Global glacier change in the 21st century: Every increase in temperature matters
Melting away
Mountain glaciers, perennial ice masses excluding the Greenland and Antarctic ice sheets, are a critical water resource for nearly two billion people and are threatened by global warming. Rounce et al. projected how those glaciers will be affected under global temperature increases of 1.5° to 4°C, finding losses of one quarter to nearly one half of their mass by 2100 (see the Perspective by Aðalgeirsdóttir and James). Their calculations suggest that glaciers will lose substantially more mass and contribute more to sea level rise than current estimates indicate. âHJS
Abstract
Glacier mass loss affects sea level rise, water resources, and natural hazards. We present global glacier projections, excluding the ice sheets, for shared socioeconomic pathways calibrated with data for each glacier. Glaciers are projected to lose 26 ± 6% (+1.5°C) to 41 ± 11% (+4°C) of their mass by 2100, relative to 2015, for global temperature change scenarios. This corresponds to 90 ± 26 to 154 ± 44 millimeters sea level equivalent and will cause 49 ± 9 to 83 ± 7% of glaciers to disappear. Mass loss is linearly related to temperature increase and thus reductions in temperature increase reduce mass loss. Based on climate pledges from the Conference of the Parties (COP26), global mean temperature is projected to increase by +2.7°C, which would lead to a sea level contribution of 115 ± 40 millimeters and cause widespread deglaciation in most mid-latitude regions by 2100.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
References and Notes
1
R. Hugonnet, R. McNabb, E. Berthier, B. Menounos, C. Nuth, L. Girod, D. Farinotti, M. Huss, I. Dussaillant, F. Brun, A. Kääb, Accelerated global glacier mass loss in the early twenty-first century. Nature592, 726â731 (2021).
2
B. Marzeion, R. Hock, B. Anderson, A. Bliss, N. Champollion, K. Fujita, M. Huss, W. W. Immerzeel, P. Kraaijenbrink, J. H. Malles, F. Maussion, V. RadiÄ, D. R. Rounce, A. Sakai, S. Shannon, R. van de Wal, H. Zekollari, Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change. Earths Futur.8, (2020).
3
W. W. Immerzeel, A. F. Lutz, M. Andrade, A. Bahl, H. Biemans, T. Bolch, S. Hyde, S. Brumby, B. J. Davies, A. C. Elmore, A. Emmer, M. Feng, A. Fernández, U. Haritashya, J. S. Kargel, M. Koppes, P. D. A. Kraaijenbrink, A. V. Kulkarni, P. A. Mayewski, S. Nepal, P. Pacheco, T. H. Painter, F. Pellicciotti, H. Rajaram, S. Rupper, A. Sinisalo, A. B. Shrestha, D. Viviroli, Y. Wada, C. Xiao, T. Yao, J. E. M. Baillie, Importance and vulnerability of the worldâs water towers. Nature577, 364â369 (2020).
4
M. Huss, R. Hock, Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang.8, 135â140 (2018).
5
S. Harrison, J. S. Kargel, C. Huggel, J. Reynolds, D. H. Shugar, R. A. Betts, A. Emmer, N. Glasser, U. K. Haritashya, J. KlimeÅ¡, L. Reinhardt, Y. Schaub, A. Wiltshire, D. Regmi, V. VilÃmek, Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere12, 1195â1209 (2018).
6
T. L. Edwards, S. Nowicki, B. Marzeion, R. Hock, H. Goelzer, H. Seroussi, N. C. Jourdain, D. A. Slater, F. E. Turner, C. J. Smith, C. M. McKenna, E. Simon, A. Abe-Ouchi, J. M. Gregory, E. Larour, W. H. Lipscomb, A. J. Payne, A. Shepherd, C. Agosta, P. Alexander, T. Albrecht, B. Anderson, X. Asay-Davis, A. Aschwanden, A. Barthel, A. Bliss, R. Calov, C. Chambers, N. Champollion, Y. Choi, R. Cullather, J. Cuzzone, C. Dumas, D. Felikson, X. Fettweis, K. Fujita, B. K. Galton-Fenzi, R. Gladstone, N. R. Golledge, R. Greve, T. Hattermann, M. J. Hoffman, A. Humbert, M. Huss, P. Huybrechts, W. Immerzeel, T. Kleiner, P. Kraaijenbrink, S. Le Clecâh, V. Lee, G. R. Leguy, C. M. Little, D. P. Lowry, J.-H. Malles, D. F. Martin, F. Maussion, M. Morlighem, J. F. OâNeill, I. Nias, F. Pattyn, T. Pelle, S. F. Price, A. Quiquet, V. RadiÄ, R. Reese, D. R. Rounce, M. Rückamp, A. Sakai, C. Shafer, N.-J. Schlegel, S. Shannon, R. S. Smith, F. Straneo, S. Sun, L. Tarasov, L. D. Trusel, J. Van Breedam, R. van de Wal, M. van den Broeke, R. Winkelmann, H. Zekollari, C. Zhao, T. Zhang, T. Zwinger, Projected land ice contributions to twenty-first-century sea level rise. Nature593, 74â82 (2021).
7
F. Maussion, A. Butenko, N. Champollion, M. Dusch, J. Eis, K. Fourteau, P. Gregor, A. H. Jarosch, J. Landmann, F. Oesterle, B. Recinos, T. Rothenpieler, A. Vlug, C. T. Wild, B. Marzeion, The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev.12, 909â931 (2019).
8
M. Huss, R. Hock, A new model for global glacier change and sea-level rise. Front. Earth Sci.3, (2015).
9
R. Hock, A. Bliss, B. E. N. Marzeion, R. H. Giesen, Y. Hirabayashi, M. Huss, V. Radic, A. B. A. Slangen, GlacierMIP-A model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol.65, 453â467 (2019).
10
B. Osmanoǧlu, M. Braun, R. Hock, F. J. Navarro, Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Ann. Glaciol.54, 111â119 (2013).
11
B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, M. I. Corcuera, Surface velocity and mass balance of Livingston Island ice cap, Antarctica. Cryosphere8, 1807â1823 (2014).
12
M. Minowa, M. Schaefer, S. Sugiyama, D. Sakakibara, P. Skvarca, Frontal ablation and mass loss of the Patagonian icefields. Earth Planet. Sci. Lett.561, 116811 (2021).
13
W. Kochtitzky, L. Copland, W. Van Wychen, R. Hugonnet, R. Hock, J. A. Dowdeswell, T. Benham, T. Strozzi, A. Glazovsky, I. Lavrentiev, D. R. Rounce, R. Millan, A. Cook, A. Dalton, H. Jiskoot, J. Cooley, J. Jania, F. Navarro, The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000-2020. Nat. Commun.13, 5835 (2022).
14
D. R. Rounce, T. Khurana, M. B. Short, R. Hock, D. E. Shean, D. J. Brinkerhoff, Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: Application to High Mountain Asia. J. Glaciol.66, 175â187 (2020).
15
D. R. Rounce, R. Hock, D. E. Shean, Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Front. Earth Sci.7, 331 (2020).
16
K. Hutter, The Effect of Longitudinal Strain on the Shear Stress of an Ice Sheet: In Defence of Using Stretched Coordinates. J. Glaciol.27, 39â56 (1981).
17
D. R. Rounce, R. Hock, R. W. McNabb, R. Millan, C. Sommer, M. H. Braun, P. Malz, F. Maussion, J. Mouginot, T. C. Seehaus, D. E. Shean, Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance. Geophys. Res. Lett.48, GL091311 (2021).
18
D. Farinotti, M. Huss, J. J. Fürst, J. Landmann, H. Machguth, F. Maussion, A. Pandit, A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci.12, 168â173 (2019).
19
R. Hock, G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, A. Milner, U. Molau, S. Morin, B. Orlove, H. Steltzer, âHigh Mountain Areasâ in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. AlegrÃa, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer, Eds. (Cambridge University Press, 2019).
20
H. Zekollari, M. Huss, D. Farinotti, Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere13, 1125â1146 (2019).
21
F. Pithan, T. Mauritsen, Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci.7, 181â184 (2014).
22
J. Bolibar, A. Rabatel, I. Gouttevin, H. Zekollari, C. Galiez, Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Nat. Commun.13, 409 (2022).
23
RGI Consortium, Randolph glacier inventory - A dataset of global glacier outlines, Version 6.0, GLIMS (2017); https://doi.org/10.7265/4m1f-gd79
24
D. Scherler, H. Wulf, N. Gorelick, Global Assessment of Supraglacial Debris-Cover Extents. Geophys. Res. Lett.45, 11798â11805 (2018).
25
S. Herreid, F. Pellicciotti, The state of rock debris covering Earthâs glaciers. Nat. Geosci.13, 621â627 (2020).
26
G. Ãstrem, Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann.41, 228â230 (1959).
27
D. I. Benn, T. Bolch, K. Hands, J. Gulley, A. Luckman, L. I. Nicholson, D. Quincey, S. Thompson, R. Toumi, S. Wiseman, Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev.114, 156â174 (2012).
28
A.V. Rowan, D. L. Egholm, D. J. Quincey, B. Hubbard, O. King, E. S. Miles, K. E. Miles, J. Hornsey, The Role of Differential Ablation and Dynamic Detachment in Driving Accelerating Mass Loss From a Debris-Covered Himalayan Glacier. J. Geophys. Res. Earth Surf.126, (2021).
29
K. B. Tokarska, M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner, R. Knutti, Past warming trend constrains future warming in CMIP6 models Sci. Adv.6, aaz9549 (2020).
30
K. Wyser, E. Kjellström, T. Koenigk, H. Martins, R. Döscher, Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ. Res. Lett.15, 054020 (2020).
31
UNEP, âEmissions Gap Report 2021â (UNEP, 2021); https://www.unep.org/emissions-gap-report-2021).
32
WGMS, Fluctuations of Glaciers Database (World Glacier Monitoring Service, 2021), https://www.gtn-g.ch/data_catalogue_fog/.
33
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. de Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J. N. Thépaut, The ERA5 global reanalysis. Q. J. R. Meteorol. Soc.146, 1999â2049 (2020).
34
P. A. Arias, N. Bellouin, E. Coppola, R. G. Jones, G. Krinner, J. Marotzke, V. Naik, M. D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P. W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R. P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J. G. Canadell, C. Cassou, A. Cherchi, W. Collins, W. D. Collins, S. L. Connors, S. Corti, F. Cruz, F. J. Dentener, C. Dereczynski, A. di Luca, A. Diongue Niang, F. J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J. S. Fuglestvedt, J. C. Fyfe, N. P. Gillet, L. Goldfarb, I. Gorodetskaya, J. M. Gutierrez, R. Hamdi, E. Hawkins, H. T. Heewitt, P. Hope, A. S. Islam, C. Jones, D. S. Kaufman, R. E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T. K. Maycock, M. Meinshausen, S.-K. Min, P. M. S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A. C. Ruane, L. Ruiz, J.-B. Sallée, B. H. Samset, S. Sathyendranath, S. I. Seneviratne, A. A. Sörensson, S. Szopa, I. Takayabu, A.-M. Trguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, K. Zickfeld, âTechnical Summaryâ in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021).
35
J. Oerlemans, F. M. Nick, A minimal model of a tidewater glacier. Ann. Glaciol.42, 1â6 (2017).
36
J. G. Cogley, R. Hock, L. A. Rasmussen, A. A. Arendt, A. Bauder, R. J. Braithwaite, P. Jansso, G. Kaser, M. Möller, L. Nicholson, M. Zemp, âGlossary of Glacier Mass Balance and Related Termsâ (IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, 2011); https://wgms.ch/downloads/Cogley_etal_2011.pdf
37
C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, 2006).
38
D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. arXiv:0706.1234 [cs.LG] (2014).
39
R. J. Braithwaite, Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. J. Glaciol.54, 437â444 (2017).
40
R. Millan, J. Mouginot, A. Rabatel, M. Morlighem, Ice velocity and thickness of the worldâs glaciers. Nat. Geosci.15, 124â129 (2022).
41
B. Recinos, F. Maussion, T. Rothenpieler, B. Marzeion, Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska. Cryosphere13, 2657â2672 (2019).
(0)eLetters
eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.
Log In to Submit a ResponseNo eLetters have been published for this article yet.
Information & Authors
Information
Published In

Science
Volume 379 | Issue 6627
6 January 2023
6 January 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an article distributed under the terms of the Science Journals Default License.
Submission history
Received: 15 January 2022
Accepted: 14 November 2022
Published in print: 6 January 2023
Acknowledgments
This work was supported in part by the high-performance computing and data storage resources operated by the Research Computing Systems Group at the University of Alaska Fairbanks Geophysical Institute. This text reflects only the authorâs view and funding agencies are not responsible for any use that may be made of the information it contains.
Funding: This work was funded by the following: National Aeronautics and Space Administration grant 80NSSC20K1296 (to D.R. and Re.Ho.); National Aeronautics and Space Administration grant 80NSSC20K1595 (to D.R. and Re.Ho.); National Aeronautics and Space Administration grant 80NSSC17K0566 (to D.R. and Re.Ho.); National Aeronautics and Space Administration grant NNX17AB27G (to D.R. and Re.Ho.); Norwegian Research Council project #324131 (to Re.Ho.); Tula Foundation and Canada Research Chairs (to B.M.); National Sciences and Engineering Research Council of Canada (to B.M. and Lu.Co.); Vanier Graduate Scholarship (to W.K.); Swiss National Science Foundation project 184634 (to Ro.Hu., M.H., Lo.Co., and D.F.); ArcticNet Network of Centres of Excellence Canada (to Lu.Co.); University of Ottawa, University Research Chair program (to Lu.Co.); European Unionâs Horizon 2020 research and innovation programme grant 101003687 (to F.M.); Austrian Science Fund (FWF) grant P30256 (to F.M.); French Space Agency CNES (to E.B. and Ro.Hu.)
Author contributions: Conceptualization: D.R. and Re.Ho. Data curation: D.R. Formal analysis: D.R. Funding acquisition: D.R., Re.Ho., M.H., D.F., E.B., B.M., and Lu.Co. Investigation: D.R. Methodology: D.R., F.M., and Re.Ho. Project administration: D.R. and Re.Ho. Resources: D.R., F.M. (glacier data); Ro.Hu., M.H., E.B., D.F., B.M., and R.M. (mass balance data); Lo.Co. (climate data); W.K. and Lu.Co. (frontal ablation data); Software: D.R. (PyGEM); F.M. (OGGM); D.B. (emulators); Visualization: D.R., Re.Ho, and Ro.Hu. Writing â original draft: D.R. Writing â review and editing: all authors, especially Re.Ho.
Competing interests: Authors declare that they have no competing interests.
Data and materials availability: The datasets generated for this study can be found in the National Snow and Ice Data Center (NSIDC) at https://nsidc.org/data/hma2_ggp/versions/1. The model code is publicly available at https://github.com/drounce/PyGEM and https://github.com/OGGM/oggm.
License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse
Authors
Funding Information
National Aeronautics and Space Administration: 80NSSC20K1296
National Aeronautics and Space Administration: 80NSSC20K1595
National Aeronautics and Space Administration: 80NSSC17K0566
National Aeronautics and Space Administration: NNX17AB27G
French space agency CNES
Austrian Science Fund: P30256
European Unionâs Horizon 2020 research and innovation programme: 101003687
ArcticNet Network of Centres of Excellence Canada
University of Ottawa, University Research Chair program
Vanier Graduate Scholarship
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Acting now will reduce glacier loss, Science, 379, 6627, (29-30), (2023)./doi/10.1126/science.ade2355
- Endangered glaciers could hang on if humans take action, Nature, (2023).https://doi.org/10.1038/d41586-023-00002-7
Loading...
View Options
Check Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.