The Wayback Machine - https://web.archive.org/web/20211110174432/https://www.science.org/doi/abs/10.1126/science.1229237
Advertisement

Let There Be Mammals

The timing of the evolution and radiation of placental mammals and their most recent common ancestor has long been debated, with many questions surrounding the relationships of groups that pre- and postdate the Cretaceous-Paleogene boundary (66 million years ago). While the fossil record suggests that placental mammals radiated after the Cretaceous, molecular clocks have consistently placed the ancestors of mammalian lineages earlier. O'Leary et al. (p. 662; see the Perspective by Yoder) examined the morphology of fossil and extant taxa and conclude that living placentals originated and radiated after the Cretaceous and reconstruct the phenotype of the ancestral placental mammal.

Abstract

To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.
Get full access to this article

View all available purchase options and get full access to this article.

Already a Subscriber?

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S15
Tables S1 to S8
References (44–323
Appendices S1 to S4

Resources

File (1229237oleary.sm.pdf)

References and Notes

1
Kuiper K. F., et al., Synchronizing rock clocks of Earth history. Science 320, 500 (2008).
2
Berggren W. A., Pearson P. N., A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J. Foraminiferal Res. 35, 279 (2005).
3
Archibald J. D., Deutschman D. H., Quantitative analysis of the timing of the origin and diversification of extant placental orders. J. Mamm. Evol. 8, 107 (2001).
4
R. M. Nowak, Walker's Mammals of the World (Johns Hopkins Univ. Press, Baltimore, MD, 1999).
5
M. A. O'Leary, M. Allard, M. J. Novacek, J. Meng, J. Gatesy, in Assembling the Tree of Life, J. Cracraft, M. J. Donoghue, Eds. (Oxford Univ. Press, New York, 2004), pp. 490–516.
6
de Queiroz K., Toward an integrated system of clade names. Syst. Biol. 56, 956 (2007).
7
Meredith R. W., et al., Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334, 521 (2011).
8
Murphy W. J., et al., Molecular phylogenetics and the origins of placental mammals. Nature 409, 614 (2001).
9
Springer M. S., Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. J. Mamm. Evol. 4, 285 (1997).
10
Novacek M. J., 100 million years of land vertebrate evolution: The Cretaceous-Early Tertiary Transition. Ann. Mo. Bot. Gard. 86, 230 (1999).
11
Wible J. R., Rougier G. W., Novacek M. J., Asher R. J., The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull. Am. Mus. Nat. Hist. 327, 1 (2009).
12
O'Leary M. A., Kaufman S., MorphoBank: Phylophenomics in the "cloud." Cladistics 27, 1 (2011).
13
Materials and methods are available as supplementary materials on Science Online.
14
M. A. Norell, in Extinction and Phylogeny, M. J. Novacek, Q. D. Wheeler, Eds. (Columbia Univ. Press, New York, 1992), pp. 89–118.
15
Bininda-Emonds O. R. P., et al., The delayed rise of present-day mammals. Nature 446, 507 (2007).
16
Eberle J. J., Puercan mammalian systematics and biostratigraphy in the Denver Formation, Denver Basin, Colorado. Rocky MT Geol. 38, 143 (2003).
17
D. L. Lofgren, J. A. Lillegraven, W. A. Clemens, P. D. Gingerich, T. E. Williamson, in Late Cretaceous and Cenozoic Mammals of North America, M. O. Woodburne, Ed. (Columbia Univ. Press, New York, 2004), pp. 43–105.
18
Ji Q., et al., The earliest known eutherian mammal. Nature 416, 816 (2002).
19
Luo Z.-X., Yuan C.-X., Meng Q.-J., Ji Q., A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442 (2011).
20
Prasad A. B., Allard M. W., Green E. D.NISC Comparative Sequencing Program, Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol. Biol. Evol. 25, 1795 (2008).
21
M. C. McKenna, in Phylogeny of the Primates, W. P. Luckett, F. S. Szalay, Eds. (Plenum, New York, 1975), pp. 21–46.
22
Janecka J. E., et al., Molecular and genomic data identify the closest living relative of primates. Science 318, 792 (2007).
23
Miller-Butterworth C. M., et al., A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol. Biol. Evol. 24, 1553 (2007).
24
Teeling E. C., et al., A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580 (2005).
25
Simmons N. B., Seymour K. L., Habersetzer J., Gunnell G. F., Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451, 818 (2008).
26
Asher R. J., Novacek M. J., Geisler J. H., Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J. Mamm. Evol. 10, 131 (2003).
27
Solé F., Gheerbrant E., Amaghzaz M., Bouya B., Further evidence of the African antiquity of hyaenodontid ("Creodonta", Mammalia) evolution. Zool. J. Linn. Soc. 156, 827 (2009).
28
Agnolin F. L., Chimento N. R., Afrotherian affinities for endemic South American "ungulates". Mamm. Biol. 76, 101 (2011).
29
Asher R. J., et al., Stem Lagomorpha and the antiquity of Glires. Science 307, 1091 (2005).
30
Gaudin T. J., Emry R. J., Wible J. R., The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: A morphology based analysis. J. Mamm. Evol. 16, 235 (2009).
31
Wildman D. E., et al., Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc. Natl. Acad. Sci. U.S.A. 103, 3203 (2006).
32
Bryant H. N., Russell A. P., The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philos. Trans. R. Soc. London B Biol. Sci. 337, 405 (1992).
33
Novacek M. J., The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183, 1 (1986).
34
W. P. Luckett, in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), pp. 182–204.
35
R. Owen, The Anatomy of the Vertebrates, vol. 3, Mammals (Longmans, Green and Co., London, 1868).
36
Wilf P., Johnson K. R., Land plant extinction at the end of the Cretaceous: A quantitative analysis of the North Dakota megafloral record. Paleobiology 30, 347 (2004).
37
Wilf P., Labandeira C. C., Johnson K. R., Ellis B., Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112 (2006).
38
Martin T., Averianov A., Lopatin A., Middle Jurassic mammals from the Itat formation at Berezovsk Quarry in Western Siberia (Russia). J. Vert. Paleontol. 31 (Suppl. 2), 153 (2011).
39
Stanhope M. J., et al., Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. U.S.A. 95, 9967 (1998).
40
Simpson G. G., The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85, 1 (1945).
41
Springer M. S., de Jong W. W., Phylogenetics. Which mammalian supertree to bark up? Science 291, 1709 (2001).
42
Waddell P. J., Okada N., Hasegawa M., Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48, 1 (1999).
43
Rose K. D., et al., Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha. Proc. Biol. Sci. 275, 1203 (2008).
44
Hopson J. A., Kitching J. W., A probainognathian cynodont from South Africa and the phylogeney of non-mammalian cynodonts. Bull. Mus. Comp. Zool. 156, 5 (2001).
45
Rowe T., Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241 (1988).
46
Horovitz I., The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: An appraisal of the evolution of the ankle in basal therians. J. Vertebr. Paleontol. 20, 547 (2000).
47
Horovitz I., Sánchez-Villagra M. R., A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19, 181 (2003).
48
Ji Q., Luo Z.-X., Yuan C. X., Tabrum A. R., A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123 (2006).
49
Luo Z.-X., Wible J. R., A Late Jurassic digging mammal and early mammalian diversification. Science 308, 103 (2005).
50
Luo Z. X., Ji Q., Wible J. R., Yuan C. X., An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302, 1934 (2003).
51
Wible J. R., Rougier G. W., Novacek M. J., Asher R. J., Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447, 1003 (2007).
52
Novacek M. J., Wyss A. R., Higher-level relationships of the Recent eutherian orders: Morphological evidence. Cladistics 2, 257 (1986).
53
Shoshani J., McKenna M. C., Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9, 572 (1998).
54
Gaudin T. J., The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). J. Vertebr. Paleontol. 15, 672 (1995).
55
Gaudin T. J., Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): The craniodental evidence. Zool. J. Linn. Soc. 140, 255 (2004).
56
Gaudin T. J., Branham D. G., The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. J. Mamm. Evol. 5, 237 (1998).
57
T. J. Gaudin, J. R. Wible, in Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles, M. T. Carrano, T. Gaudin, R. W. Blob, J. R. Wible, Eds. (Univ. of Chicago Press, Chicago, 2006), pp. xx–xxx.
58
Gaudin T. J., Wible J. R., The entotympanic of pangolins and the phylogeny of the Pholidota (Mammalia). J. Mamm. Evol. 6, 39 (1999).
59
Giannini N. P., Simmons N. B., Conflict and congruence in a combined DNAmorphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). Cladistics 21, 411 (2005).
60
Giannini N. P., Simmons N. B., The chiropteran premaxilla: A reanalysis of morphological variation and its phylogenetic interpretation. Am. Mus. Novit. 2007 (3585), 1 (2007).
61
Giannini N. P., Simmons N. B., Element homology and the evolution of dental formulae in megachiropteran bats (Mammalia: Chiroptera: Pteropodidae). Am. Mus. Novit. 2007 (3559), 1 (2007).
62
Giannini N. P., Wible J. R., Simmons N. B., On the cranial osteology of Chiroptera. I. Pteropus (Megachiroptera, Pteropodidae). Bull. Am. Mus. Nat. Hist. 295, 1 (2006).
63
Gunnell G. F., Simmons N. B., Fossil evidence and the origin of bats. J. Mamm. Evol. 12, 209 (2005).
64
Simmons N. B., Conway T. M., Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bull. Am. Mus. Nat. Hist. 258, 1 (2001).
65
Wetterer A. L., Rockman M. V., Simmons N. B., Phylogeny of phyllostomid bats (Mammalia: Chiroptera): Data from diverse morphological systems, sex chromosomes, and restriction sites. Bull. Am. Mus. Nat. Hist. 248, 1 (2000).
66
Simmons N. B., Geisler J. H., Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235, 1 (1998).
67
Marivaux L., Vianey-Liaud M., Jaeger J.-J., High-level phylogeny of early Tertiary rodents: Dental evidence. Zool. J. Linn. Soc. 142, 105 (2004).
68
Geisler J. H., Uhen M. D., Morphological support for a close relationship between hippos and whales. J. Vertebr. Paleontol. 23, 991 (2003).
69
O'Leary M. A., Gatesy J., Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): Combined analysis including fossils. Cladistics 24, 397 (2008).
70
Spaulding M., O'Leary M. A., Gatesy J., Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4, e7062 (2009).
71
Seiffert E. R., A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol. Biol. 7, 224 (2007).
72
Seiffert E. R., et al., Basal anthropoids from Egypt and the antiquity of Africa's higher primate radiation. Science 310, 300 (2005).
73
Bloch J. I., Silcox M. T., Boyer D. M., Sargis E. J., New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc. Natl. Acad. Sci. U.S.A. 104, 1159 (2007).
74
M. T. Silcox, Ph.D. thesis, Johns Hopkins Univ. School of Medicine (2001).
75
Ni X., Wang Y., Hu Y., Li C., A euprimate skull from the early Eocene of China. Nature 427, 65 (2004).
76
Berta A., Wyss A. R., Pinniped phylogeny. Proc. San Diego Soc. Nat. Hist. 29, 33 (1994).
77
Salles L. O., Felid phylogenetics: Extant taxa and skull morphology (Felidae, Aeluroidea). Am. Mus. Novit. 1992 (3047), 1 (1992).
78
Wang X., Tedford R. H., Taylor B. E., Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 243, 1 (1999).
79
Wesley-Hunt G. D., Flynn J. J., Phylogeny of the Carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of 'Miacoidea' relative to Carnivora. J. Syst. Palaeontology 3, 1 (2005).
80
Wolsan M., Phylogeny and classification of early European Mustelida (Mammalia, Carnivora). Acta Theriol. (Warszaw) 38, 345 (1993).
81
Holbrook L. T., The phylogeny and classification of tapiromorph perissodactyls (Mammalia). Cladistics 15, 331 (1999).
82
J. I. Johnson, J. A. W. Kirsch, in Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, Ed. (Plenum Press, New York, 1993), pp. 293–331.
83
Johnson J. I., Kirsch J. A. W., Reep R. L., Switzer R. C., Phylogeny through brain traits: more characters for the analysis of mammalian evolution. Brain Behav. Evol. 43, 319 (1994).
84
Johnson J. I., Kirsch J. A. W., Switzer R. C., Phylogeny through brain traits: fifteen characters which adumbrate mammalian genealogy. Brain Behav. Evol. 20, 72 (1982).
85
Johnson J. I., Switzer R. C., Kirsch J. A. W., Phylogeny through brain traits: the distribution of categorizing characters in contemporary mammals. Brain Behav. Evol. 20, 97 (1982).
86
Rowe T., Definition and diagnosis in the phylogenetic system. Syst. Zool. 36, 208 (1987).
87
Madsen O., et al., Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610 (2001).
88
Murphy W. J., et al., Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348 (2001).
89
Alroy J., New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26, 707 (2000).
90
J. J. Flynn, C. C. Swisher III, in Geochronology, Time Scales, and Global Stratigraphic Correlation, W. A. Berggren, D. V. Kent, M.-P. Aubry, J. Hardenbol, Eds. (Special publ. no. 54, Society for Sedimentary Geology, Tulsa, OK, 1995), pp. 317–333.
91
H. P. Luterbacher et al., in A Geologic Time Scale 2004, F. M. Gradstein, J. G. Ogg, A. G. Smith, Eds. (Cambridge Univ. Press, Cambridge, 2004), pp. 384–408.
92
Ting S.-Y., et al., Asian early Paleogene chronology and mammalian faunal turnover events. Vertebrat. Palasiatic. 49, 1 (2011).
93
Gheerbrant E., et al., A new large mammal from the Ypresian of Morocco: Evidence of surprising diversity of early proboscideans. Acta Palaeontol. Pol. 47, 493 (2002).
94
J. A. Long, M. Archer, T. F. Flannery, S. Hand, Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution (Univ. of New South Wales Press, Sydney, and Johns Hopkins Univ. Press, Baltimore, 2002).
95
Seiffert E. R., Simons E. L., Ryan T. M., Bown T. M., Attia Y. S., New remains of Eocene and Oligocene Afrosoricida (Afrotheria) from Egypt, with implications for the origin(s) of afrosoricid zalambdodonty. J. Vertebr. Paleontol. 27, 963 (2007).
96
Tabuce R., et al., Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade. Proc. Biol. Sci. 274, 1159 (2007).
97
Strong E. E., Lipscomb D., Character coding and inapplicable data. Cladistics 15, 363 (1999).
98
J. S. Farris, in Advances in Cladistics, N. I. Platnick, V. A. Funk, Eds. (Columbia Univ. Press, New York, 1983), vol. 2, pp. 1–36.
99
Lewis P. O., A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913 (2001).
100
Wingender E., Compilation of transcription regulating proteins. Nucleic Acids Res. 16, 1879 (1988).
101
W. P. Maddison, D. R. Maddison, MacClade: Analysis of Phylogeny and Character Evolution, ver. 3.04. (Sinauer Associates, Sunderland, MA, 1992).
102
Thompson J. D., Higgins D. G., Gibson T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673 (1994).
103
Gouy M., Guindon S., Gascuel O., SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221 (2010).
104
Lanfear R., Calcott B., Ho S. Y. W., Guindon S., Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695 (2012).
105
Z. Yang, Computational Molecular Evolution (Oxford Univ. Press, Oxford, 2006).
106
Darriba D., Taboada G. L., Doallo R., Posada D., ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164 (2011).
107
Felsenstein J., Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401 (1978).
108
Siddall M., Success of parsimony in the four-taxon case: Long-branch repulsion by likelihood in the Farris Zone. Cladistics 14, 209 (1998).
109
D. L. Swofford, PAUP* Phylogenetic Analysis Using Parsimony (* and Other Methods), 4.0b10a (Sinauer Associates, Sunderland, MA, 2003).
110
Goloboff P. A., Farris J. S., Nixon K., TNT, a free program for phylogenetic analysis. Version 1.1. Cladistics 24, 774 (2008).
111
Stamatakis A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688 (2006).
112
Stamatakis A., Hoover P., Rougemont J., A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758 (2008).
113
M. A. Miller, W. Pfeiffer, T. Schwartz, Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, 14 November 2010,1 (2010), pp. 1–8.
114
Wilgenbusch J. C., Warren D. L., Swofford D. L., AWTY: A System for Graphical Exploration of MCMC Convergence in Bayesian Phylogenetic Inference. Bioinformatics 24, 581 (2004).
115
A. Rambaut, A. J. Drummond, Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer. (2007).
116
Bremer K., Branch support and tree stability. Cladistics 10, 295 (1994).
117
Baker R. H., DeSalle R., Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst. Biol. 46, 654 (1997).
118
T. Eriksson, AutoDecay ver 4.0 [program distributed by the author] (Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, 1999).
119
M. D. Sorenson, E. A. Franzosa, TreeRot, version 3 (Boston Univ., Boston, MA, 2007).
120
Novacek M. J., A review of Paleocene and Eocene Leptictidae (Eutheria: Mammalia) from North America. PaleoBios 24, 1 (1977).
121
Z. Kielan-Jaworoska, R. L. Cifelli, Z.-X. Luo, Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, New York, 2004).
122
Archibald J. D., Zhang Y., Harper T., Cifelli R. L., Protungulatum, confirmed Cretaceous occurrence of an otherwise Paleocene eutherian (Placental?) Mammal. J. Mamm. Evol. 18, 153 (2011).
123
Springer M. S., Murphy W. J., Eizirik E., O'Brien S. J., Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100, 1056 (2003).
124
Silcox M. T., Bloch J. I., Boyer D. M., Houde P., Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals. Zool. J. Linn. Soc. 160, 773 (2010).
125
P. D. Gingerich, B. H. Smith, in Size and Scaling in Primates, W. L. Jungers, Ed. (Plenum, New York, 1984), pp. 257–272.
126
K. C. Nixon, Q. D. Wheeler, in Extinction and Phylogeny, M. J. Novacek, Q. D. Wheeler, Eds. (Columbia Univ. Press, New York, 1992), pp. 119–143.
127
M. C. McKenna, S. K. Bell, Classification of Mammals Above the Species Level (Columbia Univ. Press, New York, 1997).
128
Gaudin T. J., Wible J. R., Hopson J. A., Turnbull W. D., Reexamination of the morphological evidence for the Cohort Epitheria (Mammalia, Eutheria). J. Mamm. Evol. 3, 31 (1996).
129
Rougier G. W., Wible J. R., Novacek M. J., Implications of Deltatheridium specimens for early marsupial history. Nature 396, 459 (1998).
130
P. C. Sereno, in Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds and Reptiles, M. T. Carrano, T. J. Gaudin, R. W. Blob, J. R. Wible, Eds. (2006), pp. 315–366.
131
Novacek M. J., et al., Epipubic bones in eutherian mammals from the late Cretaceous of Mongolia. Nature 389, 483 (1997).
132
K. D. Rose, R. J. Emry, in Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993).
133
L. M. Witmer, in Functional Morphology in Vertebrate Paleontology, J. J. Thomason, Ed. (Cambridge Univ. Press, New York, 1995), pp. 19–33.
134
Wible J. R., Transformations in the extracranial course of the internal carotid artery in mammalian phylogeny. J. Vertebr. Paleontol. 6, 313 (1986).
135
Lillegraven J. A., Latest Cretaceous mammals of the upper part of the Edmonton Formation of Alberta, Canada, and a review of the marsupial-placental dichotomoy in mammalian evolution. Univ. Kansas Paleont. Contrib. 50, 1 (1969).
136
Mess A., Carter A. M., Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria. J. Exp. Zool. B Mol. Dev. Evol. 306, 140 (2006).
137
Elliot M. G., Crespi B. J., Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30, 949 (2009).
138
T. J. Gaudin, H. G. McDonald, in Biology of the Xenarthra, J. Loughry, S. Vizcaino, Eds. (Univ. of Florida Press, Gainesville, 2008), pp. 24–36.
139
Patterson B., Segall W., Turnbull W. D., Gaudin T. J., The ear region in xenarthrans (= Edentata, Mammalia). Part II. Sloths, Anteaters, Palaeanodonts, and a Miscellany. Fieldiana Geol. 24, 1 (1992).
140
F. Delsuc, E. J. P. Douzery, in Biology of the Xenarthra, J. Loughry, S. Vizcaino, Eds. (Univ. of Florida Press, Gainesville, 2008), pp. 11–23.
141
Delsuc F., Superina M., Tilak M.-K., Douzery E. J. P., Hassanin A., Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Mol. Phylogenet. Evol. 62, 673 (2012).
142
R. D. E. MacPhee, M. J. Novacek, in Mammal Phylogeny. Placentals, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), vol. 2, pp. 13–31.
143
McDowell S. B., The Greater Antillean insectivores. Bull. Am. Mus. Nat. Hist. 115, 113 (1958).
144
Werdelin L., Nilsonne Ã…., The evolution of the scrotum and testicular descent in mammals: a phylogenetic view. J. Theor. Biol. 196, 61 (1999).
145
Asher R. J., Bennett N., Lehmann T., The new framework for understanding placental mammal evolution. Bioessays 31, 853 (2009).
146
Sánchez-Villagra M. R., Narita Y., Kuratani S., Thoracolumbar vertebral number: The first skeletal synapomorphy for afrotherian mammals. Syst. Biodivers. 5, 1 (2007).
147
T. A. Penkrot, S. P. Zack, K. D. Rose, J. I. Bloch, in Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay, E. J. Sargis, M. Dagosto, Eds. (2008), pp. 73–106.
148
Zack S. P., Penkrot T. A., Bloch J. I., Rose K. D., Affinities of 'hyopsodontids' to elephant shrews and a Holarctic origin of Afrotheria. Nature 434, 497 (2005).
149
Waddell P. J., Kishino H., Ota R., A phylogenetic foundation for comparative mammalian genomics. Genome Inform. 12, 141 (2001).
150
Asher R. J., Helgen K. M., Nomenclature and placental mammal phylogeny. BMC Evol. Biol. 10, 102 (2010).
151
Zeller U., Die Ontogenese und Morphologie der Fenestra rotunda und des Aquaeductus cochleae von Tupaia und anderen Säugern. Gegenbaurs Morphol. Jahrb. 131, 179 (1985).
152
Court N., The skull of Arsinoitherium (Mammalia, Embrithopoda) and the higher order interrelationships of ungulates. Palaeovertebrata 22, 1 (1992).
153
Court N., The periotic of Moeritherium (Mammalia, Proboscidea): Homology or homoplasy in the ear region of Tethytheria McKenna, 1975. Zool. J. Linn. Soc. 112, 13 (1994).
154
M. S. Fischer, P. Tassy, in Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), pp. 217–243.
155
Gheerbrant E., Rose K. D., Godinot M., First palaeanodont (? pholidotan) mammal from the Eocene of Europe. Acta Palaeontol. Pol. 50, 209 (2005).
156
Clemens W. A., Purgatorius, an early paromomyid primate (Mammalia). Science 184, 903 (1974).
157
Rigby J. K., Swain Quarry of the Fort Union Formation, middle Paleocene (Torrejonian), Carbon County, Wyoming: Geologic setting and mammalian fauna. Evol. Monogr. 3, 1 (1980).
158
Gingerich P. D., Dashzeveg D., Russell D. E., Dentition and systematic relationships of Altanius orlovi (Mammalia, Primates) from the early Eocene of Mongolia. Geobios 24, 637 (1991).
159
Rose K. D., MacPhee R. D. E., Alexander J. P., Skull of Early Eocene Cantius abditus (Primates:Adapiformes) and its phylogenetic implications, with a reevaluation of "Hesperolemur" actius. Am. J. Phys. Anthropol. 109, 523 (1999).
160
M. T. Silcox, J. I. Bloch, E. J. Sargis, D. M. Boyer, in The Rise of Placental Mammals, K. D. Rose, J. D. Archibald, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 127–144.
161
Goswami A., et al., A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. Proc. Natl. Acad. Sci. U.S.A. 108, 16333 (2011).
162
Kay R. F., Thorington R. W., Houde P., Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345, 342 (1990).
163
Kay R. F., Thewissen J. G. M., Yoder A. D., Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am. J. Phys. Anthropol. 89, 477 (1992).
164
Bloch J. I., Silcox M. T., New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the Plesiadapiform-Dermopteran link. Am. J. Phys. Anthropol. 116, 184 (2001).
165
Silcox M. T., New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. J. Hum. Evol. 44, 73 (2003).
166
Maiolino S., Boyer D. M., Bloch J. I., Gilbert C. C., Groenke J., Evidence for a grooming claw in a North American adapiform primate: implications for anthropoid origins. PLoS ONE 7, e29135 (2012).
167
Bloch J. I., Boyer D. M., Grasping primate origins. Science 298, 1606 (2002).
168
Kay R. F., Ross C., Williams B. A., Anthropoid origins. Science 275, 797 (1997).
169
Russell D. E., Le crâne de Plesiadapis. Bull. Soc. Geol. Fr. 4, 312 (1959).
170
Szalay F. S., Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull. Am. Mus. Nat. Hist. 140, 195 (1969).
171
Kay R. F., Cartmill M., Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea? Primates), with a description of a new genus and species. J. Hum. Evol. 6, 19 (1977).
172
Bloch J. I., Silcox M. T., Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J. Hum. Evol. 50, 1 (2006).
173
Silcox M. T., Dalmyn C. K., Bloch J. I., Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc. Natl. Acad. Sci. U.S.A. 106, 10987 (2009).
174
J. Meng, A. R. Wyss, in The Rise of Placental Mammals, K. D. Rose, J. D. Archibald, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 145–158.
175
A. R. Wyss, J. J. Flynn, in Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), vol. 2, pp. 32–52.
176
Wyss A. R., Meng J., Application of phylogenetic taxonomy to poorly resolved crown clades: A stem-modified node based definition of Rodentia. Syst. Biol. 45, 559 (1996).
177
Blanga-Kanfi S., et al., Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
178
Amrine-Madsen H., Koepfli K. P., Wayne R. K., Springer M. S., A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol. 28, 225 (2003).
179
Matthew W. D., Affinities and origin of the Antillean mammals. Geol. Soc. Am. Bull. 29, 657 (1918).
180
K. D. Rose, R. J. Emry, T. J. Gaudin, G. Storch, in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, K. D. Rose, J. D. Archibald, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 106–126.
181
Bryant H. N., Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: A case study of the phylogenetic taxonomy of the Carnivora. Syst. Biol. 45, 174 (1996).
182
Spaulding M., Flynn J. J., Phylogeny of the Carnivoramorpha: The impact of postcranial characters. J. Syst. Palaeontology 10, 653 (2012).
183
Flynn J. J., Finarelli J. A., Zehr S., Hsu J., Nedbal M. A., Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst. Biol. 54, 317 (2005).
184
Arnason U., et al., Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A. 99, 8151 (2002).
185
Simmons N. B., The case for chiropteran monophyly. Am. Mus. Novit. 1994 (3103), 1 (1994).
186
Miyamoto M. M., A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6, 373 (1996).
187
Van Den Bussche R. A., Hoofer S. R., Simmons N. B., Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. J. Mammal. 83, 40 (2002).
188
Hermsen E. J., Hendricks J. R., W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences 1. Ann. Mo. Bot. Gard. 95, 72 (2008).
189
Teeling E. C., et al., Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Natl. Acad. Sci. U.S.A. 99, 1431 (2002).
190
Teeling E. C., Madsen O., Murphy W. J., Springer M. S., O'Brien S. J., Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats. Mol. Phylogenet. Evol. 28, 308 (2003).
191
Hutcheon J. M., Kirsch J. A. W., Pettigrew J. D., Base-compositional biases and the bat problem. III. The questions of microchiropteran monophyly. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 607 (1998).
192
Teeling E. C., et al., Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188 (2000).
193
Hulva P., Horacek I., Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: Molecular evidence from cytochrome b. Acta Chiropt. 4, 107 (2002).
194
Van Den Bussche R. A., Hoofer S. R., Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J. Mammal. 85, 321 (2004).
195
Novacek M. J., Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis). Am. Mus. Novit. 1987 (2877), 1 (1987).
196
Simmons N. B., Seymour K. L., Habersetzer J., Gunnell G. F., Inferring echolocation in ancient bats. Nature 466, E8, discussion E9 (2010).
197
Veselka N., et al., A bony connection signals laryngeal echolocation in bats. Nature 463, 939 (2010).
198
D. R. Prothero, in Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), pp. 173–181.
199
Luckett W. P., Hong N., Phylogenetic relationships between the orders Artiodactyla and Cetacea: A combined assessment of morphological and molecular evidence. J. Mamm. Evol. 5, 127 (1998).
200
Luo Z., Gingerich P. D., Terrestrial Mesonychia to aquatic Cetacea: Transformation of the basicranium and evolution of hearing in whales. Univ. Mich. Pap. Paleontol. No. 31, 1 (1999).
201
O'Leary M. A., Geisler J. H., The position of Cetacea within mammalia: phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48, 455 (1999).
202
Wang Y., et al., Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Science China Earth Sci. 53, 1918 (2010).
203. N. J. Czaplewski, G. S. G. S. Morgan, in Evolutionary History of Bats: Fossils, Molecules, and Morphology, G. F. Gunnell, N. B. Simmons, Eds. (Cambridge Univ. Press, Cambridge, 2012), pp. 162–209.
204
Lucas S. G., Luo Z.-X., Adelobasileus from the upper Triassic of west Texas: The oldest mammal. J. Vertebr. Paleontol. 13, 309 (1993).
205
Freeman E. F., A Middle Jurassic mammal bed from Oxfordshire. Palaeontology (Oxford) 22, 135 (1979).
206
J. Long, M. Archer, T. Flannery, S. Hand, Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution (Johns Hopkins Univ. Press, Baltimore, 2002), pp. 1–244.
207
Griffiths M., Wells R. T., Barrie D. J., Observations on the skulls of fossil and extant echidnas (Monotremata: Tachyglossidae). Aust. Mammal. 14, 87 (1991).
208
Luo Z.-X., Kielan-Jaworowska Z., Cifelli R. L., In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Pol. 47, 1 (2002).
209
Gelfo J. N., Goin F. J., Woodburne M. O., De Muizon C., Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology (Oxford) 52, 251 (2009).
210
Clemens W. A., Early Paleocene (Puercan) peradectid marsupials from northeastern Montana, North American Western Interior. Palaeontogr. Abt. A Palaeozool. Stratigr. 277, 19 (2006).
211
Horovitz I., et al., The anatomy of Herpetotherium cf. fugax Cope,1873,a metatherian from the Oligocene of North America. Palaeontogr. Abt. A 284, 109 (2008).
212
Marshall L. G., Sempere T., Butler R. F., Chronostratigraphy of the mammalbearing Paleocene of South America. J. S. Am. Earth Sci. 10, 49 (1997).
213
Wible J. R., Novacek M. J., Rougier G. W., New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bull. Am. Mus. Nat. Hist. 281, 1 (2004).
214
B. Kurten, E. Anderson, Pleistocene Mammals of North America (Columbia Univ. Press, New York, 1980), pp. ix–vii, 1–442.
215
Bergqvist L. P., Abrantes É. A. L., Avilla L. D. S.The Xenarthra, (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26, 323 (2004).
216
Bargo S. M., Vizcaino S. F., Kay R. F., Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. J. Vertebr. Paleontol. 29, 870 (2009).
217
McKenna M. C., Wyss A. R., Flynn J. J., Paleogene pseudoglyptodont xenarthrans from Central Chile and Argentine Patagonia. Am. Mus. Novit. 2006 (3536), 1 (2006).
218
H. G. McDonald, S. F. Vizcaino, M. S. Bargo, in The Biology of the Xenarthra, S. F. Vizcaino, W. J. Loughry, Eds. (Univ. Press of Florida, Gainesville, 2008), pp. 64–78.
219
Botha J., Gaudin T. J., An early Pliocene pangolin (Mammalia; Pholidota) from Langebaanweg, South Africa. J. Vertebr. Paleontol. 27, 484 (2007).
220
Rose K. D., Lucas S. G., An early Paleocene palaeanodont (Mammalia? Pholidota) from New Mexico, and the origin of Palaeanodonta. J. Vertebr. Paleontol. 20, 139 (2000).
221
G. F. Gunnell, T. M. Bown, J. Bloch, in Evolution of Tertiary Mammals of North America, C. M. Janis, G. F. Gunnell, M. D. Uhen, Eds. (Cambridge Univ. Press, 2007), pp. 82–88.
222
D. E. Wilson, D. M. Reeder, Mammal Species of the World: A Taxonomic and Geographic Reference (Johns Hopkins Univ. Press, Baltimore, ed. 3, 2005), pp. 1, 2, and 142.
223
J. A. Ottenwalder, in Biogeography of the West Indies: Patterns and Perspectives (CRC Press, Boca Raton, ed. 2, 2001), pp. 253–329.
224
Sigé B., Crochet J. Y., Insole A., Les plus vieilles taupes. Geobios Lyon Mem. Spec. 10, 141 (1977).
225
Jepsen G. L., Stratigraphy and paleontology of the Paleocene of north-eastern Park County, Wyoming. Proc. Am. Philos. Soc. 69, 463 (1930).
226
D. E. Savage, D. E. Russell, Mammalian Paleofaunas of the World (Addison-Wesley, Reading, MA, 1983), pp. 1–432.
227
Butler P. M., Macroscelidea, Insectivora and Chiroptera from the Miocene of east Africa. Palaeovertebrata (Montpellier) 14, 118 (1984).
228
Asher R. J., Hofreiter M., Tenrec phylogeny and the noninvasive extraction of nuclear DNA. Syst. Biol. 55, 181 (2006).
229
Tabuce R., Coiffait B., Coiffait P.-E., Mahboubi M., Jaeger J.-J., A new genus of Macroscelidea (Mammalia) from the Eocene of Algeria: A possible origin for elephant-shrews. J. Vertebr. Paleontol. 21, 535 (2001).
230
Klein R. G., A provisional statement on terminal Pleistocene mammalian extinctions in the Cape biotic zone (Southern Cape Province, South Africa). Goodwin Ser. S. Afr. Archaeol. Soc. 2, 39 (1974).
231
Todd N. E., New phylogenetic analysis of the family elephantidae based on cranial-dental morphology. Anat. Rec (Hoboken) 293, 74 (2010).
232
Velez-Juarbe J., Domning D. P., Pyenson N. D., Iterative evolution of sympatric seacow (Dugongidae, Sirenia) assemblages during the past ~26 million years. PLoS ONE 7, e31294 (2012).
233
Domning D. P., Fossil Sirenia of the West Atlantic and Caribbean region. VII. Pleistocene Trichechus manatus Linnaeus, 1758. J. Vertebr. Paleontol. 25, 685 (2005).
234
Savage R. J. G., Domning D. P., Thewissen J. G. M., Fossil Sirenia of the west Atlantic and Caribbean region. 5. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. J. Vertebr. Paleontol. 14, 427 (1994).
235
Delmer C., Mahboubi M., Tabuce R., Tassy P., A new species of Moeritherium (Proboscidea, Mammalia) from the Eocene of Algeria: New perspectives on the ancestral morphotype of the genus. Palaeontology 49, 421 (2006).
236
Gheerbrant E., Paleocene emergence of elephant relatives and the rapid radiation of African ungulates. Proc. Natl. Acad. Sci. U.S.A. 106, 10717 (2009).
237
B. J. Stafford, in Mammal Species of the World: A Taxonomic and Geographic Reference D. E. Wilson, D. M. Reeder, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 110.
238
Stafford B. J., Szalay F. S., Craniodental functional morphology and taxonomy of dermopterans. J. Mammal. 81, 360 (2000).
239
Marivaux L., et al., Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): Systematic, evolutionary and palaeobiogeographic implications. Zool. Scr. 35, 395 (2006).
240
K. M. Helgen, in Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson, D. M. Reeder, Eds. (John Hopkins Univ. Press, Baltimore, 2005), vol. 1, pp. 104–109
241
Xijun N., Zhuding Q., The micromammalian fauna from the Leilao, Yuanmou hominoid locality: implications for biochronology and paleoecology. J. Hum. Evol. 42, 535 (2002).
242
Tong Y., Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vertebrata Palasiatica 26, 214 (1988).
243
Ni X., Qiu Z., Tupaiine tree shrews (Scandentia, Mammalia) from the Yuanmou Lufengpithecus locality of Yunnan, China. Swiss J. Palaeontol. 131, 51 (2012).
244
Fleagle J. G., Assefa Z., Brown F. H., Shea J. J., Paleoanthropology of the Kibish Formation, southern Ethiopia: Introduction. J. Hum. Evol. 55, 360 (2008).
245
C. Groves, in Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson, D. M. Reeder, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 111–184.
246
Zalmout I. S., et al., New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys. Nature 466, 360 (2010).
247
Jaeger J.-J., et al., New rodent assemblages from the Eocene Dur At-Talah escarpment (Sahara of central Libya): Systematic, biochronological, and palaeobiogeographical implications. Zool. J. Linn. Soc. 160, 195 (2010).
248
Kay R. F., MacFadden B. J., Madden R. H., Sandeman H., Anaya F., Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American land mammal "age". J. Vertebr. Paleontol. 18, 189 (1998).
249
Beard K. C., A new genus of Tarsiidae (Mammalia: Primates) from the middle Eocene of Shanxi Province, China, with notes on the historical biogeography of tarsiers. Bull. Carnegie Mus.Nat. Hist. 1998 (34), 260 (1998).
250
Gingerich P. D., Early Eocene Teilhardina brandti: Oldest omomyid primate from North America. Contrib. Mus. Paleontol. Univ. Mich. 28 (13), 321 (1993).
251
Rose K. D., Chester S. G. B., Dunn R. H., Boyer D. M., Bloch J. I., New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the paleocene-eocene thermal maximum. Am. J. Phys. Anthropol. 146, 281 (2011).
252
Gregory W. K., On the structure and relations of Notharctus, an American Eocene primate. Mem. Am. Mus. Nat. Hist. N. Y. N. Ser. 3, 49 (1920).
253
Gingerich P. D., Early Eocene Cantius torresi—oldest primate of modern aspect from North America. Nature 319, 319 (1986).
254
Aubry M.-P., Ouda K., Dupuis C., Berggren W. A., Van Couvering J. A., Global standard stratotype-section and point (GSSP) for the base of the Eocence series in the Dababiya section (Egypt). Episodes 30, 271 (2007).
255
Fox R. C., Scott C. S., A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. J. Paleontol. 85, 537 (2011).
256
J. D. Archibald, in Evolution of Tertiary Mammals of North America, vol. 1, Terrestrial Carnivores, Ungulates and Ungulatelike Mammals, C. M. Janis, K. M. Scott, L. L. Jacobs, Eds. (Cambridge Univ. Press, Cambridge, 1998), pp. 292–331.
257
Thewissen J. G. M., Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). Univ. Mich. Pap. Paleontol. No. 29, 1 (1990).
258
Cifelli R. L., The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am. Mus. Novit. 1983 (2772), 1 (1983).
259
Redline A. D., Revision of the Wind River faunas early Eocene of central Wyoming. Part 13. Systematics and phylogenetic pattern of early Eocene Hyopsodus (Mammalia: Condylarthra). Ann. Carnegie Mus. 66, 1 (1997).
260
Pascual R., Ortiz Jaureguizar E., Prado J. L., Land mammals: Paradigm for Cenozoic South American geobiotic evolution. Muench. Geowiss. Abh. Reihe A Geol. Palaeontol. 30, 265 (1996).
261
Gelfo J. N., The 'condylarth' Raulvaccia peligrensis (Mammalia: Didolodontidae) from the Paleocene of Patagonia, Argentina. J. Vertebr. Paleontol. 27, 651 (2007).
262
de Muizon C., Cifelli R. L., The 'condylarths' (archaic Ungulata, Mammalia) from early Palaeocene of Tiupampa (Bolivia): Implications on th origin of the South American ungulates. Geodiversitas 22, 47 (2000).
263
Gelfo J. N., Lopez G. M., Bond M., A new Xenungulata (Mammalia) from the Paleocene of Patagonia, Argentina. J. Paleontol. 82, 329 (2008).
264
J. J. Flynn, G. D. Wesley-Hunt, in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, J. D. Archibald and K. Rose, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005).
265
Spaulding M., Flynn J. J., Stucky R. K., A new basal carnivoramorphan (mammalia) from the 'Bridger B' (Black's Fork Member, Bridger Formation, Bridgerian NALMA, Middle Eocene) of Wyoming, USA. Palaeontology 53, 815 (2010).
266
X. Wang, R. H. Tedford, The Dog Family, Canidae, and Their Evolutionary History (Columbia Univ. Press, New York, 2008), pp. 1–219.
267
J. J. Flynn, in Evolution of Tertiary Mammals of North America, vol. 1, Terrestrial Carnivores, Ungulates and Ungulatelike Mammals, C. M. Janis, K. M. Scott, L. L. Jacobs, Eds. (Cambridge Univ. Press, Cambridge, 1998), pp. 110–123.
268
G. F. Gunnell, in Evolution of Tertiary Mammals of North America, vol. 1, Terrestrial Carnivores, Ungulates and Ungulatelike Mammals, C. M. Janis, K. M. Scott, L. L. Jacobs, Eds. (Cambridge Univ. Press, Cambridge, 1998), pp. 91–109.
269
López N., Martínez, Revisión sistemática y biostratigráfica de los Lagomorpha (Mammalia) del Terciario y Cuaternario de España. Mem. Mus.Paleontol. Univ. Zaragoza 3, 1 (1989).
270
Li C., Meng J., Wang Y., Dawsonolagus antiquus, a primitive lagomorph from the Eocene Arshanto Formation, Nei Mongol, China. Bull. Carnegie Mus Nat. Hist. 2007 (39), 97 (2007).
271
Meng J., et al., Gomphos elkema (Glires, Mammalia) from the Erlian Basin: Evidence for the Early Tertiary Bumbanian land mammal age in Nei-Mongol, China. Am. Mus. Novit. 2004 (3425), 1 (2004).
272
Meng J., Hu Y., Li C., The osteology of Rhombomylus (Mammalia, Glires): Implications for phylogeny and evolution of Glires. Bull. Am. Mus. Nat. Hist. 275, 1 (2003).
273
Meng J., et al., New material of Alagomyidae (Mammalia, Glires) from the late Paleocene Subeng locality, Inner Mongolia. Am. Mus. Novit. 2007 (3597), 1 (2007).
274
Dawson M. R., Beard K. C., New late Paleocene rodents (Mammalia) from Big Multi Quarry, Washakie Basin, Wyoming. Palaeovertebrata (Montpellier) 25, 301 (1996).
275
Gingerich P. D., Smith T., Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contrib. Mus. Paleontol. Univ. Mich. 31 (11), 245 (2006).
276
Li C. K., Zheng J. Y., Ting S. Y., The skull of Cocomys lingchaensis, an Early Eocene ctenodactyloid rodent of Asia. Nat. Hist. Mus. Los Angeles Cty. Sci. Ser. 1989 (33), 179 (1989).
277
Hibbard C. W., Taylor D. W., Two late Pleistocene faunas from southwestern Kansas. Contrib. Mus. Paleontol. Univ. Mich. 16 (1), 1 (1960).
278
Korth W. W., The Tertiary record of rodents in North America. Top. Geobiol. 12, 1 (1994).
279
Ostrander G. E., Correlation of the early Oligocene (Chadronian) in northwestern Nebraska. Dakoterra 2, 205 (1985).
280
S. D. Webb, in Pleistocene Mammals of Florida, S. D. Webb, Ed. (Univ. Presses of Florida, Gainesville., 1974), pp. 5–31.
281
Korth W. W., Comments on the systematics and classification of the beavers (Rodentia, Castoridae). J. Mamm. Evol. 8, 279 (2001).
282
Y. Hasegawa et al., Quaternary vertebrates from Shiriya area, Shimokita Peninsula, northeastern Japan. Memoirs of the National Science Museum (Tokyo), 17-36 (1988).
283
Rodrigues H. G., Marivaux L., Vianey-Liaud M., Phylogeny and systematic revision of Eocene Cricetidae (Rodentia, Mammalia) from Central and East Asia: On the origin of cricetid rodents. J. Zoological Syst. Evol. Res. 48, 259 (2010).
284
Lehmann T., Phylogeny and systematics of the Orycteropodidae (Mammalia, Tubulidentata). Zool. J. Linn. Soc. 155, 649 (2009).
285
Strömberg C. A. E., Evolution of hypsodonty in equids: Testing a hypothesis of adaptation. Paleobiology 32, 236 (2006).
286
MacFadden B. J., Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the New World. Bull. Am. Mus. Nat. Hist. 179, 1 (1984).
287
Hulbert R. C., MacFadden B. J., Morphological transformation and cladogenesis at the base of the adaptive radiation of Miocene hypsodont horses. Am. Mus. Novit. 1991 (3000), 1 (1991).
288
Froehlich D. J., Phylogenetic systematics of basal perissodactyls. J. Vertebr. Paleontol. 19, 140 (1999).
289
B. J. Macfadden, in Evolution of Tertiary Mammals of North America, vol. 1, Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, L. L. Jacobs, Eds. (Cambridge Univ. Press, Cambridge, 1998), pp. 537–559.
290
J. M. Theodor, J. Erfurt, G. Métais, in The Evolution of Artiodactyls, D. R. Prothero, S. E. Foss, Eds. (Johns Hopkins Univ. Press, Baltimore, 2007), pp. 32–58.
291
Davis S. J. M., The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7, 101 (1981).
292
Orliac M. J., Pierre-Olivier A., Ducrocq S., Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): New insights on the relationships within Suoidea. Zool. Scr. 39, 315 (2010).
293
Sudre J., Les artiodactyles de l'Eocene Moyen et Superieur d'Europe occidentale (systematique et evolution). Mem. Trav. l'Inst. Montpellier Ecole Prat. Hautes Etudes 7, 1 (1978).
294
R. S. Wells, M. D. Scott, in Encyclopedia of Marine Mammals, W. F. Perrin, B. Wuersig, J. G. M. Thewissen, Eds. (Academic Press, Amsterdam, ed. 2, 2009), pp. 249–255.
295
Geisler J. H., McGowen M. R., Yang G., Gatesy J., A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol. Biol. 11, 112 (2011).
296
Lihoreau F., et al., Anatomical revision of the genus Merycopotamus (Artiodactyla; Anthracotheriidae): Its significance for Late Miocene mammal dispersal in Asia. Palaeontology (Oxford) 50, 503 (2007).
297
Stanley H. F., Kadwell M., Wheeler J. C., Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc. Biol. Sci. 256, 1 (1994).
298
Ducroq S., The anthracotheriid genus Bothriogenys (Mammalia, Artiodactyla) in Africa and Asia during the Paleogene: Phylogenetical and paleobiographical relationship. Stuttg. Beitr. Naturkd., B 250, 1 (1997).
299
M. D. Uhen, in The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, J. G. M. Thewissen, Ed. (Plenum Press, New York, 1998), pp. 29–61.
300
Scott W. B., On some new and little known creodonts. J. Acad. Nat. Sci. Phila. 9, 155 (1888).
301
O'Leary M. A., Rose K. D., New mesonychian dentitions from the Paleocene and Eocene of the Bighorn Basin, Wyoming. Ann. Carnegie Mus. 64, 147 (1995).
302
S. E. Foss, in The Evolution of Artiodactyls, D. R. Prothero, S. E. Foss, Eds. (Johns Hopkins Univ. Press, Baltimore, 2007), pp. 120–129.
303
Gingerich P. D., Russell D. E., Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 25, 235 (1981).
304
Gingerich P. D., Haq Mu I. S., Zalmout I. H., Khan M. S., Malkani, Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293, 2239 (2001).
305
Tabuce R., Antunes M. T., Sige B., A new primitive bat from the earliest Eocene of Europe. J. Vertebr. Paleontol. 29, 627 (2009).
306
N. B. Simmons, in Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson, D. M. Reeder, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), vol. 1, pp. 312–529.
307
Ducrocq S., Jaeger J.-J., Sige B., Un megachiroptere dans l'Eocene superieur de Thailande. Incidence dans la discussion phylogenique du groupe. Neues Jahrb. Geol. Palaontol. Monatsh. 1993, 561 (1993).
308
Benammi M., Chaimanee Y., Jaeger J.-J., Suteethorn V., Ducrocq S., Eocene Krabi basin (southern Thailand): Paleontology and magnetostratigraphy. Geol. Soc. Am. Bull. 113, 265 (2001).
309
Hulva P., Horácek I., Benda P., Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evol. Biol. 7, 165 (2007).
310
Storch G., Sige B., Habersetzer J., Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the Middle Eocene of Messel (Mammalia, Chiroptera). Palaontol. Z. 76, 189 (2002).
311
Sigé B., et al., Les chiropteres de Taqah (Oligocene inferieur, Sultanat d'Oman). Premier inventaire systematique. Muench. Geowiss. Abh. Reihe A Geol. Palaeontol. 26, 35 (1994).
312
Martin R. A., Synopsis of late Pliocene and Pleistocene bats of North America and the Antilles. Am. Midl. Nat. 87, 326 (1972).
313
G. S. Morgan, in Biogeography of the West Indies, Past, Present, and Future, C. A. Woods, Ed. (Sandhill Crane Press, Gainesville, Florida, 1989), pp. 685–740.
314
Gradstein F. M., Ogg J. G., van Kranendonk M., On the geologic time scale 2008. Newsl. Stratigr. 43, 5 (2008).
315
T. Rowe, in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, M. C. McKenna, Eds. (Springer, New York, 1993), pp. 129–145.
316
Flynn J. J., Wyss A. R., New marsupials from the Eocence-Oligocene transition of the Andean Main Range, Chile. J. Vertebr. Paleontol. 19, 533 (1999).
317
Springer M. S., Stanhope M. J., Madsen O., de Jong W. W., Molecules consolidate the placental mammal tree. Trends Ecol. Evol. 19, 430 (2004).
318
M. T. Silcox, in Primate Origins: Adaptations and Evolution, M. J. Ravosa, M. Dagosto, Eds. (Plenum, New York, 2007), pp. 143–178.
319
J. J. Flynn, G. D. Wesley-Hunt, in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, K. D. Rose, J. D. Archibald, Eds. (Johns Hopkins Univ. Press, Baltimore, 2005), pp. 175–198.
320
J. J. Flynn, J. A. Finarelli, M. Spaulding, in Carnivoran Evolution: New Views on Phylogeny, Form, and Function, A. Goswami, A. Friscia, Eds. (Cambridge Univ. Press, Cambridge, 2010), pp. 25–63.

Information & Authors

Information

Published In

Science
Volume 339 • Issue 6120 • 8 February 2013
Pages: 662 - 667
PubMed: 23393258

History

Received: 23 August 2012
Accepted: 12 December 2012

Permissions

Request permissions for this article.

Acknowledgments

We thank R. Asher, L. Jurgielewicz, M. Marotta, S. Parent, E. Seiffert, and E. Woodruff for data collection; K. Johnson for paleobotanical contributions; K. de Queiroz and A. Turner for discussion; and S. Kaufman, K. Alphonse, M. Passarotti, and D. Ferguson for software development. Artist C. Buell drew Fig. 2A and L. Betti-Nash all other figures. Research assistance came from P. Bowden, D. Malinzak, S. B. McLaren, N. Milbrodt, R. Morgan, and J. Morgan Scott. Data are archived in the supplementary materials and in Project 773 of the public repository MorphoBank.org. Supported by NSF grants 0743309 and 0827993, and by 0629959, 0629836, and 0629811 from the "Assembling the Tree of Life" program of the Divisions of Environmental Biology and Earth Sciences.

Authors

Affiliations

Maureen A. O'Leary
Department of Anatomical Sciences, School of Medicine, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794–8081, USA.
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Present address: Department of Vertebrates, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 20940-040, Brazil.
Jonathan I. Bloch
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611–7800, USA.
John J. Flynn
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Timothy J. Gaudin
Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403–2598, USA.
Andres Giallombardo
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Norberto P. Giannini
Department of Mammalogy, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Present address: Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Código Postal 4000, Tucumán, Argentina.
Suzann L. Goldberg
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Brian P. Kraatz
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Western University of Health Sciences, Department of Anatomy, Pomona, CA 91766–1854, USA.
Zhe-Xi Luo
Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213–4080, USA.
Present address: Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.
Jin Meng
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Xijun Ni
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Present address: Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-Zhi-Men-Wai Street, Beijing, 100044, P. R. China.
Michael J. Novacek
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Fernando A. Perini
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Present address: Department of Zoology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.
Zachary S. Randall
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611–7800, USA.
Guillermo W. Rougier
Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
Eric J. Sargis
Department of Anthropology, Yale University, Post Office Box 208277, New Haven, CT 06520–8277, USA.
Mary T. Silcox
Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
Nancy B. Simmons
Department of Mammalogy, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Michelle Spaulding
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA.
Paúl M. Velazco
Department of Mammalogy, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Marcelo Weksler
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.
Present address: Department of Vertebrates, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 20940-040, Brazil.
John R. Wible
Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA.
Andrea L. Cirranello
Department of Anatomical Sciences, School of Medicine, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794–8081, USA.
Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024–5192, USA.

Notes

¶To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Information & Authors
Published In
issue cover image
Science
Volume 339|Issue 6120
8 February 2013
Submission history
Received:23 August 2012
Accepted:12 December 2012
Published in print:8 February 2013
Metrics & Citations
Article Usage
Altmetrics
Export citation

Select the format you want to export the citation of this publication.

Cited by
  1. Pathway modeling and simulation analysis, Bioinformatics, (409-423), (2022).https://doi.org/10.1016/B978-0-323-89775-4.00007-9
    Crossref
  2. The Origin and the Radiation of Early Mammals: A Southern Perspective, Mesozoic Mammals from South America and Their Forerunners, (127-161), (2021).https://doi.org/10.1007/978-3-030-63862-7_3
    Crossref
  3. Patterns and tempo of PCSK9 pseudogenizations suggest an ancient divergence in mammalian cholesterol homeostasis mechanisms, Genetica, 149, 1, (1-19), (2021).https://doi.org/10.1007/s10709-021-00113-x
    Crossref
  4. The South American Mesozoic Record and Early Evolution of Mammals, Mesozoic Mammals from South America and Their Forerunners, (345-388), (2021).https://doi.org/10.1007/978-3-030-63862-7_10
    Crossref
  5. Orientation Preference Maps in Microcebus murinus Reveal Size-Invariant Design Principles in Primate Visual Cortex, Current Biology, 31, 4, (733-741.e7), (2021).https://doi.org/10.1016/j.cub.2020.11.027
    Crossref
  6. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction, Proceedings of the Royal Society B: Biological Sciences, 288, 1950, (20210393), (2021).https://doi.org/10.1098/rspb.2021.0393
    Crossref
  7. The steroid metabolome of pregnancy, insights into the maintenance of pregnancy and evolution of reproductive traits, Molecular and Cellular Endocrinology, 528, (111241), (2021).https://doi.org/10.1016/j.mce.2021.111241
    Crossref
  8. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation, Annual Review of Animal Biosciences, 9, 1, (29-53), (2021).https://doi.org/10.1146/annurev-animal-061220-023149
    Crossref
  9. Postcranial anatomy of the extinct terrestrial sloth Simomylodon uccasamamensis (Xenarthra, Mylodontidae) from the Pliocene of the Bolivian Altiplano, and its evolutionary implications , Papers in Palaeontology, 7, 3, (1557-1583), (2021).https://doi.org/10.1002/spp2.1353
    Crossref
  10. Fossoriality and evolutionary development in two Cretaceous mammaliamorphs, Nature, 592, 7855, (577-582), (2021).https://doi.org/10.1038/s41586-021-03433-2
    Crossref
  11. See more
Loading...
Share
Share article link

Share on social media
Get Access
Log in to view the full text

AAAS Log in

AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions, as well as limited access for those who register for access.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View Options
Tables
References

(0)eLetters

No eLetters have been published for this article yet.

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.