|
""" |
|
The typing module: Support for gradual typing as defined by PEP 484. |
|
|
|
At large scale, the structure of the module is following: |
|
* Imports and exports, all public names should be explicitly added to __all__. |
|
* Internal helper functions: these should never be used in code outside this module. |
|
* _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional |
|
* Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar |
|
* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is |
|
currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str], |
|
etc., are instances of either of these classes. |
|
* The public counterpart of the generics API consists of two classes: Generic and Protocol. |
|
* Public helper functions: get_type_hints, overload, cast, no_type_check, |
|
no_type_check_decorator. |
|
* Generic aliases for collections.abc ABCs and few additional protocols. |
|
* Special types: NewType, NamedTuple, TypedDict. |
|
* Wrapper submodules for re and io related types. |
|
""" |
|
|
|
from abc import abstractmethod, ABCMeta |
|
import collections |
|
import collections.abc |
|
import contextlib |
|
import functools |
|
import operator |
|
import re as stdlib_re # Avoid confusion with the re we export. |
|
import sys |
|
import types |
|
from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, GenericAlias |
|
|
|
# Please keep __all__ alphabetized within each category. |
|
__all__ = [ |
|
# Super-special typing primitives. |
|
'Annotated', |
|
'Any', |
|
'Callable', |
|
'ClassVar', |
|
'Final', |
|
'ForwardRef', |
|
'Generic', |
|
'Literal', |
|
'Optional', |
|
'Protocol', |
|
'Tuple', |
|
'Type', |
|
'TypeVar', |
|
'Union', |
|
|
|
# ABCs (from collections.abc). |
|
'AbstractSet', # collections.abc.Set. |
|
'ByteString', |
|
'Container', |
|
'ContextManager', |
|
'Hashable', |
|
'ItemsView', |
|
'Iterable', |
|
'Iterator', |
|
'KeysView', |
|
'Mapping', |
|
'MappingView', |
|
'MutableMapping', |
|
'MutableSequence', |
|
'MutableSet', |
|
'Sequence', |
|
'Sized', |
|
'ValuesView', |
|
'Awaitable', |
|
'AsyncIterator', |
|
'AsyncIterable', |
|
'Coroutine', |
|
'Collection', |
|
'AsyncGenerator', |
|
'AsyncContextManager', |
|
|
|
# Structural checks, a.k.a. protocols. |
|
'Reversible', |
|
'SupportsAbs', |
|
'SupportsBytes', |
|
'SupportsComplex', |
|
'SupportsFloat', |
|
'SupportsIndex', |
|
'SupportsInt', |
|
'SupportsRound', |
|
|
|
# Concrete collection types. |
|
'ChainMap', |
|
'Counter', |
|
'Deque', |
|
'Dict', |
|
'DefaultDict', |
|
'List', |
|
'OrderedDict', |
|
'Set', |
|
'FrozenSet', |
|
'NamedTuple', # Not really a type. |
|
'TypedDict', # Not really a type. |
|
'Generator', |
|
|
|
# Other concrete types. |
|
'BinaryIO', |
|
'IO', |
|
'Match', |
|
'Pattern', |
|
'TextIO', |
|
|
|
# One-off things. |
|
'AnyStr', |
|
'cast', |
|
'final', |
|
'get_args', |
|
'get_origin', |
|
'get_type_hints', |
|
'NewType', |
|
'no_type_check', |
|
'no_type_check_decorator', |
|
'NoReturn', |
|
'overload', |
|
'runtime_checkable', |
|
'Text', |
|
'TYPE_CHECKING', |
|
] |
|
|
|
# The pseudo-submodules 're' and 'io' are part of the public |
|
# namespace, but excluded from __all__ because they might stomp on |
|
# legitimate imports of those modules. |
|
|
|
|
|
def _type_convert(arg, module=None, *, allow_special_forms=False): |
|
"""For converting None to type(None), and strings to ForwardRef.""" |
|
if arg is None: |
|
return type(None) |
|
if isinstance(arg, str): |
|
return ForwardRef(arg, module=module, is_class=allow_special_forms) |
|
return arg |
|
|
|
|
|
def _type_check(arg, msg, is_argument=True, module=None, *, allow_special_forms=False): |
|
"""Check that the argument is a type, and return it (internal helper). |
|
|
|
As a special case, accept None and return type(None) instead. Also wrap strings |
|
into ForwardRef instances. Consider several corner cases, for example plain |
|
special forms like Union are not valid, while Union[int, str] is OK, etc. |
|
The msg argument is a human-readable error message, e.g:: |
|
|
|
"Union[arg, ...]: arg should be a type." |
|
|
|
We append the repr() of the actual value (truncated to 100 chars). |
|
""" |
|
invalid_generic_forms = (Generic, Protocol) |
|
if not allow_special_forms: |
|
invalid_generic_forms += (ClassVar,) |
|
if is_argument: |
|
invalid_generic_forms += (Final,) |
|
|
|
arg = _type_convert(arg, module=module, allow_special_forms=allow_special_forms) |
|
if (isinstance(arg, _GenericAlias) and |
|
arg.__origin__ in invalid_generic_forms): |
|
raise TypeError(f"{arg} is not valid as type argument") |
|
if arg in (Any, NoReturn, Final): |
|
return arg |
|
if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol): |
|
raise TypeError(f"Plain {arg} is not valid as type argument") |
|
if isinstance(arg, (type, TypeVar, ForwardRef)): |
|
return arg |
|
if not callable(arg): |
|
raise TypeError(f"{msg} Got {arg!r:.100}.") |
|
return arg |
|
|
|
|
|
def _type_repr(obj): |
|
"""Return the repr() of an object, special-casing types (internal helper). |
|
|
|
If obj is a type, we return a shorter version than the default |
|
type.__repr__, based on the module and qualified name, which is |
|
typically enough to uniquely identify a type. For everything |
|
else, we fall back on repr(obj). |
|
""" |
|
if isinstance(obj, types.GenericAlias): |
|
return repr(obj) |
|
if isinstance(obj, type): |
|
if obj.__module__ == 'builtins': |
|
return obj.__qualname__ |
|
return f'{obj.__module__}.{obj.__qualname__}' |
|
if obj is ...: |
|
return('...') |
|
if isinstance(obj, types.FunctionType): |
|
return obj.__name__ |
|
return repr(obj) |
|
|
|
|
|
def _collect_type_vars(types): |
|
"""Collect all type variable contained in types in order of |
|
first appearance (lexicographic order). For example:: |
|
|
|
_collect_type_vars((T, List[S, T])) == (T, S) |
|
""" |
|
tvars = [] |
|
for t in types: |
|
if isinstance(t, TypeVar) and t not in tvars: |
|
tvars.append(t) |
|
if isinstance(t, (_GenericAlias, GenericAlias)): |
|
tvars.extend([t for t in t.__parameters__ if t not in tvars]) |
|
return tuple(tvars) |
|
|
|
|
|
def _check_generic(cls, parameters, elen): |
|
"""Check correct count for parameters of a generic cls (internal helper). |
|
This gives a nice error message in case of count mismatch. |
|
""" |
|
if not elen: |
|
raise TypeError(f"{cls} is not a generic class") |
|
alen = len(parameters) |
|
if alen != elen: |
|
raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};" |
|
f" actual {alen}, expected {elen}") |
|
|
|
|
|
def _deduplicate(params): |
|
# Weed out strict duplicates, preserving the first of each occurrence. |
|
all_params = set(params) |
|
if len(all_params) < len(params): |
|
new_params = [] |
|
for t in params: |
|
if t in all_params: |
|
new_params.append(t) |
|
all_params.remove(t) |
|
params = new_params |
|
assert not all_params, all_params |
|
return params |
|
|
|
|
|
def _remove_dups_flatten(parameters): |
|
"""An internal helper for Union creation and substitution: flatten Unions |
|
among parameters, then remove duplicates. |
|
""" |
|
# Flatten out Union[Union[...], ...]. |
|
params = [] |
|
for p in parameters: |
|
if isinstance(p, _UnionGenericAlias): |
|
params.extend(p.__args__) |
|
elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: |
|
params.extend(p[1:]) |
|
else: |
|
params.append(p) |
|
|
|
return tuple(_deduplicate(params)) |
|
|
|
|
|
def _flatten_literal_params(parameters): |
|
"""An internal helper for Literal creation: flatten Literals among parameters""" |
|
params = [] |
|
for p in parameters: |
|
if isinstance(p, _LiteralGenericAlias): |
|
params.extend(p.__args__) |
|
else: |
|
params.append(p) |
|
return tuple(params) |
|
|
|
|
|
_cleanups = [] |
|
|
|
|
|
def _tp_cache(func=None, /, *, typed=False): |
|
"""Internal wrapper caching __getitem__ of generic types with a fallback to |
|
original function for non-hashable arguments. |
|
""" |
|
def decorator(func): |
|
cached = functools.lru_cache(typed=typed)(func) |
|
_cleanups.append(cached.cache_clear) |
|
|
|
@functools.wraps(func) |
|
def inner(*args, **kwds): |
|
try: |
|
return cached(*args, **kwds) |
|
except TypeError: |
|
pass # All real errors (not unhashable args) are raised below. |
|
return func(*args, **kwds) |
|
return inner |
|
|
|
if func is not None: |
|
return decorator(func) |
|
|
|
return decorator |
|
|
|
def _eval_type(t, globalns, localns, recursive_guard=frozenset()): |
|
"""Evaluate all forward references in the given type t. |
|
For use of globalns and localns see the docstring for get_type_hints(). |
|
recursive_guard is used to prevent infinite recursion with a recursive |
|
ForwardRef. |
|
""" |
|
if isinstance(t, ForwardRef): |
|
return t._evaluate(globalns, localns, recursive_guard) |
|
if isinstance(t, (_GenericAlias, GenericAlias)): |
|
ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) |
|
if ev_args == t.__args__: |
|
return t |
|
if isinstance(t, GenericAlias): |
|
return GenericAlias(t.__origin__, ev_args) |
|
else: |
|
return t.copy_with(ev_args) |
|
return t |
|
|
|
|
|
class _Final: |
|
"""Mixin to prohibit subclassing""" |
|
|
|
__slots__ = ('__weakref__',) |
|
|
|
def __init_subclass__(self, /, *args, **kwds): |
|
if '_root' not in kwds: |
|
raise TypeError("Cannot subclass special typing classes") |
|
|
|
class _Immutable: |
|
"""Mixin to indicate that object should not be copied.""" |
|
__slots__ = () |
|
|
|
def __copy__(self): |
|
return self |
|
|
|
def __deepcopy__(self, memo): |
|
return self |
|
|
|
|
|
# Internal indicator of special typing constructs. |
|
# See __doc__ instance attribute for specific docs. |
|
class _SpecialForm(_Final, _root=True): |
|
__slots__ = ('_name', '__doc__', '_getitem') |
|
|
|
def __init__(self, getitem): |
|
self._getitem = getitem |
|
self._name = getitem.__name__ |
|
self.__doc__ = getitem.__doc__ |
|
|
|
def __mro_entries__(self, bases): |
|
raise TypeError(f"Cannot subclass {self!r}") |
|
|
|
def __repr__(self): |
|
return 'typing.' + self._name |
|
|
|
def __reduce__(self): |
|
return self._name |
|
|
|
def __call__(self, *args, **kwds): |
|
raise TypeError(f"Cannot instantiate {self!r}") |
|
|
|
def __instancecheck__(self, obj): |
|
raise TypeError(f"{self} cannot be used with isinstance()") |
|
|
|
def __subclasscheck__(self, cls): |
|
raise TypeError(f"{self} cannot be used with issubclass()") |
|
|
|
@_tp_cache |
|
def __getitem__(self, parameters): |
|
return self._getitem(self, parameters) |
|
|
|
|
|
class _LiteralSpecialForm(_SpecialForm, _root=True): |
|
def __getitem__(self, parameters): |
|
if not isinstance(parameters, tuple): |
|
parameters = (parameters,) |
|
return self._getitem(self, *parameters) |
|
|
|
|
|
@_SpecialForm |
|
def Any(self, parameters): |
|
"""Special type indicating an unconstrained type. |
|
|
|
- Any is compatible with every type. |
|
- Any assumed to have all methods. |
|
- All values assumed to be instances of Any. |
|
|
|
Note that all the above statements are true from the point of view of |
|
static type checkers. At runtime, Any should not be used with instance |
|
or class checks. |
|
""" |
|
raise TypeError(f"{self} is not subscriptable") |
|
|
|
@_SpecialForm |
|
def NoReturn(self, parameters): |
|
"""Special type indicating functions that never return. |
|
Example:: |
|
|
|
from typing import NoReturn |
|
|
|
def stop() -> NoReturn: |
|
raise Exception('no way') |
|
|
|
This type is invalid in other positions, e.g., ``List[NoReturn]`` |
|
will fail in static type checkers. |
|
""" |
|
raise TypeError(f"{self} is not subscriptable") |
|
|
|
@_SpecialForm |
|
def ClassVar(self, parameters): |
|
"""Special type construct to mark class variables. |
|
|
|
An annotation wrapped in ClassVar indicates that a given |
|
attribute is intended to be used as a class variable and |
|
should not be set on instances of that class. Usage:: |
|
|
|
class Starship: |
|
stats: ClassVar[Dict[str, int]] = {} # class variable |
|
damage: int = 10 # instance variable |
|
|
|
ClassVar accepts only types and cannot be further subscribed. |
|
|
|
Note that ClassVar is not a class itself, and should not |
|
be used with isinstance() or issubclass(). |
|
""" |
|
item = _type_check(parameters, f'{self} accepts only single type.') |
|
return _GenericAlias(self, (item,)) |
|
|
|
@_SpecialForm |
|
def Final(self, parameters): |
|
"""Special typing construct to indicate final names to type checkers. |
|
|
|
A final name cannot be re-assigned or overridden in a subclass. |
|
For example: |
|
|
|
MAX_SIZE: Final = 9000 |
|
MAX_SIZE += 1 # Error reported by type checker |
|
|
|
class Connection: |
|
TIMEOUT: Final[int] = 10 |
|
|
|
class FastConnector(Connection): |
|
TIMEOUT = 1 # Error reported by type checker |
|
|
|
There is no runtime checking of these properties. |
|
""" |
|
item = _type_check(parameters, f'{self} accepts only single type.') |
|
return _GenericAlias(self, (item,)) |
|
|
|
@_SpecialForm |
|
def Union(self, parameters): |
|
"""Union type; Union[X, Y] means either X or Y. |
|
|
|
To define a union, use e.g. Union[int, str]. Details: |
|
- The arguments must be types and there must be at least one. |
|
- None as an argument is a special case and is replaced by |
|
type(None). |
|
- Unions of unions are flattened, e.g.:: |
|
|
|
Union[Union[int, str], float] == Union[int, str, float] |
|
|
|
- Unions of a single argument vanish, e.g.:: |
|
|
|
Union[int] == int # The constructor actually returns int |
|
|
|
- Redundant arguments are skipped, e.g.:: |
|
|
|
Union[int, str, int] == Union[int, str] |
|
|
|
- When comparing unions, the argument order is ignored, e.g.:: |
|
|
|
Union[int, str] == Union[str, int] |
|
|
|
- You cannot subclass or instantiate a union. |
|
- You can use Optional[X] as a shorthand for Union[X, None]. |
|
""" |
|
if parameters == (): |
|
raise TypeError("Cannot take a Union of no types.") |
|
if not isinstance(parameters, tuple): |
|
parameters = (parameters,) |
|
msg = "Union[arg, ...]: each arg must be a type." |
|
parameters = tuple(_type_check(p, msg) for p in parameters) |
|
parameters = _remove_dups_flatten(parameters) |
|
if len(parameters) == 1: |
|
return parameters[0] |
|
return _UnionGenericAlias(self, parameters) |
|
|
|
@_SpecialForm |
|
def Optional(self, parameters): |
|
"""Optional type. |
|
|
|
Optional[X] is equivalent to Union[X, None]. |
|
""" |
|
arg = _type_check(parameters, f"{self} requires a single type.") |
|
return Union[arg, type(None)] |
|
|
|
@_LiteralSpecialForm |
|
@_tp_cache(typed=True) |
|
def Literal(self, *parameters): |
|
"""Special typing form to define literal types (a.k.a. value types). |
|
|
|
This form can be used to indicate to type checkers that the corresponding |
|
variable or function parameter has a value equivalent to the provided |
|
literal (or one of several literals): |
|
|
|
def validate_simple(data: Any) -> Literal[True]: # always returns True |
|
... |
|
|
|
MODE = Literal['r', 'rb', 'w', 'wb'] |
|
def open_helper(file: str, mode: MODE) -> str: |
|
... |
|
|
|
open_helper('/some/path', 'r') # Passes type check |
|
open_helper('/other/path', 'typo') # Error in type checker |
|
|
|
Literal[...] cannot be subclassed. At runtime, an arbitrary value |
|
is allowed as type argument to Literal[...], but type checkers may |
|
impose restrictions. |
|
""" |
|
# There is no '_type_check' call because arguments to Literal[...] are |
|
# values, not types. |
|
parameters = _flatten_literal_params(parameters) |
|
|
|
try: |
|
parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters)))) |
|
except TypeError: # unhashable parameters |
|
pass |
|
|
|
return _LiteralGenericAlias(self, parameters) |
|
|
|
|
|
class ForwardRef(_Final, _root=True): |
|
"""Internal wrapper to hold a forward reference.""" |
|
|
|
__slots__ = ('__forward_arg__', '__forward_code__', |
|
'__forward_evaluated__', '__forward_value__', |
|
'__forward_is_argument__', '__forward_is_class__', |
|
'__forward_module__') |
|
|
|
def __init__(self, arg, is_argument=True, module=None, *, is_class=False): |
|
if not isinstance(arg, str): |
|
raise TypeError(f"Forward reference must be a string -- got {arg!r}") |
|
try: |
|
code = compile(arg, '<string>', 'eval') |
|
except SyntaxError: |
|
raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}") |
|
self.__forward_arg__ = arg |
|
self.__forward_code__ = code |
|
self.__forward_evaluated__ = False |
|
self.__forward_value__ = None |
|
self.__forward_is_argument__ = is_argument |
|
self.__forward_is_class__ = is_class |
|
self.__forward_module__ = module |
|
|
|
def _evaluate(self, globalns, localns, recursive_guard): |
|
if self.__forward_arg__ in recursive_guard: |
|
return self |
|
if not self.__forward_evaluated__ or localns is not globalns: |
|
if globalns is None and localns is None: |
|
globalns = localns = {} |
|
elif globalns is None: |
|
globalns = localns |
|
elif localns is None: |
|
localns = globalns |
|
if self.__forward_module__ is not None: |
|
globalns = getattr( |
|
sys.modules.get(self.__forward_module__, None), '__dict__', globalns |
|
) |
|
type_ = _type_check( |
|
eval(self.__forward_code__, globalns, localns), |
|
"Forward references must evaluate to types.", |
|
is_argument=self.__forward_is_argument__, |
|
allow_special_forms=self.__forward_is_class__, |
|
) |
|
self.__forward_value__ = _eval_type( |
|
type_, globalns, localns, recursive_guard | {self.__forward_arg__} |
|
) |
|
self.__forward_evaluated__ = True |
|
return self.__forward_value__ |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, ForwardRef): |
|
return NotImplemented |
|
if self.__forward_evaluated__ and other.__forward_evaluated__: |
|
return (self.__forward_arg__ == other.__forward_arg__ and |
|
self.__forward_value__ == other.__forward_value__) |
|
return (self.__forward_arg__ == other.__forward_arg__ and |
|
self.__forward_module__ == other.__forward_module__) |
|
|
|
def __hash__(self): |
|
return hash((self.__forward_arg__, self.__forward_module__)) |
|
|
|
def __repr__(self): |
|
return f'ForwardRef({self.__forward_arg__!r})' |
|
|
|
|
|
class TypeVar(_Final, _Immutable, _root=True): |
|
"""Type variable. |
|
|
|
Usage:: |
|
|
|
T = TypeVar('T') # Can be anything |
|
A = TypeVar('A', str, bytes) # Must be str or bytes |
|
|
|
Type variables exist primarily for the benefit of static type |
|
checkers. They serve as the parameters for generic types as well |
|
as for generic function definitions. See class Generic for more |
|
information on generic types. Generic functions work as follows: |
|
|
|
def repeat(x: T, n: int) -> List[T]: |
|
'''Return a list containing n references to x.''' |
|
return [x]*n |
|
|
|
def longest(x: A, y: A) -> A: |
|
'''Return the longest of two strings.''' |
|
return x if len(x) >= len(y) else y |
|
|
|
The latter example's signature is essentially the overloading |
|
of (str, str) -> str and (bytes, bytes) -> bytes. Also note |
|
that if the arguments are instances of some subclass of str, |
|
the return type is still plain str. |
|
|
|
At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. |
|
|
|
Type variables defined with covariant=True or contravariant=True |
|
can be used to declare covariant or contravariant generic types. |
|
See PEP 484 for more details. By default generic types are invariant |
|
in all type variables. |
|
|
|
Type variables can be introspected. e.g.: |
|
|
|
T.__name__ == 'T' |
|
T.__constraints__ == () |
|
T.__covariant__ == False |
|
T.__contravariant__ = False |
|
A.__constraints__ == (str, bytes) |
|
|
|
Note that only type variables defined in global scope can be pickled. |
|
""" |
|
|
|
__slots__ = ('__name__', '__bound__', '__constraints__', |
|
'__covariant__', '__contravariant__', '__dict__') |
|
|
|
def __init__(self, name, *constraints, bound=None, |
|
covariant=False, contravariant=False): |
|
self.__name__ = name |
|
if covariant and contravariant: |
|
raise ValueError("Bivariant types are not supported.") |
|
self.__covariant__ = bool(covariant) |
|
self.__contravariant__ = bool(contravariant) |
|
if constraints and bound is not None: |
|
raise TypeError("Constraints cannot be combined with bound=...") |
|
if constraints and len(constraints) == 1: |
|
raise TypeError("A single constraint is not allowed") |
|
msg = "TypeVar(name, constraint, ...): constraints must be types." |
|
self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) |
|
if bound: |
|
self.__bound__ = _type_check(bound, "Bound must be a type.") |
|
else: |
|
self.__bound__ = None |
|
try: |
|
def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') # for pickling |
|
except (AttributeError, ValueError): |
|
def_mod = None |
|
if def_mod != 'typing': |
|
self.__module__ = def_mod |
|
|
|
def __repr__(self): |
|
if self.__covariant__: |
|
prefix = '+' |
|
elif self.__contravariant__: |
|
prefix = '-' |
|
else: |
|
prefix = '~' |
|
return prefix + self.__name__ |
|
|
|
def __reduce__(self): |
|
return self.__name__ |
|
|
|
|
|
def _is_dunder(attr): |
|
return attr.startswith('__') and attr.endswith('__') |
|
|
|
class _BaseGenericAlias(_Final, _root=True): |
|
"""The central part of internal API. |
|
|
|
This represents a generic version of type 'origin' with type arguments 'params'. |
|
There are two kind of these aliases: user defined and special. The special ones |
|
are wrappers around builtin collections and ABCs in collections.abc. These must |
|
have 'name' always set. If 'inst' is False, then the alias can't be instantiated, |
|
this is used by e.g. typing.List and typing.Dict. |
|
""" |
|
def __init__(self, origin, *, inst=True, name=None): |
|
self._inst = inst |
|
self._name = name |
|
self.__origin__ = origin |
|
self.__slots__ = None # This is not documented. |
|
|
|
def __call__(self, *args, **kwargs): |
|
if not self._inst: |
|
raise TypeError(f"Type {self._name} cannot be instantiated; " |
|
f"use {self.__origin__.__name__}() instead") |
|
result = self.__origin__(*args, **kwargs) |
|
try: |
|
result.__orig_class__ = self |
|
except AttributeError: |
|
pass |
|
return result |
|
|
|
def __mro_entries__(self, bases): |
|
res = [] |
|
if self.__origin__ not in bases: |
|
res.append(self.__origin__) |
|
i = bases.index(self) |
|
for b in bases[i+1:]: |
|
if isinstance(b, _BaseGenericAlias) or issubclass(b, Generic): |
|
break |
|
else: |
|
res.append(Generic) |
|
return tuple(res) |
|
|
|
def __getattr__(self, attr): |
|
# We are careful for copy and pickle. |
|
# Also for simplicity we don't relay any dunder names |
|
if '__origin__' in self.__dict__ and not _is_dunder(attr): |
|
return getattr(self.__origin__, attr) |
|
raise AttributeError(attr) |
|
|
|
def __setattr__(self, attr, val): |
|
if _is_dunder(attr) or attr in ('_name', '_inst', '_nparams'): |
|
super().__setattr__(attr, val) |
|
else: |
|
setattr(self.__origin__, attr, val) |
|
|
|
def __instancecheck__(self, obj): |
|
return self.__subclasscheck__(type(obj)) |
|
|
|
def __subclasscheck__(self, cls): |
|
raise TypeError("Subscripted generics cannot be used with" |
|
" class and instance checks") |
|
|
|
|
|
# Special typing constructs Union, Optional, Generic, Callable and Tuple |
|
# use three special attributes for internal bookkeeping of generic types: |
|
# * __parameters__ is a tuple of unique free type parameters of a generic |
|
# type, for example, Dict[T, T].__parameters__ == (T,); |
|
# * __origin__ keeps a reference to a type that was subscripted, |
|
# e.g., Union[T, int].__origin__ == Union, or the non-generic version of |
|
# the type. |
|
# * __args__ is a tuple of all arguments used in subscripting, |
|
# e.g., Dict[T, int].__args__ == (T, int). |
|
|
|
|
|
class _GenericAlias(_BaseGenericAlias, _root=True): |
|
def __init__(self, origin, params, *, inst=True, name=None): |
|
super().__init__(origin, inst=inst, name=name) |
|
if not isinstance(params, tuple): |
|
params = (params,) |
|
self.__args__ = tuple(... if a is _TypingEllipsis else |
|
() if a is _TypingEmpty else |
|
a for a in params) |
|
self.__parameters__ = _collect_type_vars(params) |
|
if not name: |
|
self.__module__ = origin.__module__ |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, _GenericAlias): |
|
return NotImplemented |
|
return (self.__origin__ == other.__origin__ |
|
and self.__args__ == other.__args__) |
|
|
|
def __hash__(self): |
|
return hash((self.__origin__, self.__args__)) |
|
|
|
@_tp_cache |
|
def __getitem__(self, params): |
|
if self.__origin__ in (Generic, Protocol): |
|
# Can't subscript Generic[...] or Protocol[...]. |
|
raise TypeError(f"Cannot subscript already-subscripted {self}") |
|
if not isinstance(params, tuple): |
|
params = (params,) |
|
msg = "Parameters to generic types must be types." |
|
params = tuple(_type_check(p, msg) for p in params) |
|
_check_generic(self, params, len(self.__parameters__)) |
|
|
|
subst = dict(zip(self.__parameters__, params)) |
|
new_args = [] |
|
for arg in self.__args__: |
|
if isinstance(arg, TypeVar): |
|
arg = subst[arg] |
|
elif isinstance(arg, (_GenericAlias, GenericAlias)): |
|
subparams = arg.__parameters__ |
|
if subparams: |
|
subargs = tuple(subst[x] for x in subparams) |
|
arg = arg[subargs] |
|
new_args.append(arg) |
|
return self.copy_with(tuple(new_args)) |
|
|
|
def copy_with(self, params): |
|
return self.__class__(self.__origin__, params, name=self._name, inst=self._inst) |
|
|
|
def __repr__(self): |
|
if self._name: |
|
name = 'typing.' + self._name |
|
else: |
|
name = _type_repr(self.__origin__) |
|
args = ", ".join([_type_repr(a) for a in self.__args__]) |
|
return f'{name}[{args}]' |
|
|
|
def __reduce__(self): |
|
if self._name: |
|
origin = globals()[self._name] |
|
else: |
|
origin = self.__origin__ |
|
args = tuple(self.__args__) |
|
if len(args) == 1 and not isinstance(args[0], tuple): |
|
args, = args |
|
return operator.getitem, (origin, args) |
|
|
|
def __mro_entries__(self, bases): |
|
if self._name: # generic version of an ABC or built-in class |
|
return super().__mro_entries__(bases) |
|
if self.__origin__ is Generic: |
|
if Protocol in bases: |
|
return () |
|
i = bases.index(self) |
|
for b in bases[i+1:]: |
|
if isinstance(b, _BaseGenericAlias) and b is not self: |
|
return () |
|
return (self.__origin__,) |
|
|
|
|
|
# _nparams is the number of accepted parameters, e.g. 0 for Hashable, |
|
# 1 for List and 2 for Dict. It may be -1 if variable number of |
|
# parameters are accepted (needs custom __getitem__). |
|
|
|
class _SpecialGenericAlias(_BaseGenericAlias, _root=True): |
|
def __init__(self, origin, nparams, *, inst=True, name=None): |
|
if name is None: |
|
name = origin.__name__ |
|
super().__init__(origin, inst=inst, name=name) |
|
self._nparams = nparams |
|
if origin.__module__ == 'builtins': |
|
self.__doc__ = f'A generic version of {origin.__qualname__}.' |
|
else: |
|
self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.' |
|
|
|
@_tp_cache |
|
def __getitem__(self, params): |
|
if not isinstance(params, tuple): |
|
params = (params,) |
|
msg = "Parameters to generic types must be types." |
|
params = tuple(_type_check(p, msg) for p in params) |
|
_check_generic(self, params, self._nparams) |
|
return self.copy_with(params) |
|
|
|
def copy_with(self, params): |
|
return _GenericAlias(self.__origin__, params, |
|
name=self._name, inst=self._inst) |
|
|
|
def __repr__(self): |
|
return 'typing.' + self._name |
|
|
|
def __subclasscheck__(self, cls): |
|
if isinstance(cls, _SpecialGenericAlias): |
|
return issubclass(cls.__origin__, self.__origin__) |
|
if not isinstance(cls, _GenericAlias): |
|
return issubclass(cls, self.__origin__) |
|
return super().__subclasscheck__(cls) |
|
|
|
def __reduce__(self): |
|
return self._name |
|
|
|
|
|
class _CallableGenericAlias(_GenericAlias, _root=True): |
|
def __repr__(self): |
|
assert self._name == 'Callable' |
|
if len(self.__args__) == 2 and self.__args__[0] is Ellipsis: |
|
return super().__repr__() |
|
return (f'typing.Callable' |
|
f'[[{", ".join([_type_repr(a) for a in self.__args__[:-1]])}], ' |
|
f'{_type_repr(self.__args__[-1])}]') |
|
|
|
def __reduce__(self): |
|
args = self.__args__ |
|
if not (len(args) == 2 and args[0] is ...): |
|
args = list(args[:-1]), args[-1] |
|
return operator.getitem, (Callable, args) |
|
|
|
|
|
class _CallableType(_SpecialGenericAlias, _root=True): |
|
def copy_with(self, params): |
|
return _CallableGenericAlias(self.__origin__, params, |
|
name=self._name, inst=self._inst) |
|
|
|
def __getitem__(self, params): |
|
if not isinstance(params, tuple) or len(params) != 2: |
|
raise TypeError("Callable must be used as " |
|
"Callable[[arg, ...], result].") |
|
args, result = params |
|
# This relaxes what args can be on purpose to allow things like |
|
# PEP 612 ParamSpec. Responsibility for whether a user is using |
|
# Callable[...] properly is deferred to static type checkers. |
|
if isinstance(args, list): |
|
params = (tuple(args), result) |
|
else: |
|
params = (args, result) |
|
return self.__getitem_inner__(params) |
|
|
|
@_tp_cache |
|
def __getitem_inner__(self, params): |
|
args, result = params |
|
msg = "Callable[args, result]: result must be a type." |
|
result = _type_check(result, msg) |
|
if args is Ellipsis: |
|
return self.copy_with((_TypingEllipsis, result)) |
|
if not isinstance(args, tuple): |
|
args = (args,) |
|
args = tuple(_type_convert(arg) for arg in args) |
|
params = args + (result,) |
|
return self.copy_with(params) |
|
|
|
|
|
class _TupleType(_SpecialGenericAlias, _root=True): |
|
@_tp_cache |
|
def __getitem__(self, params): |
|
if params == (): |
|
return self.copy_with((_TypingEmpty,)) |
|
if not isinstance(params, tuple): |
|
params = (params,) |
|
if len(params) == 2 and params[1] is ...: |
|
msg = "Tuple[t, ...]: t must be a type." |
|
p = _type_check(params[0], msg) |
|
return self.copy_with((p, _TypingEllipsis)) |
|
msg = "Tuple[t0, t1, ...]: each t must be a type." |
|
params = tuple(_type_check(p, msg) for p in params) |
|
return self.copy_with(params) |
|
|
|
|
|
class _UnionGenericAlias(_GenericAlias, _root=True): |
|
def copy_with(self, params): |
|
return Union[params] |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, _UnionGenericAlias): |
|
return NotImplemented |
|
return set(self.__args__) == set(other.__args__) |
|
|
|
def __hash__(self): |
|
return hash(frozenset(self.__args__)) |
|
|
|
def __repr__(self): |
|
args = self.__args__ |
|
if len(args) == 2: |
|
if args[0] is type(None): |
|
return f'typing.Optional[{_type_repr(args[1])}]' |
|
elif args[1] is type(None): |
|
return f'typing.Optional[{_type_repr(args[0])}]' |
|
return super().__repr__() |
|
|
|
|
|
def _value_and_type_iter(parameters): |
|
return ((p, type(p)) for p in parameters) |
|
|
|
|
|
class _LiteralGenericAlias(_GenericAlias, _root=True): |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, _LiteralGenericAlias): |
|
return NotImplemented |
|
|
|
return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__)) |
|
|
|
def __hash__(self): |
|
return hash(frozenset(_value_and_type_iter(self.__args__))) |
|
|
|
|
|
class Generic: |
|
"""Abstract base class for generic types. |
|
|
|
A generic type is typically declared by inheriting from |
|
this class parameterized with one or more type variables. |
|
For example, a generic mapping type might be defined as:: |
|
|
|
class Mapping(Generic[KT, VT]): |
|
def __getitem__(self, key: KT) -> VT: |
|
... |
|
# Etc. |
|
|
|
This class can then be used as follows:: |
|
|
|
def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: |
|
try: |
|
return mapping[key] |
|
except KeyError: |
|
return default |
|
""" |
|
__slots__ = () |
|
_is_protocol = False |
|
|
|
@_tp_cache |
|
def __class_getitem__(cls, params): |
|
if not isinstance(params, tuple): |
|
params = (params,) |
|
if not params and cls is not Tuple: |
|
raise TypeError( |
|
f"Parameter list to {cls.__qualname__}[...] cannot be empty") |
|
msg = "Parameters to generic types must be types." |
|
params = tuple(_type_check(p, msg) for p in params) |
|
if cls in (Generic, Protocol): |
|
# Generic and Protocol can only be subscripted with unique type variables. |
|
if not all(isinstance(p, TypeVar) for p in params): |
|
raise TypeError( |
|
f"Parameters to {cls.__name__}[...] must all be type variables") |
|
if len(set(params)) != len(params): |
|
raise TypeError( |
|
f"Parameters to {cls.__name__}[...] must all be unique") |
|
else: |
|
# Subscripting a regular Generic subclass. |
|
_check_generic(cls, params, len(cls.__parameters__)) |
|
return _GenericAlias(cls, params) |
|
|
|
def __init_subclass__(cls, *args, **kwargs): |
|
super().__init_subclass__(*args, **kwargs) |
|
tvars = [] |
|
if '__orig_bases__' in cls.__dict__: |
|
error = Generic in cls.__orig_bases__ |
|
else: |
|
error = Generic in cls.__bases__ and cls.__name__ != 'Protocol' |
|
if error: |
|
raise TypeError("Cannot inherit from plain Generic") |
|
if '__orig_bases__' in cls.__dict__: |
|
tvars = _collect_type_vars(cls.__orig_bases__) |
|
# Look for Generic[T1, ..., Tn]. |
|
# If found, tvars must be a subset of it. |
|
# If not found, tvars is it. |
|
# Also check for and reject plain Generic, |
|
# and reject multiple Generic[...]. |
|
gvars = None |
|
for base in cls.__orig_bases__: |
|
if (isinstance(base, _GenericAlias) and |
|
base.__origin__ is Generic): |
|
if gvars is not None: |
|
raise TypeError( |
|
"Cannot inherit from Generic[...] multiple types.") |
|
gvars = base.__parameters__ |
|
if gvars is not None: |
|
tvarset = set(tvars) |
|
gvarset = set(gvars) |
|
if not tvarset <= gvarset: |
|
s_vars = ', '.join(str(t) for t in tvars if t not in gvarset) |
|
s_args = ', '.join(str(g) for g in gvars) |
|
raise TypeError(f"Some type variables ({s_vars}) are" |
|
f" not listed in Generic[{s_args}]") |
|
tvars = gvars |
|
cls.__parameters__ = tuple(tvars) |
|
|
|
|
|
class _TypingEmpty: |
|
"""Internal placeholder for () or []. Used by TupleMeta and CallableMeta |
|
to allow empty list/tuple in specific places, without allowing them |
|
to sneak in where prohibited. |
|
""" |
|
|
|
|
|
class _TypingEllipsis: |
|
"""Internal placeholder for ... (ellipsis).""" |
|
|
|
|
|
_TYPING_INTERNALS = ['__parameters__', '__orig_bases__', '__orig_class__', |
|
'_is_protocol', '_is_runtime_protocol'] |
|
|
|
_SPECIAL_NAMES = ['__abstractmethods__', '__annotations__', '__dict__', '__doc__', |
|
'__init__', '__module__', '__new__', '__slots__', |
|
'__subclasshook__', '__weakref__', '__class_getitem__'] |
|
|
|
# These special attributes will be not collected as protocol members. |
|
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS + _SPECIAL_NAMES + ['_MutableMapping__marker'] |
|
|
|
|
|
def _get_protocol_attrs(cls): |
|
"""Collect protocol members from a protocol class objects. |
|
|
|
This includes names actually defined in the class dictionary, as well |
|
as names that appear in annotations. Special names (above) are skipped. |
|
""" |
|
attrs = set() |
|
for base in cls.__mro__[:-1]: # without object |
|
if base.__name__ in ('Protocol', 'Generic'): |
|
continue |
|
annotations = getattr(base, '__annotations__', {}) |
|
for attr in list(base.__dict__.keys()) + list(annotations.keys()): |
|
if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES: |
|
attrs.add(attr) |
|
return attrs |
|
|
|
|
|
def _is_callable_members_only(cls): |
|
# PEP 544 prohibits using issubclass() with protocols that have non-method members. |
|
return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls)) |
|
|
|
|
|
def _no_init_or_replace_init(self, *args, **kwargs): |
|
cls = type(self) |
|
|
|
if cls._is_protocol: |
|
raise TypeError('Protocols cannot be instantiated') |
|
|
|
# Already using a custom `__init__`. No need to calculate correct |
|
# `__init__` to call. This can lead to RecursionError. See bpo-45121. |
|
if cls.__init__ is not _no_init_or_replace_init: |
|
return |
|
|
|
# Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`. |
|
# The first instantiation of the subclass will call `_no_init_or_replace_init` which |
|
# searches for a proper new `__init__` in the MRO. The new `__init__` |
|
# replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent |
|
# instantiation of the protocol subclass will thus use the new |
|
# `__init__` and no longer call `_no_init_or_replace_init`. |
|
for base in cls.__mro__: |
|
init = base.__dict__.get('__init__', _no_init_or_replace_init) |
|
if init is not _no_init_or_replace_init: |
|
cls.__init__ = init |
|
break |
|
else: |
|
# should not happen |
|
cls.__init__ = object.__init__ |
|
|
|
cls.__init__(self, *args, **kwargs) |
|
|
|
|
|
|
|
def _allow_reckless_class_cheks(): |
|
"""Allow instance and class checks for special stdlib modules. |
|
|
|
The abc and functools modules indiscriminately call isinstance() and |
|
issubclass() on the whole MRO of a user class, which may contain protocols. |
|
""" |
|
try: |
|
return sys._getframe(3).f_globals['__name__'] in ['abc', 'functools'] |
|
except (AttributeError, ValueError): # For platforms without _getframe(). |
|
return True |
|
|
|
|
|
_PROTO_WHITELIST = { |
|
'collections.abc': [ |
|
'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable', |
|
'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', |
|
], |
|
'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'], |
|
} |
|
|
|
|
|
class _ProtocolMeta(ABCMeta): |
|
# This metaclass is really unfortunate and exists only because of |
|
# the lack of __instancehook__. |
|
def __instancecheck__(cls, instance): |
|
# We need this method for situations where attributes are |
|
# assigned in __init__. |
|
if ((not getattr(cls, '_is_protocol', False) or |
|
_is_callable_members_only(cls)) and |
|
issubclass(instance.__class__, cls)): |
|
return True |
|
if cls._is_protocol: |
|
if all(hasattr(instance, attr) and |
|
# All *methods* can be blocked by setting them to None. |
|
(not callable(getattr(cls, attr, None)) or |
|
getattr(instance, attr) is not None) |
|
for attr in _get_protocol_attrs(cls)): |
|
return True |
|
return super().__instancecheck__(instance) |
|
|
|
|
|
class Protocol(Generic, metaclass=_ProtocolMeta): |
|
"""Base class for protocol classes. |
|
|
|
Protocol classes are defined as:: |
|
|
|
class Proto(Protocol): |
|
def meth(self) -> int: |
|
... |
|
|
|
Such classes are primarily used with static type checkers that recognize |
|
structural subtyping (static duck-typing), for example:: |
|
|
|
class C: |
|
def meth(self) -> int: |
|
return 0 |
|
|
|
def func(x: Proto) -> int: |
|
return x.meth() |
|
|
|
func(C()) # Passes static type check |
|
|
|
See PEP 544 for details. Protocol classes decorated with |
|
@typing.runtime_checkable act as simple-minded runtime protocols that check |
|
only the presence of given attributes, ignoring their type signatures. |
|
Protocol classes can be generic, they are defined as:: |
|
|
|
class GenProto(Protocol[T]): |
|
def meth(self) -> T: |
|
... |
|
""" |
|
__slots__ = () |
|
_is_protocol = True |
|
_is_runtime_protocol = False |
|
|
|
def __init_subclass__(cls, *args, **kwargs): |
|
super().__init_subclass__(*args, **kwargs) |
|
|
|
# Determine if this is a protocol or a concrete subclass. |
|
if not cls.__dict__.get('_is_protocol', False): |
|
cls._is_protocol = any(b is Protocol for b in cls.__bases__) |
|
|
|
# Set (or override) the protocol subclass hook. |
|
def _proto_hook(other): |
|
if not cls.__dict__.get('_is_protocol', False): |
|
return NotImplemented |
|
|
|
# First, perform various sanity checks. |
|
if not getattr(cls, '_is_runtime_protocol', False): |
|
if _allow_reckless_class_cheks(): |
|
return NotImplemented |
|
raise TypeError("Instance and class checks can only be used with" |
|
" @runtime_checkable protocols") |
|
if not _is_callable_members_only(cls): |
|
if _allow_reckless_class_cheks(): |
|
return NotImplemented |
|
raise TypeError("Protocols with non-method members" |
|
" don't support issubclass()") |
|
if not isinstance(other, type): |
|
# Same error message as for issubclass(1, int). |
|
raise TypeError('issubclass() arg 1 must be a class') |
|
|
|
# Second, perform the actual structural compatibility check. |
|
for attr in _get_protocol_attrs(cls): |
|
for base in other.__mro__: |
|
# Check if the members appears in the class dictionary... |
|
if attr in base.__dict__: |
|
if base.__dict__[attr] is None: |
|
return NotImplemented |
|
break |
|
|
|
# ...or in annotations, if it is a sub-protocol. |
|
annotations = getattr(base, '__annotations__', {}) |
|
if (isinstance(annotations, collections.abc.Mapping) and |
|
attr in annotations and |
|
issubclass(other, Generic) and other._is_protocol): |
|
break |
|
else: |
|
return NotImplemented |
|
return True |
|
|
|
if '__subclasshook__' not in cls.__dict__: |
|
cls.__subclasshook__ = _proto_hook |
|
|
|
# We have nothing more to do for non-protocols... |
|
if not cls._is_protocol: |
|
return |
|
|
|
# ... otherwise check consistency of bases, and prohibit instantiation. |
|
for base in cls.__bases__: |
|
if not (base in (object, Generic) or |
|
base.__module__ in _PROTO_WHITELIST and |
|
base.__name__ in _PROTO_WHITELIST[base.__module__] or |
|
issubclass(base, Generic) and base._is_protocol): |
|
raise TypeError('Protocols can only inherit from other' |
|
' protocols, got %r' % base) |
|
cls.__init__ = _no_init_or_replace_init |
|
|
|
|
|
class _AnnotatedAlias(_GenericAlias, _root=True): |
|
"""Runtime representation of an annotated type. |
|
|
|
At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't' |
|
with extra annotations. The alias behaves like a normal typing alias, |
|
instantiating is the same as instantiating the underlying type, binding |
|
it to types is also the same. |
|
""" |
|
def __init__(self, origin, metadata): |
|
if isinstance(origin, _AnnotatedAlias): |
|
metadata = origin.__metadata__ + metadata |
|
origin = origin.__origin__ |
|
super().__init__(origin, origin) |
|
self.__metadata__ = metadata |
|
|
|
def copy_with(self, params): |
|
assert len(params) == 1 |
|
new_type = params[0] |
|
return _AnnotatedAlias(new_type, self.__metadata__) |
|
|
|
def __repr__(self): |
|
return "typing.Annotated[{}, {}]".format( |
|
_type_repr(self.__origin__), |
|
", ".join(repr(a) for a in self.__metadata__) |
|
) |
|
|
|
def __reduce__(self): |
|
return operator.getitem, ( |
|
Annotated, (self.__origin__,) + self.__metadata__ |
|
) |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, _AnnotatedAlias): |
|
return NotImplemented |
|
return (self.__origin__ == other.__origin__ |
|
and self.__metadata__ == other.__metadata__) |
|
|
|
def __hash__(self): |
|
return hash((self.__origin__, self.__metadata__)) |
|
|
|
|
|
class Annotated: |
|
"""Add context specific metadata to a type. |
|
|
|
Example: Annotated[int, runtime_check.Unsigned] indicates to the |
|
hypothetical runtime_check module that this type is an unsigned int. |
|
Every other consumer of this type can ignore this metadata and treat |
|
this type as int. |
|
|
|
The first argument to Annotated must be a valid type. |
|
|
|
Details: |
|
|
|
- It's an error to call `Annotated` with less than two arguments. |
|
- Nested Annotated are flattened:: |
|
|
|
Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3] |
|
|
|
- Instantiating an annotated type is equivalent to instantiating the |
|
underlying type:: |
|
|
|
Annotated[C, Ann1](5) == C(5) |
|
|
|
- Annotated can be used as a generic type alias:: |
|
|
|
Optimized = Annotated[T, runtime.Optimize()] |
|
Optimized[int] == Annotated[int, runtime.Optimize()] |
|
|
|
OptimizedList = Annotated[List[T], runtime.Optimize()] |
|
OptimizedList[int] == Annotated[List[int], runtime.Optimize()] |
|
""" |
|
|
|
__slots__ = () |
|
|
|
def __new__(cls, *args, **kwargs): |
|
raise TypeError("Type Annotated cannot be instantiated.") |
|
|
|
@_tp_cache |
|
def __class_getitem__(cls, params): |
|
if not isinstance(params, tuple) or len(params) < 2: |
|
raise TypeError("Annotated[...] should be used " |
|
"with at least two arguments (a type and an " |
|
"annotation).") |
|
msg = "Annotated[t, ...]: t must be a type." |
|
origin = _type_check(params[0], msg, allow_special_forms=True) |
|
metadata = tuple(params[1:]) |
|
return _AnnotatedAlias(origin, metadata) |
|
|
|
def __init_subclass__(cls, *args, **kwargs): |
|
raise TypeError( |
|
"Cannot subclass {}.Annotated".format(cls.__module__) |
|
) |
|
|
|
|
|
def runtime_checkable(cls): |
|
"""Mark a protocol class as a runtime protocol. |
|
|
|
Such protocol can be used with isinstance() and issubclass(). |
|
Raise TypeError if applied to a non-protocol class. |
|
This allows a simple-minded structural check very similar to |
|
one trick ponies in collections.abc such as Iterable. |
|
For example:: |
|
|
|
@runtime_checkable |
|
class Closable(Protocol): |
|
def close(self): ... |
|
|
|
assert isinstance(open('/some/file'), Closable) |
|
|
|
Warning: this will check only the presence of the required methods, |
|
not their type signatures! |
|
""" |
|
if not issubclass(cls, Generic) or not cls._is_protocol: |
|
raise TypeError('@runtime_checkable can be only applied to protocol classes,' |
|
' got %r' % cls) |
|
cls._is_runtime_protocol = True |
|
return cls |
|
|
|
|
|
def cast(typ, val): |
|
"""Cast a value to a type. |
|
|
|
This returns the value unchanged. To the type checker this |
|
signals that the return value has the designated type, but at |
|
runtime we intentionally don't check anything (we want this |
|
to be as fast as possible). |
|
""" |
|
return val |
|
|
|
|
|
def _get_defaults(func): |
|
"""Internal helper to extract the default arguments, by name.""" |
|
try: |
|
code = func.__code__ |
|
except AttributeError: |
|
# Some built-in functions don't have __code__, __defaults__, etc. |
|
return {} |
|
pos_count = code.co_argcount |
|
arg_names = code.co_varnames |
|
arg_names = arg_names[:pos_count] |
|
defaults = func.__defaults__ or () |
|
kwdefaults = func.__kwdefaults__ |
|
res = dict(kwdefaults) if kwdefaults else {} |
|
pos_offset = pos_count - len(defaults) |
|
for name, value in zip(arg_names[pos_offset:], defaults): |
|
assert name not in res |
|
res[name] = value |
|
return res |
|
|
|
|
|
_allowed_types = (types.FunctionType, types.BuiltinFunctionType, |
|
types.MethodType, types.ModuleType, |
|
WrapperDescriptorType, MethodWrapperType, MethodDescriptorType) |
|
|
|
|
|
def get_type_hints(obj, globalns=None, localns=None, include_extras=False): |
|
"""Return type hints for an object. |
|
|
|
This is often the same as obj.__annotations__, but it handles |
|
forward references encoded as string literals, adds Optional[t] if a |
|
default value equal to None is set and recursively replaces all |
|
'Annotated[T, ...]' with 'T' (unless 'include_extras=True'). |
|
|
|
The argument may be a module, class, method, or function. The annotations |
|
are returned as a dictionary. For classes, annotations include also |
|
inherited members. |
|
|
|
TypeError is raised if the argument is not of a type that can contain |
|
annotations, and an empty dictionary is returned if no annotations are |
|
present. |
|
|
|
BEWARE -- the behavior of globalns and localns is counterintuitive |
|
(unless you are familiar with how eval() and exec() work). The |
|
search order is locals first, then globals. |
|
|
|
- If no dict arguments are passed, an attempt is made to use the |
|
globals from obj (or the respective module's globals for classes), |
|
and these are also used as the locals. If the object does not appear |
|
to have globals, an empty dictionary is used. |
|
|
|
- If one dict argument is passed, it is used for both globals and |
|
locals. |
|
|
|
- If two dict arguments are passed, they specify globals and |
|
locals, respectively. |
|
""" |
|
|
|
if getattr(obj, '__no_type_check__', None): |
|
return {} |
|
# Classes require a special treatment. |
|
if isinstance(obj, type): |
|
hints = {} |
|
for base in reversed(obj.__mro__): |
|
if globalns is None: |
|
base_globals = sys.modules[base.__module__].__dict__ |
|
else: |
|
base_globals = globalns |
|
ann = base.__dict__.get('__annotations__', {}) |
|
for name, value in ann.items(): |
|
if value is None: |
|
value = type(None) |
|
if isinstance(value, str): |
|
value = ForwardRef(value, is_argument=False, is_class=True) |
|
value = _eval_type(value, base_globals, localns) |
|
hints[name] = value |
|
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()} |
|
|
|
if globalns is None: |
|
if isinstance(obj, types.ModuleType): |
|
globalns = obj.__dict__ |
|
else: |
|
nsobj = obj |
|
# Find globalns for the unwrapped object. |
|
while hasattr(nsobj, '__wrapped__'): |
|
nsobj = nsobj.__wrapped__ |
|
globalns = getattr(nsobj, '__globals__', {}) |
|
if localns is None: |
|
localns = globalns |
|
elif localns is None: |
|
localns = globalns |
|
hints = getattr(obj, '__annotations__', None) |
|
if hints is None: |
|
# Return empty annotations for something that _could_ have them. |
|
if isinstance(obj, _allowed_types): |
|
return {} |
|
else: |
|
raise TypeError('{!r} is not a module, class, method, ' |
|
'or function.'.format(obj)) |
|
defaults = _get_defaults(obj) |
|
hints = dict(hints) |
|
for name, value in hints.items(): |
|
if value is None: |
|
value = type(None) |
|
if isinstance(value, str): |
|
# class-level forward refs were handled above, this must be either |
|
# a module-level annotation or a function argument annotation |
|
value = ForwardRef( |
|
value, |
|
is_argument=not isinstance(obj, types.ModuleType), |
|
is_class=False, |
|
) |
|
value = _eval_type(value, globalns, localns) |
|
if name in defaults and defaults[name] is None: |
|
value = Optional[value] |
|
hints[name] = value |
|
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()} |
|
|
|
|
|
def _strip_annotations(t): |
|
"""Strips the annotations from a given type. |
|
""" |
|
if isinstance(t, _AnnotatedAlias): |
|
return _strip_annotations(t.__origin__) |
|
if isinstance(t, _GenericAlias): |
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__) |
|
if stripped_args == t.__args__: |
|
return t |
|
return t.copy_with(stripped_args) |
|
if isinstance(t, GenericAlias): |
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__) |
|
if stripped_args == t.__args__: |
|
return t |
|
return GenericAlias(t.__origin__, stripped_args) |
|
return t |
|
|
|
|
|
def get_origin(tp): |
|
"""Get the unsubscripted version of a type. |
|
|
|
This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar |
|
and Annotated. Return None for unsupported types. Examples:: |
|
|
|
get_origin(Literal[42]) is Literal |
|
get_origin(int) is None |
|
get_origin(ClassVar[int]) is ClassVar |
|
get_origin(Generic) is Generic |
|
get_origin(Generic[T]) is Generic |
|
get_origin(Union[T, int]) is Union |
|
get_origin(List[Tuple[T, T]][int]) == list |
|
""" |
|
if isinstance(tp, _AnnotatedAlias): |
|
return Annotated |
|
if isinstance(tp, (_BaseGenericAlias, GenericAlias)): |
|
return tp.__origin__ |
|
if tp is Generic: |
|
return Generic |
|
return None |
|
|
|
|
|
def get_args(tp): |
|
"""Get type arguments with all substitutions performed. |
|
|
|
For unions, basic simplifications used by Union constructor are performed. |
|
Examples:: |
|
get_args(Dict[str, int]) == (str, int) |
|
get_args(int) == () |
|
get_args(Union[int, Union[T, int], str][int]) == (int, str) |
|
get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int]) |
|
get_args(Callable[[], T][int]) == ([], int) |
|
""" |
|
if isinstance(tp, _AnnotatedAlias): |
|
return (tp.__origin__,) + tp.__metadata__ |
|
if isinstance(tp, (_GenericAlias, GenericAlias)): |
|
res = tp.__args__ |
|
if tp.__origin__ is collections.abc.Callable and res[0] is not Ellipsis: |
|
res = (list(res[:-1]), res[-1]) |
|
return res |
|
return () |
|
|
|
|
|
def no_type_check(arg): |
|
"""Decorator to indicate that annotations are not type hints. |
|
|
|
The argument must be a class or function; if it is a class, it |
|
applies recursively to all methods and classes defined in that class |
|
(but not to methods defined in its superclasses or subclasses). |
|
|
|
This mutates the function(s) or class(es) in place. |
|
""" |
|
if isinstance(arg, type): |
|
arg_attrs = arg.__dict__.copy() |
|
for attr, val in arg.__dict__.items(): |
|
if val in arg.__bases__ + (arg,): |
|
arg_attrs.pop(attr) |
|
for obj in arg_attrs.values(): |
|
if isinstance(obj, types.FunctionType): |
|
obj.__no_type_check__ = True |
|
if isinstance(obj, type): |
|
no_type_check(obj) |
|
try: |
|
arg.__no_type_check__ = True |
|
except TypeError: # built-in classes |
|
pass |
|
return arg |
|
|
|
|
|
def no_type_check_decorator(decorator): |
|
"""Decorator to give another decorator the @no_type_check effect. |
|
|
|
This wraps the decorator with something that wraps the decorated |
|
function in @no_type_check. |
|
""" |
|
|
|
@functools.wraps(decorator) |
|
def wrapped_decorator(*args, **kwds): |
|
func = decorator(*args, **kwds) |
|
func = no_type_check(func) |
|
return func |
|
|
|
return wrapped_decorator |
|
|
|
|
|
def _overload_dummy(*args, **kwds): |
|
"""Helper for @overload to raise when called.""" |
|
raise NotImplementedError( |
|
"You should not call an overloaded function. " |
|
"A series of @overload-decorated functions " |
|
"outside a stub module should always be followed " |
|
"by an implementation that is not @overload-ed.") |
|
|
|
|
|
def overload(func): |
|
"""Decorator for overloaded functions/methods. |
|
|
|
In a stub file, place two or more stub definitions for the same |
|
function in a row, each decorated with @overload. For example: |
|
|
|
@overload |
|
def utf8(value: None) -> None: ... |
|
@overload |
|
def utf8(value: bytes) -> bytes: ... |
|
@overload |
|
def utf8(value: str) -> bytes: ... |
|
|
|
In a non-stub file (i.e. a regular .py file), do the same but |
|
follow it with an implementation. The implementation should *not* |
|
be decorated with @overload. For example: |
|
|
|
@overload |
|
def utf8(value: None) -> None: ... |
|
@overload |
|
def utf8(value: bytes) -> bytes: ... |
|
@overload |
|
def utf8(value: str) -> bytes: ... |
|
def utf8(value): |
|
# implementation goes here |
|
""" |
|
return _overload_dummy |
|
|
|
|
|
def final(f): |
|
"""A decorator to indicate final methods and final classes. |
|
|
|
Use this decorator to indicate to type checkers that the decorated |
|
method cannot be overridden, and decorated class cannot be subclassed. |
|
For example: |
|
|
|
class Base: |
|
@final |
|
def done(self) -> None: |
|
... |
|
class Sub(Base): |
|
def done(self) -> None: # Error reported by type checker |
|
... |
|
|
|
@final |
|
class Leaf: |
|
... |
|
class Other(Leaf): # Error reported by type checker |
|
... |
|
|
|
There is no runtime checking of these properties. |
|
""" |
|
return f |
|
|
|
|
|
# Some unconstrained type variables. These are used by the container types. |
|
# (These are not for export.) |
|
T = TypeVar('T') # Any type. |
|
KT = TypeVar('KT') # Key type. |
|
VT = TypeVar('VT') # Value type. |
|
T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. |
|
V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. |
|
VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. |
|
T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. |
|
# Internal type variable used for Type[]. |
|
CT_co = TypeVar('CT_co', covariant=True, bound=type) |
|
|
|
# A useful type variable with constraints. This represents string types. |
|
# (This one *is* for export!) |
|
AnyStr = TypeVar('AnyStr', bytes, str) |
|
|
|
|
|
# Various ABCs mimicking those in collections.abc. |
|
_alias = _SpecialGenericAlias |
|
|
|
Hashable = _alias(collections.abc.Hashable, 0) # Not generic. |
|
Awaitable = _alias(collections.abc.Awaitable, 1) |
|
Coroutine = _alias(collections.abc.Coroutine, 3) |
|
AsyncIterable = _alias(collections.abc.AsyncIterable, 1) |
|
AsyncIterator = _alias(collections.abc.AsyncIterator, 1) |
|
Iterable = _alias(collections.abc.Iterable, 1) |
|
Iterator = _alias(collections.abc.Iterator, 1) |
|
Reversible = _alias(collections.abc.Reversible, 1) |
|
Sized = _alias(collections.abc.Sized, 0) # Not generic. |
|
Container = _alias(collections.abc.Container, 1) |
|
Collection = _alias(collections.abc.Collection, 1) |
|
Callable = _CallableType(collections.abc.Callable, 2) |
|
Callable.__doc__ = \ |
|
"""Callable type; Callable[[int], str] is a function of (int) -> str. |
|
|
|
The subscription syntax must always be used with exactly two |
|
values: the argument list and the return type. The argument list |
|
must be a list of types or ellipsis; the return type must be a single type. |
|
|
|
There is no syntax to indicate optional or keyword arguments, |
|
such function types are rarely used as callback types. |
|
""" |
|
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet') |
|
MutableSet = _alias(collections.abc.MutableSet, 1) |
|
# NOTE: Mapping is only covariant in the value type. |
|
Mapping = _alias(collections.abc.Mapping, 2) |
|
MutableMapping = _alias(collections.abc.MutableMapping, 2) |
|
Sequence = _alias(collections.abc.Sequence, 1) |
|
MutableSequence = _alias(collections.abc.MutableSequence, 1) |
|
ByteString = _alias(collections.abc.ByteString, 0) # Not generic |
|
# Tuple accepts variable number of parameters. |
|
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') |
|
Tuple.__doc__ = \ |
|
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y. |
|
|
|
Example: Tuple[T1, T2] is a tuple of two elements corresponding |
|
to type variables T1 and T2. Tuple[int, float, str] is a tuple |
|
of an int, a float and a string. |
|
|
|
To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. |
|
""" |
|
List = _alias(list, 1, inst=False, name='List') |
|
Deque = _alias(collections.deque, 1, name='Deque') |
|
Set = _alias(set, 1, inst=False, name='Set') |
|
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet') |
|
MappingView = _alias(collections.abc.MappingView, 1) |
|
KeysView = _alias(collections.abc.KeysView, 1) |
|
ItemsView = _alias(collections.abc.ItemsView, 2) |
|
ValuesView = _alias(collections.abc.ValuesView, 1) |
|
ContextManager = _alias(contextlib.AbstractContextManager, 1, name='ContextManager') |
|
AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, 1, name='AsyncContextManager') |
|
Dict = _alias(dict, 2, inst=False, name='Dict') |
|
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict') |
|
OrderedDict = _alias(collections.OrderedDict, 2) |
|
Counter = _alias(collections.Counter, 1) |
|
ChainMap = _alias(collections.ChainMap, 2) |
|
Generator = _alias(collections.abc.Generator, 3) |
|
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2) |
|
Type = _alias(type, 1, inst=False, name='Type') |
|
Type.__doc__ = \ |
|
"""A special construct usable to annotate class objects. |
|
|
|
For example, suppose we have the following classes:: |
|
|
|
class User: ... # Abstract base for User classes |
|
class BasicUser(User): ... |
|
class ProUser(User): ... |
|
class TeamUser(User): ... |
|
|
|
And a function that takes a class argument that's a subclass of |
|
User and returns an instance of the corresponding class:: |
|
|
|
U = TypeVar('U', bound=User) |
|
def new_user(user_class: Type[U]) -> U: |
|
user = user_class() |
|
# (Here we could write the user object to a database) |
|
return user |
|
|
|
joe = new_user(BasicUser) |
|
|
|
At this point the type checker knows that joe has type BasicUser. |
|
""" |
|
|
|
|
|
@runtime_checkable |
|
class SupportsInt(Protocol): |
|
"""An ABC with one abstract method __int__.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __int__(self) -> int: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsFloat(Protocol): |
|
"""An ABC with one abstract method __float__.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __float__(self) -> float: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsComplex(Protocol): |
|
"""An ABC with one abstract method __complex__.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __complex__(self) -> complex: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsBytes(Protocol): |
|
"""An ABC with one abstract method __bytes__.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __bytes__(self) -> bytes: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsIndex(Protocol): |
|
"""An ABC with one abstract method __index__.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __index__(self) -> int: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsAbs(Protocol[T_co]): |
|
"""An ABC with one abstract method __abs__ that is covariant in its return type.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __abs__(self) -> T_co: |
|
pass |
|
|
|
|
|
@runtime_checkable |
|
class SupportsRound(Protocol[T_co]): |
|
"""An ABC with one abstract method __round__ that is covariant in its return type.""" |
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def __round__(self, ndigits: int = 0) -> T_co: |
|
pass |
|
|
|
|
|
def _make_nmtuple(name, types, module, defaults = ()): |
|
fields = [n for n, t in types] |
|
types = {n: _type_check(t, f"field {n} annotation must be a type") |
|
for n, t in types} |
|
nm_tpl = collections.namedtuple(name, fields, |
|
defaults=defaults, module=module) |
|
nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = types |
|
return nm_tpl |
|
|
|
|
|
# attributes prohibited to set in NamedTuple class syntax |
|
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__', |
|
'_fields', '_field_defaults', |
|
'_make', '_replace', '_asdict', '_source'}) |
|
|
|
_special = frozenset({'__module__', '__name__', '__annotations__'}) |
|
|
|
|
|
class NamedTupleMeta(type): |
|
|
|
def __new__(cls, typename, bases, ns): |
|
assert bases[0] is _NamedTuple |
|
types = ns.get('__annotations__', {}) |
|
default_names = [] |
|
for field_name in types: |
|
if field_name in ns: |
|
default_names.append(field_name) |
|
elif default_names: |
|
raise TypeError(f"Non-default namedtuple field {field_name} " |
|
f"cannot follow default field" |
|
f"{'s' if len(default_names) > 1 else ''} " |
|
f"{', '.join(default_names)}") |
|
nm_tpl = _make_nmtuple(typename, types.items(), |
|
defaults=[ns[n] for n in default_names], |
|
module=ns['__module__']) |
|
# update from user namespace without overriding special namedtuple attributes |
|
for key in ns: |
|
if key in _prohibited: |
|
raise AttributeError("Cannot overwrite NamedTuple attribute " + key) |
|
elif key not in _special and key not in nm_tpl._fields: |
|
setattr(nm_tpl, key, ns[key]) |
|
return nm_tpl |
|
|
|
|
|
def NamedTuple(typename, fields=None, /, **kwargs): |
|
"""Typed version of namedtuple. |
|
|
|
Usage in Python versions >= 3.6:: |
|
|
|
class Employee(NamedTuple): |
|
name: str |
|
id: int |
|
|
|
This is equivalent to:: |
|
|
|
Employee = collections.namedtuple('Employee', ['name', 'id']) |
|
|
|
The resulting class has an extra __annotations__ attribute, giving a |
|
dict that maps field names to types. (The field names are also in |
|
the _fields attribute, which is part of the namedtuple API.) |
|
Alternative equivalent keyword syntax is also accepted:: |
|
|
|
Employee = NamedTuple('Employee', name=str, id=int) |
|
|
|
In Python versions <= 3.5 use:: |
|
|
|
Employee = NamedTuple('Employee', [('name', str), ('id', int)]) |
|
""" |
|
if fields is None: |
|
fields = kwargs.items() |
|
elif kwargs: |
|
raise TypeError("Either list of fields or keywords" |
|
" can be provided to NamedTuple, not both") |
|
try: |
|
module = sys._getframe(1).f_globals.get('__name__', '__main__') |
|
except (AttributeError, ValueError): |
|
module = None |
|
return _make_nmtuple(typename, fields, module=module) |
|
|
|
_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {}) |
|
|
|
def _namedtuple_mro_entries(bases): |
|
if len(bases) > 1: |
|
raise TypeError("Multiple inheritance with NamedTuple is not supported") |
|
assert bases[0] is NamedTuple |
|
return (_NamedTuple,) |
|
|
|
NamedTuple.__mro_entries__ = _namedtuple_mro_entries |
|
|
|
|
|
class _TypedDictMeta(type): |
|
def __new__(cls, name, bases, ns, total=True): |
|
"""Create new typed dict class object. |
|
|
|
This method is called when TypedDict is subclassed, |
|
or when TypedDict is instantiated. This way |
|
TypedDict supports all three syntax forms described in its docstring. |
|
Subclasses and instances of TypedDict return actual dictionaries. |
|
""" |
|
for base in bases: |
|
if type(base) is not _TypedDictMeta: |
|
raise TypeError('cannot inherit from both a TypedDict type ' |
|
'and a non-TypedDict base class') |
|
tp_dict = type.__new__(_TypedDictMeta, name, (dict,), ns) |
|
|
|
annotations = {} |
|
own_annotations = ns.get('__annotations__', {}) |
|
own_annotation_keys = set(own_annotations.keys()) |
|
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type" |
|
own_annotations = { |
|
n: _type_check(tp, msg, module=tp_dict.__module__) |
|
for n, tp in own_annotations.items() |
|
} |
|
required_keys = set() |
|
optional_keys = set() |
|
|
|
for base in bases: |
|
annotations.update(base.__dict__.get('__annotations__', {})) |
|
required_keys.update(base.__dict__.get('__required_keys__', ())) |
|
optional_keys.update(base.__dict__.get('__optional_keys__', ())) |
|
|
|
annotations.update(own_annotations) |
|
if total: |
|
required_keys.update(own_annotation_keys) |
|
else: |
|
optional_keys.update(own_annotation_keys) |
|
|
|
tp_dict.__annotations__ = annotations |
|
tp_dict.__required_keys__ = frozenset(required_keys) |
|
tp_dict.__optional_keys__ = frozenset(optional_keys) |
|
if not hasattr(tp_dict, '__total__'): |
|
tp_dict.__total__ = total |
|
return tp_dict |
|
|
|
__call__ = dict # static method |
|
|
|
def __subclasscheck__(cls, other): |
|
# Typed dicts are only for static structural subtyping. |
|
raise TypeError('TypedDict does not support instance and class checks') |
|
|
|
__instancecheck__ = __subclasscheck__ |
|
|
|
|
|
def TypedDict(typename, fields=None, /, *, total=True, **kwargs): |
|
"""A simple typed namespace. At runtime it is equivalent to a plain dict. |
|
|
|
TypedDict creates a dictionary type that expects all of its |
|
instances to have a certain set of keys, where each key is |
|
associated with a value of a consistent type. This expectation |
|
is not checked at runtime but is only enforced by type checkers. |
|
Usage:: |
|
|
|
class Point2D(TypedDict): |
|
x: int |
|
y: int |
|
label: str |
|
|
|
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK |
|
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check |
|
|
|
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first') |
|
|
|
The type info can be accessed via the Point2D.__annotations__ dict, and |
|
the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets. |
|
TypedDict supports two additional equivalent forms:: |
|
|
|
Point2D = TypedDict('Point2D', x=int, y=int, label=str) |
|
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str}) |
|
|
|
By default, all keys must be present in a TypedDict. It is possible |
|
to override this by specifying totality. |
|
Usage:: |
|
|
|
class point2D(TypedDict, total=False): |
|
x: int |
|
y: int |
|
|
|
This means that a point2D TypedDict can have any of the keys omitted.A type |
|
checker is only expected to support a literal False or True as the value of |
|
the total argument. True is the default, and makes all items defined in the |
|
class body be required. |
|
|
|
The class syntax is only supported in Python 3.6+, while two other |
|
syntax forms work for Python 2.7 and 3.2+ |
|
""" |
|
if fields is None: |
|
fields = kwargs |
|
elif kwargs: |
|
raise TypeError("TypedDict takes either a dict or keyword arguments," |
|
" but not both") |
|
|
|
ns = {'__annotations__': dict(fields)} |
|
try: |
|
# Setting correct module is necessary to make typed dict classes pickleable. |
|
ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__') |
|
except (AttributeError, ValueError): |
|
pass |
|
|
|
return _TypedDictMeta(typename, (), ns, total=total) |
|
|
|
_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {}) |
|
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,) |
|
|
|
|
|
def NewType(name, tp): |
|
"""NewType creates simple unique types with almost zero |
|
runtime overhead. NewType(name, tp) is considered a subtype of tp |
|
by static type checkers. At runtime, NewType(name, tp) returns |
|
a dummy function that simply returns its argument. Usage:: |
|
|
|
UserId = NewType('UserId', int) |
|
|
|
def name_by_id(user_id: UserId) -> str: |
|
... |
|
|
|
UserId('user') # Fails type check |
|
|
|
name_by_id(42) # Fails type check |
|
name_by_id(UserId(42)) # OK |
|
|
|
num = UserId(5) + 1 # type: int |
|
""" |
|
|
|
def new_type(x): |
|
return x |
|
|
|
new_type.__name__ = name |
|
new_type.__supertype__ = tp |
|
return new_type |
|
|
|
|
|
# Python-version-specific alias (Python 2: unicode; Python 3: str) |
|
Text = str |
|
|
|
|
|
# Constant that's True when type checking, but False here. |
|
TYPE_CHECKING = False |
|
|
|
|
|
class IO(Generic[AnyStr]): |
|
"""Generic base class for TextIO and BinaryIO. |
|
|
|
This is an abstract, generic version of the return of open(). |
|
|
|
NOTE: This does not distinguish between the different possible |
|
classes (text vs. binary, read vs. write vs. read/write, |
|
append-only, unbuffered). The TextIO and BinaryIO subclasses |
|
below capture the distinctions between text vs. binary, which is |
|
pervasive in the interface; however we currently do not offer a |
|
way to track the other distinctions in the type system. |
|
""" |
|
|
|
__slots__ = () |
|
|
|
@property |
|
@abstractmethod |
|
def mode(self) -> str: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def name(self) -> str: |
|
pass |
|
|
|
@abstractmethod |
|
def close(self) -> None: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def closed(self) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def fileno(self) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def flush(self) -> None: |
|
pass |
|
|
|
@abstractmethod |
|
def isatty(self) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def read(self, n: int = -1) -> AnyStr: |
|
pass |
|
|
|
@abstractmethod |
|
def readable(self) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def readline(self, limit: int = -1) -> AnyStr: |
|
pass |
|
|
|
@abstractmethod |
|
def readlines(self, hint: int = -1) -> List[AnyStr]: |
|
pass |
|
|
|
@abstractmethod |
|
def seek(self, offset: int, whence: int = 0) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def seekable(self) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def tell(self) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def truncate(self, size: int = None) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def writable(self) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def write(self, s: AnyStr) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def writelines(self, lines: List[AnyStr]) -> None: |
|
pass |
|
|
|
@abstractmethod |
|
def __enter__(self) -> 'IO[AnyStr]': |
|
pass |
|
|
|
@abstractmethod |
|
def __exit__(self, type, value, traceback) -> None: |
|
pass |
|
|
|
|
|
class BinaryIO(IO[bytes]): |
|
"""Typed version of the return of open() in binary mode.""" |
|
|
|
__slots__ = () |
|
|
|
@abstractmethod |
|
def write(self, s: Union[bytes, bytearray]) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def __enter__(self) -> 'BinaryIO': |
|
pass |
|
|
|
|
|
class TextIO(IO[str]): |
|
"""Typed version of the return of open() in text mode.""" |
|
|
|
__slots__ = () |
|
|
|
@property |
|
@abstractmethod |
|
def buffer(self) -> BinaryIO: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def encoding(self) -> str: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def errors(self) -> Optional[str]: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def line_buffering(self) -> bool: |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def newlines(self) -> Any: |
|
pass |
|
|
|
@abstractmethod |
|
def __enter__(self) -> 'TextIO': |
|
pass |
|
|
|
|
|
class io: |
|
"""Wrapper namespace for IO generic classes.""" |
|
|
|
__all__ = ['IO', 'TextIO', 'BinaryIO'] |
|
IO = IO |
|
TextIO = TextIO |
|
BinaryIO = BinaryIO |
|
|
|
|
|
io.__name__ = __name__ + '.io' |
|
sys.modules[io.__name__] = io |
|
|
|
Pattern = _alias(stdlib_re.Pattern, 1) |
|
Match = _alias(stdlib_re.Match, 1) |
|
|
|
class re: |
|
"""Wrapper namespace for re type aliases.""" |
|
|
|
__all__ = ['Pattern', 'Match'] |
|
Pattern = Pattern |
|
Match = Match |
|
|
|
|
|
re.__name__ = __name__ + '.re' |
|
sys.modules[re.__name__] = re |