The Wayback Machine - https://web.archive.org/web/20220514004236/https://en.cppreference.com/w/cpp/numeric/lerp
Namespaces
Variants
Views
Actions

std::lerp

From cppreference.com
< cpp‎ | numeric
Defined in header <cmath>
constexpr float       lerp( float a, float b, float t ) noexcept;
(1) (since C++20)
constexpr double      lerp( double a, double b, double t ) noexcept;
(2) (since C++20)
constexpr long double lerp( long double a, long double b, long double t ) noexcept;
(3) (since C++20)
constexpr Promoted    lerp( Arithmetic1 a, Arithmetic2 b, Arithmetic3 t ) noexcept;
(4) (since C++20)
1-3) Computes the linear interpolation between a and b, if the parameter t is inside [0, 1] (the linear extrapolation otherwise), i.e. the result of a+t(b−a) with accounting for floating-point calculation imprecision.
4) A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by 1-3). If any argument has integral type, it is cast to double. If any other argument is long double, then the return type is long double, otherwise it is double.

Contents

[edit] Parameters

a, b, t - values of floating-point or integral types

[edit] Return value

a+t(b−a)

When isfinite(a) and isfinite(b), the following properties are guaranteed:

  • If t == 0, the result is equal to a.
  • If t == 1, the result is equal to b.
  • If t >= 0 && t <= 1, the result is finite.
  • If isfinite(t) && a == b, the result is equal to a.
  • If isfinite(t) || (b - a != 0 and isinf(t)), the result is not NaN.

Let CMP(x,y) be 1 if x > y, -1 if x < y, and 0 otherwise. For any t1 and t2, the product of CMP(lerp(a, b, t2), lerp(a, b, t1)), CMP(t2, t1), and CMP(b, a) is non-negative. (That is, lerp is monotonic.)

[edit] Notes

lerp is available in the global namespace when <math.h> is included, even if it is not a part of C.

Feature testing macro: __cpp_lib_interpolate

[edit] Example

#include <cmath>
#include <cassert>
#include <iostream>
 
float naive_lerp(float a, float b, float t)
{
    return a + t * (b - a);
}
 
int main()
{
    std::cout << std::boolalpha;
 
    const float a = 1e8f, b = 1.0f;
    const float midpoint = std::lerp(a, b, 0.5f);
 
    std::cout << "a = " << a << ", " << "b = " << b << '\n'
              << "midpoint = " << midpoint << '\n';
 
    std::cout << "std::lerp is exact: "
              << (a == std::lerp(a, b, 0.0f)) << ' '
              << (b == std::lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "naive_lerp is exact: "
              << (a == naive_lerp(a, b, 0.0f)) << ' '
              << (b == naive_lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "std::lerp(a, b, 1.0f) = " << std::lerp(a, b, 1.0f) << '\n'
              << "naive_lerp(a, b, 1.0f) = " << naive_lerp(a, b, 1.0f) << '\n';
 
    assert(not std::isnan(std::lerp(a, b, INFINITY))); // lerp here can be -inf
 
    std::cout << "Extrapolation demo, given std::lerp(5, 10, t):\n";
 
    for (auto t{-2.0}; t <= 2.0; t += 0.5)
        std::cout << std::lerp(5.0, 10.0, t) << ' ';
 
    std::cout << '\n';
}

Possible output:

a = 1e+08, b = 1
midpoint = 5e+07
std::lerp is exact?: true true
naive_lerp is exact?: true false
std::lerp(a, b, 1.0f) = 1
naive_lerp(a, b, 1.0f) = 0
Extrapolation demo, given std::lerp(5, 10, t):
-5 -2.5 0 2.5 5 7.5 10 12.5 15

[edit] See also

(C++20)
midpoint between two numbers or pointers
(function template) [edit]