1 | |
* %i[test many keys].map(&{test: 1}) #=> [1, nil, nil] | |
* | |
* == Orphaned Proc | |
* | |
* +return+ and +break+ in a block exit a method. | |
* If a Proc object is generated from the block and the Proc object | |
* survives until the method is returned, +return+ and +break+ cannot work. | |
* In such case, +return+ and +break+ raises LocalJumpError. | |
* A Proc object in such situation is called as orphaned Proc object. | |
* | |
* Note that the method to exit is different for +return+ and +break+. | |
* There is a situation that orphaned for +break+ but not orphaned for +return+. | |
* | |
* def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok | |
* def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok | |
* | |
* def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok | |
* def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError | |
* | |
* def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError | |
* def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError | |
* | |
* Since +return+ and +break+ exits the block itself in lambdas, | |
* lambdas cannot be orphaned. | |
* | |
* == Numbered parameters | |
* | |
* Numbered parameters are implicitly defined block parameters intended to | |
* simplify writing short blocks: | |
* | |
* # Explicit parameter: | |
* %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE | |
* (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25] | |
* | |
* # Implicit parameter: | |
* %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE | |
* (1..5).map { _1**2 } # => [1, 4, 9, 16, 25] | |
* | |
* Parameter names from +_1+ to +_9+ are supported: | |
* | |
* [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 } | |
* # => [120, 150, 180] | |
* | |
* Though, it is advised to resort to them wisely, probably limiting | |
* yourself to +_1+ and +_2+, and to one-line blocks. | |
* | |
* Numbered parameters can't be used together with explicitly named | |
* ones: | |
* | |
* [10, 20, 30].map { |x| _1**2 } | |
* # SyntaxError (ordinary parameter is defined) | |
* | |
* To avoid conflicts, naming local variables or method | |
* arguments +_1+, +_2+ and so on, causes a warning. | |
* | |
* _1 = 'test' | |
* # warning: `_1' is reserved as numbered parameter | |
* | |
* Using implicit numbered parameters affects block's arity: | |
* | |
* p = proc { _1 + _2 } | |
* l = lambda { _1 + _2 } | |
* p.parameters # => [[:opt, :_1], [:opt, :_2]] | |
* p.arity # => 2 | |
* l.parameters # => [[:req, :_1], [:req, :_2]] | |
* l.arity # => 2 | |
* | |
* Blocks with numbered parameters can't be nested: | |
* | |
* %w[test me].each { _1.each_char { p _1 } } | |
* # SyntaxError (numbered parameter is already used in outer block here) | |
* # %w[test me].each { _1.each_char { p _1 } } | |
* # ^~ | |
* | |
* Numbered parameters were introduced in Ruby 2.7. | |
*/ | |
void | |
Init_Proc(void) | |
{ | |
#undef rb_intern | |
/* Proc */ | |
rb_cProc = rb_define_class("Proc", rb_cObject); | |
rb_undef_alloc_func(rb_cProc); | |
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1); | |
rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED, | |
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); | |
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED, | |
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); | |
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED, | |
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); | |
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED, | |
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); | |
#if 0 /* for RDoc */ | |
rb_define_method(rb_cProc, "call", proc_call, -1); | |
rb_define_method(rb_cProc, "[]", proc_call, -1); | |
rb_define_method(rb_cProc, "===", proc_call, -1); | |
rb_define_method(rb_cProc, "yield", proc_call, -1); | |
#endif | |
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0); | |
rb_define_method(rb_cProc, "arity", proc_arity, 0); | |
rb_define_method(rb_cProc, "clone", proc_clone, 0); | |
rb_define_method(rb_cProc, "dup", rb_proc_dup, 0); | |
rb_define_method(rb_cProc, "hash", proc_hash, 0); | |
rb_define_method(rb_cProc, "to_s", proc_to_s, 0); | |
rb_define_alias(rb_cProc, "inspect", "to_s"); | |
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0); | |
rb_define_method(rb_cProc, "binding", proc_binding, 0); | |
rb_define_method(rb_cProc, "curry", proc_curry, -1); | |
rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1); | |
rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1); | |
rb_define_method(rb_cProc, "==", proc_eq, 1); | |
rb_define_method(rb_cProc, "eql?", proc_eq, 1); | |
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0); | |
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0); | |
rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0); | |
// rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted. | |
/* Exceptions */ | |
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError); | |
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0); | |
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0); | |
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException); | |
rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep"); | |
/* utility functions */ | |
rb_define_global_function("proc", f_proc, 0); | |
rb_define_global_function("lambda", f_lambda, 0); | |
/* Method */ | |
rb_cMethod = rb_define_class("Method", rb_cObject); | |
rb_undef_alloc_func(rb_cMethod); | |
rb_undef_method(CLASS_OF(rb_cMethod), "new"); | |
rb_define_method(rb_cMethod, "==", method_eq, 1); | |
rb_define_method(rb_cMethod, "eql?", method_eq, 1); | |
rb_define_method(rb_cMethod, "hash", method_hash, 0); | |
rb_define_method(rb_cMethod, "clone", method_clone, 0); | |
rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1); | |
rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1); | |
rb_define_method(rb_cMethod, "curry", rb_method_curry, -1); | |
rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1); | |
rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1); | |
rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1); | |
rb_define_method(rb_cMethod, "arity", method_arity_m, 0); | |
rb_define_method(rb_cMethod, "inspect", method_inspect, 0); | |
rb_define_method(rb_cMethod, "to_s", method_inspect, 0); | |
rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0); | |
rb_define_method(rb_cMethod, "receiver", method_receiver, 0); | |
rb_define_method(rb_cMethod, "name", method_name, 0); | |
rb_define_method(rb_cMethod, "original_name", method_original_name, 0); | |
rb_define_method(rb_cMethod, "owner", method_owner, 0); | |
rb_define_method(rb_cMethod, "unbind", method_unbind, 0); | |
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0); | |
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0); | |
rb_define_method(rb_cMethod, "super_method", method_super_method, 0); | |
rb_define_method(rb_mKernel, "method", rb_obj_method, 1); | |
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1); | |
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1); | |
/* UnboundMethod */ | |
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject); | |
rb_undef_alloc_func(rb_cUnboundMethod); | |
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new"); | |
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1); | |
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1); | |
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0); | |
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0); | |
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0); | |
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0); | |
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0); | |
rb_define_method(rb_cUnboundMethod, "name", method_name, 0); | |
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0); | |
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0); | |
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1); | |
rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1); | |
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0); | |
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0); | |
rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0); | |
/* Module#*_method */ | |
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1); | |
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1); | |
rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1); | |
/* Kernel */ | |
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1); | |
rb_define_private_method(rb_singleton_class(rb_vm_top_self()), | |
"define_method", top_define_method, -1); | |
} | |
/* | |
* Objects of class Binding encapsulate the execution context at some | |
* particular place in the code and retain this context for future | |
* use. The variables, methods, value of <code>self</code>, and | |
* possibly an iterator block that can be accessed in this context | |
* are all retained. Binding objects can be created using | |
* Kernel#binding, and are made available to the callback of | |
* Kernel#set_trace_func and instances of TracePoint. | |
* | |
* These binding objects can be passed as the second argument of the | |
* Kernel#eval method, establishing an environment for the | |
* evaluation. | |
* | |
* class Demo | |
* def initialize(n) | |
* @secret = n | |
* end | |
* def get_binding | |
* binding | |
* end | |
* end | |
* | |
* k1 = Demo.new(99) | |
* b1 = k1.get_binding | |
* k2 = Demo.new(-3) | |
* b2 = k2.get_binding | |
* | |
* eval("@secret", b1) #=> 99 | |
* eval("@secret", b2) #=> -3 | |
* eval("@secret") #=> nil | |
* | |
* Binding objects have no class-specific methods. | |
* | |
*/ | |
void | |
Init_Binding(void) | |
{ | |
rb_cBinding = rb_define_class("Binding", rb_cObject); | |
rb_undef_alloc_func(rb_cBinding); | |
rb_undef_method(CLASS_OF(rb_cBinding), "new"); | |
rb_define_method(rb_cBinding, "clone", binding_clone, 0); | |
rb_define_method(rb_cBinding, "dup", binding_dup, 0); | |
rb_define_method(rb_cBinding, "eval", bind_eval, -1); | |
rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0); | |
rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1); | |
rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2); | |
rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1); | |
rb_define_method(rb_cBinding, "receiver", bind_receiver, 0); | |
rb_define_method(rb_cBinding, "source_location", bind_location, 0); | |
rb_define_global_function("binding", rb_f_binding, 0); | |
} |