Inefficient and unlit natural gas flares both emit large quantities of methane
Fueling global warming
Flaring, the process of burning natural gas escaping from oil and gas wells, is primarily intended to combust the powerful greenhouse gas methane to minimize its emission. But is flaring as effective as is claimed? Plant et al. used airborne sampling to measure flare efficiency in three major gas production regions in the United States and found that methane emissions are five times higher than currently thought (see the Perspective by Duren and Gordon). Therefore, flaring is often not as efficient as presumedâor methane plumes simply are not combusted at all. âHJS
Abstract
Flaring is widely used by the fossil fuel industry to dispose of natural gas. Industry and governments generally assume that flares remain lit and destroy methane, the predominant component of natural gas, with 98% efficiency. Neither assumption, however, is based on real-world observations. We calculate flare efficiency using airborne sampling across three basins responsible for >80% of US flaring and combine these observations with unlit flare prevalence surveys. We find that both unlit flares and inefficient combustion contribute comparably to ineffective methane destruction, with flares effectively destroying only 91.1% (90.2, 91.8; 95% confidence interval) of methane. This represents a fivefold increase in methane emissions above present assumptions and constitutes 4 to 10% of total US oil and gas methane emissions, highlighting a previously underappreciated methane source and mitigation opportunity.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
References and Notes
1
U.S. Environmental Protection Agency, AP 42, Fifth Edition, Volume I Chapter 13: Miscellaneous Sources, Section 13.5 Industrial Flares (2018); https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-13-miscellaneous-0.
2
The World Bank, Global Gas Flaring Reduction Partnership (GGFR): What is Gas Flaring?; https://www.worldbank.org/en/programs/gasflaringreduction/gas-flaring-explained.
3
G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, âAnthropogenic and natural radiative forcingâ in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stockeret al., Eds. (Cambridge Univ. Press, 2013), chap. 8.
4
M. J. Prather, C. D. Holmes, J. Hsu, Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett.39, 2012GL051440 (2012).
5
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, G. Zeng, Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys.13, 2563â2587 (2013).
6
J. J. West, A. M. Fiore, L. W. Horowitz, D. L. Mauzerall, Global health benefits of mitigating ozone pollution with methane emission controls. Proc. Natl. Acad. Sci. U.S.A.103, 3988â3993 (2006).
7
A. M. Fiore, D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes, C. Jang, Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett.29, 25-1â25-4 (2002).
8
C. D. Elvidge, M. Zhizhin, F.-C. Hsu, K. E. Baugh, VIIRS Nightfire: Satellite Pyrometry at Night. Remote Sens.5, 4423â4449 (2013).
9
C. D. Elvidge, M. Zhizhin, K. Baugh, F. C. Hsu, T. Ghosh, Extending nighttime combustion source detection limits with short wavelength VIIRS data. Remote Sens.11, 395 (2019).
10
Earth Observation Group, VIIRS Nightfire; https://eogdata.mines.edu/products/vnf/.
11
C. D. Elvidge, M. Zhizhin, K. Baugh, F.-C. Hsu, T. Ghosh, Methods for global survey of natural gas flaring from Visible Infrared Imaging Radiometer Suite Data. Energies9, 14 (2016).
12
Earth Observation Group, Global Gas Flaring Observed from Space; https://eogdata.mines.edu/download_global_flare.html.
13
SkyTruth, Flaring Maps and Data (2021); https://skytruth.org/flaring/.
14
Global Gas Flaring Reduction Partnership, The World Bank, âGlobal Gas Flaring Tracker Report: April 2021â (2021); https://thedocs.worldbank.org/en/doc/1f7221545bf1b7c89b850dd85cb409b0-0400072021/original/WB-GGFR-Report-Design-05a.pdf.
15
R. A. Alvarez, D. Zavala-Araiza, D. R. Lyon, D. T. Allen, Z. R. Barkley, A. R. Brandt, K. J. Davis, S. C. Herndon, D. J. Jacob, A. Karion, E. A. Kort, B. K. Lamb, T. Lauvaux, J. D. Maasakkers, A. J. Marchese, M. Omara, S. W. Pacala, J. Peischl, A. L. Robinson, P. B. Shepson, C. Sweeney, A. Townsend-Small, S. C. Wofsy, S. P. Hamburg, Assessment of methane emissions from the U.S. oil and gas supply chain. Science361, 186â188 (2018).
16
U.S. EPA Office of Air Quality Planning and Standards (OAQPS), âParameters for Properly Designed and Operated Flares: Report for Flare Review Panel April 2012â (2012); https://www3.epa.gov/airtoxics/flare/2012flaretechreport.pdf.
17
J. H. Pohl, B. A. Tichenor, J. Lee, R. Payne, Combustion efficiency of flares. Combust. Sci. Technol.50, 217â231 (1986).
18
M. McDaniel, Flare Efficiency Study (EPA/600/2-83/052, U.S. Environmental Protection Agency, 1983).
19
W. B. Knighton, S. C. Herndon, J. F. Franklin, E. C. Wood, J. Wormhoudt, W. Brooks, E. C. Fortner, D. T. Allen, Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy. Ind. Eng. Chem. Res.51, 12674â12684 (2012).
20
V. M. Torres, S. Herndon, Z. Kodesh, D. T. Allen, Industrial flare performance at low flow conditions. 1. Study overview. Ind. Eng. Chem. Res.51, 12559â12568 (2012).
21
V. M. Torres, S. Herndon, D. T. Allen, Industrial flare performance at low flow conditions. 2. Steam- and air-assisted flares. Ind. Eng. Chem. Res.51, 12569â12576 (2012).
22
V. M. Torres, S. Herndon, E. Wood, F. M. Al-Fadhli, D. T. Allen, Emissions of nitrogen oxides from flares operating at low flow conditions. Ind. Eng. Chem. Res.51, 12600â12605 (2012).
23
M. R. Johnson, L. W. Kostiuk, A parametric model for the efficiency of a flare in crosswind. Proc. Combust. Inst.29, 1943â1950 (2002).
24
M. R. Johnson, L. W. Kostiuk, Efficiencies of low-momentum jet diffusion flames in crosswinds. Combust. Flame123, 189â200 (2000).
25
S. P. Seymour, M. R. Johnson, Species correlation measurements in turbulent flare plumes: Considerations for field measurements. Atmos. Meas. Tech.14, 5179â5197 (2021).
26
J. P. Schwarz, J. S. Holloway, J. M. Katich, S. McKeen, E. A. Kort, M. L. Smith, T. B. Ryerson, C. Sweeney, J. Peischl, Black carbon emissions from the Bakken oil and gas development region. Environ. Sci. Technol. Lett.2, 281â285 (2015).
27
C. L. Weyant, P. B. Shepson, R. Subramanian, M. O. L. Cambaliza, A. Heimburger, D. McCabe, E. Baum, B. H. Stirm, T. C. Bond, Black carbon emissions from associated natural gas flaring. Environ. Sci. Technol.50, 2075â2081 (2016).
28
R. Haus, R. Wilkinson, J. Heland, K. Schäfer, Remote sensing of gas emissions on natural gas flares. Pure Appl. Opt.7, 853â862 (1998).
29
D. R. Caulton, P. B. Shepson, M. O. L. Cambaliza, D. McCabe, E. Baum, B. H. Stirm, Methane destruction efficiency of natural gas flares associated with shale formation wells. Environ. Sci. Technol.48, 9548â9554 (2014).
30
A. Gvakharia, E. A. Kort, A. Brandt, J. Peischl, T. B. Ryerson, J. P. Schwarz, M. L. Smith, C. Sweeney, Methane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, North Dakota. Environ. Sci. Technol.51, 5317â5325 (2017).
31
Environmental Defense Fund, Permian Methane Analysis Project (PermianMAP); https://www.permianmap.org.
32
Environmental Defense Fund, Flaring Aerial Survey Results; https://www.permianmap.org/flaring-emissions/.
33
D. R. Lyon, B. Hmiel, R. Gautam, M. Omara, K. A. Roberts, Z. R. Barkley, K. J. Davis, N. L. Miles, V. C. Monteiro, S. J. Richardson, S. Conley, M. L. Smith, D. J. Jacob, L. Shen, D. J. Varon, A. Deng, X. Rudelis, N. Sharma, K. T. Story, A. R. Brandt, M. Kang, E. A. Kort, A. J. Marchese, S. P. Hamburg, Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic. Atmos. Chem. Phys.21, 6605â6626 (2021).
34
Y. Zhang, R. Gautam, S. Pandey, M. Omara, J. D. Maasakkers, P. Sadavarte, D. Lyon, H. Nesser, M. P. Sulprizio, D. J. Varon, R. Zhang, S. Houweling, D. Zavala-Araiza, R. A. Alvarez, A. Lorente, S. P. Hamburg, I. Aben, D. J. Jacob, Quantifying methane emissions from the largest oil-producing basin in the United States from space. Sci. Adv.6, eaaz5120 (2020).
35
D. H. Cusworth, R. M. Duren, A. K. Thorpe, W. Olson-Duvall, J. Heckler, J. W. Chapman, M. L. Eastwood, M. C. Helmlinger, R. O. Green, G. P. Asner, P. E. Dennison, C. E. Miller, Intermittency of large methane emitters in the Permian Basin. Environ. Sci. Technol. Lett.8, 567â573 (2021).
36
D. R. Tyner, M. R. Johnson, Where the methane isâinsights from novel airborne LiDAR measurements combined with ground survey data. Environ. Sci. Technol.55, 9773â9783 (2021).
37
Enverus, Drillinginfo (2021); https://www.enverus.com/.
38
E. A. Kort, C. Frankenberg, K. R. Costigan, R. Lindenmaier, M. K. Dubey, D. Wunch, Four corners: The largest US methane anomaly viewed from space. Geophys. Res. Lett.41, 6898â6903 (2014).
39
U.S. Environmental Protection Agency, Greenhouse Gas Emissions from a Typical Passenger Vehicle (2016); https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle.
40
Core Writing Team, R. K. Pachauri, L. Mayer, Eds., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2015).
41
U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990â2020 (2022); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020.
42
International Energy Agency, Flaring Emissions (2021); https://www.iea.org/reports/flaring-emissions.
43
T. Lauvaux, C. Giron, M. Mazzolini, A. dâAspremont, R. Duren, D. Cusworth, D. Shindell, P. Ciais, Global assessment of oil and gas methane ultra-emitters. Science375, 557â561 (2022).
44
M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. OâDoherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang, The Global Methane Budget 2000â2017. Earth Syst. Sci. Data12, 1561â1623 (2020).
45
E. A. Kort, G. Plant, M. L. Smith, A. R. Brandt, Y. Chen, A. M. Gorchov Negron, S. Schwietzke, D. Zavala-Araiza, Aircraft Data (2020) for Flaring & Fossil Fuels: Uncovering Emissions & Losses (F3UEL), University of Michigan Deep Blue Data (2022); https://doi.org/10.7302/1xjm-3v49.
46
E. A. Kort, G. Plant, A. R. Brandt, Y. Chen, A. M. Gorchov Negron, S. Schwietzke, M. L. Smith, D. Zavala-Araiza, Aircraft Data (2021) for Flaring & Fossil Fuels: Uncovering Emissions & Losses (F3UEL), University of Michigan Deep Blue Data (2022); https://doi.org/10.7302/6tgq-e116.
47
S. A. Conley, I. C. Faloona, D. H. Lenschow, A. Karion, C. Sweeney, A low-cost system for measuring horizontal winds from single-engine aircraft. J. Atmos. Ocean. Technol.31, 1312â1320 (2014).
48
Picarro, G2401-m Analyzer Datasheet; https://www.picarro.com/support/library/documents/g2401m_analyzer_datasheet.
49
D. J. Corbin, M. R. Johnson, Detailed expressions and methodologies for measuring flare combustion efficiency, species emission rates, and associated uncertainties. Ind. Eng. Chem. Res.53, 19359â19369 (2014).
50
U.S. Environmental Protection Agency, Greenhouse Gas Reporting Program (GHGRP) Data Sets; https://www.epa.gov/ghgreporting/data-sets.
51
B. Ripley, Support Functions and Datasets for Venables and Ripleyâs MASS; https://cran.r-project.org/web/packages/MASS/MASS.pdf.
52
P. Novack-Gottshall, S. C. Wang, Lilliefors-Corrected Kolmogorov-Smirnov Goodness-of-Fit Tests; https://cran.r-project.org/web/packages/KScorrect/KScorrect.pdf.
53
RDocumentation, stats (version 3.6.2), The R Stats Package; https://www.rdocumentation.org/packages/stats/versions/3.6.2.
54
G. W. Schade, Standardized reporting needed to improve accuracy of flaring data. Energies14, 6575 (2021).
55
K. A. Willyard, G. W. Schade, Flaring in two Texas shale areas: Comparison of bottom-up with top-down volume estimates for 2012 to 2015. Sci. Total Environ.691, 243â251 (2019).
56
A. R. Brandt, Accuracy of satellite-derived estimates of flaring volume for offshore oil and gas operations in nine countries. Environ. Res. Commun.2, 051006 (2020).
57
U.S. Energy Information Administration, Petroleum & Other Liquids: Crude Oil Production; https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm.
58
U.S. Energy Information Administration, Natural Gas: Natural Gas Gross Withdrawals; https://www.eia.gov/dnav/ng/ng_prod_sum_a_EPG0_FGW_mmcf_a.htm.
59
A. R. Brandt, T. Yeskoo, M. S. McNally, K. Vafi, S. Yeh, H. Cai, M. Q. Wang, Energy intensity and greenhouse gas emissions from tight oil production in the Bakken Formation. Energy Fuels30, 9613â9621 (2016).
60
T. Howard, T. W. Ferrara, A. Townsend-Small, Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure. J. Air Waste Manag. Assoc.65, 856â862 (2015).
(0)eLetters
eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.
Log In to Submit a ResponseNo eLetters have been published for this article yet.
Information & Authors
Information
Published In

Science
Volume 377 | Issue 6614
30 September 2022
30 September 2022
Copyright
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an article distributed under the terms of the Science Journals Default License.
Submission history
Received: 23 March 2022
Accepted: 19 August 2022
Published in print: 30 September 2022
Acknowledgments
We acknowledge T. Sullivan and P. Wliczak for piloting the airborne measurements campaigns presented here. We thank fellow F3UEL team members Ã. Adames-Corraliza for assistance with flight planning, and C. Hausman, M. Allan, and A. Stoltenberg for useful discussions throughout. We are grateful to B. Hmiel, D. Lyon, and J. Warren of the Environmental Defense Fund for their insightful discussions about their work in the Permian.
Funding: This work was supported by the Alfred P. Sloan Foundation (G-2019-12451).
Author contributions: Conceptualization: E.A.K. and G.P. Investigation: G.P., E.A.K., A.R.B., Y.C., G.F., A.M.G.N., S.S., and M.S. Writing â original draft: G.P. and E.A.K. Writing â review & editing: G.P., E.A.K., A.R.B., Y.C., A.M.G.N., M.S., and D.Z.-A.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: The airborne data presented in this work are available publicly in the University of Michigan Deep Blue Data Repository [2020 campaign (45) and 2021 campaign (46)]. Daily VIIRS data are available at https://eogdata.mines.edu/products/vnf/, and annual data are available at https://eogdata.mines.edu/download_global_flare.html.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse
Authors
Funding Information
Alfred P. Sloan Foundation: G-2019-12451
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Tackling unlit and inefficient gas flaring, Science, 377, 6614, (1486-1487), (2022)./doi/10.1126/science.ade2315
Loading...
View Options
Check Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.