Record-high CO2 emissions from boreal fires in 2021
Emission emergency
Carbon dioxide emissions from boreal forest fires have been increasing since at least the year 2000, reaching a new high in 2021, Zheng et al. report. Although boreal fires typically produce about 10% of global carbon dioxide emissions from wildfires, in 2021 they produced nearly one quarter of the total. This abnormally high total resulted from the concurrence of water deficits in North America and Eurasia, which was an unusual situation. The increasing number of extreme wildfires that is accompanying global warming presents a real challenge to global climate change mitigation efforts. âHJS
Abstract
Extreme wildfires are becoming more common and increasingly affecting Earthâs climate. Wildfires in boreal forests have attracted much less attention than those in tropical forests, although boreal forests are one of the most extensive biomes on Earth and are experiencing the fastest warming. We used a satellite-based atmospheric inversion system to monitor fire emissions in boreal forests. Wildfires are rapidly expanding into boreal forests with emerging warmer and drier fire seasons. Boreal fires, typically accounting for 10% of global fire carbon dioxide emissions, contributed 23% (0.48 billion metric tons of carbon) in 2021, by far the highest fraction since 2000. 2021 was an abnormal year because North American and Eurasian boreal forests synchronously experienced their greatest water deficit. Increasing numbers of extreme boreal fires and stronger climateâfire feedbacks challenge climate mitigation efforts.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
References and Notes
1
G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, P. S. Kasibhatla, Global fire emissions estimates during 1997â2016. Earth Syst. Sci. Data9, 697â720 (2017).
2
S. P. K. Bowring, M. W. Jones, P. Ciais, B. Guenet, S. Abiven, Pyrogenic carbon decomposition critical to resolving fireâs role in the Earth system. Nat. Geosci.15, 135â142 (2022).
3
Y. Yin, A. A. Bloom, J. Worden, S. Saatchi, Y. Yang, M. Williams, J. Liu, Z. Jiang, H. Worden, K. Bowman, C. Frankenberg, D. Schimel, Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun.11, 1900 (2020).
4
P. Friedlingstein, M. W. Jones, M. OâSullivan, R. M. Andrew, D. C. E. Bakker, J. Hauck, C. Le Quéré, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, P. Anthoni, N. R. Bates, M. Becker, N. Bellouin, L. Bopp, T. T. T. Chau, F. Chevallier, L. P. Chini, M. Cronin, K. I. Currie, B. Decharme, L. M. Djeutchouang, X. Dou, W. Evans, R. A. Feely, L. Feng, T. Gasser, D. Gilfillan, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ã. Gürses, I. Harris, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, I. T. Luijkx, A. Jain, S. D. Jones, E. Kato, D. Kennedy, K. Klein Goldewijk, J. Knauer, J. I. Korsbakken, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, S. Lienert, J. Liu, G. Marland, P. C. McGuire, J. R. Melton, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, T. Ono, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T. M. Rosan, J. Schwinger, C. Schwingshackl, R. Séférian, A. J. Sutton, C. Sweeney, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, F. Tubiello, G. R. van der Werf, N. Vuichard, C. Wada, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, C. Yue, X. Yue, S. Zaehle, J. Zeng, Global Carbon Budget 2021. Earth Syst. Sci. Data14, 1917â2005 (2022).
5
B. Zheng, P. Ciais, F. Chevallier, E. Chuvieco, Y. Chen, H. Yang, Increasing forest fire emissions despite the decline in global burned area. Sci. Adv.7, eabh2646 (2021).
6
I. R. van der Velde, G. R. van der Werf, S. Houweling, J. D. Maasakkers, T. Borsdorff, J. Landgraf, P. Tol, T. A. van Kempen, R. van Hees, R. Hoogeveen, J. P. Veefkind, I. Aben, Vast CO2 release from Australian fires in 2019â2020 constrained by satellite. Nature597, 366â369 (2021).
7
R. D. Field, G. R. van der Werf, T. Fanin, E. J. Fetzer, R. Fuller, H. Jethva, R. Levy, N. J. Livesey, M. Luo, O. Torres, H. M. Worden, Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A.113, 9204â9209 (2016).
8
J. Liu, K. W. Bowman, D. S. Schimel, N. C. Parazoo, Z. Jiang, M. Lee, A. A. Bloom, D. Wunch, C. Frankenberg, Y. Sun, C. W. OâDell, K. R. Gurney, D. Menemenlis, M. Gierach, D. Crisp, A. Eldering, Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science358, eaam5690 (2017).
9
M. Senande-Rivera, D. Insua-Costa, G. Miguez-Macho, Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun.13, 1208 (2022).
10
J. T. Abatzoglou, A. P. Williams, R. Barbero, Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett.46, 326â336 (2019).
11
M. W. Jones, J. T. Abatzoglou, S. Veraverbeke, N. Andela, G. Lasslop, M. Forkel, A. J. P. Smith, C. Burton, R. A. Betts, G. R. van der Werf, S. Sitch, J. G. Canadell, C. SantÃn, C. Kolden, S. H. Doerr, C. Le Quéré, Global and regional trends and drivers of fire under climate change. Rev. Geophys.60, e2020RG000726 (2022).
12
M. Scheffer, M. Hirota, M. Holmgren, E. H. Van Nes, F. S. Chapin 3rd, Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. U.S.A.109, 21384â21389 (2012).
13
J. T. Randerson, H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. C. Mack, K. K. Treseder, L. R. Welp, F. S. Chapin, J. W. Harden, M. L. Goulden, E. Lyons, J. C. Neff, E. A. G. Schuur, C. S. Zender, The impact of boreal forest fire on climate warming. Science314, 1130â1132 (2006).
14
Z. Liu, A. P. Ballantyne, L. A. Cooper, Biophysical feedback of global forest fires on surface temperature. Nat. Commun.10, 214 (2019).
15
E. Chuvieco, F. Mouillot, G. R. van der Werf, J. San Miguel, M. Tanase, N. Koutsias, M. GarcÃa, M. Yebra, M. Padilla, I. Gitas, A. Heil, T. J. Hawbaker, L. Giglio, Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ.225, 45â64 (2019).
16
J. W. Kaiser, A. Heil, M. O. Andreae, A. Benedetti, N. Chubarova, L. Jones, J.-J. Morcrette, M. Razinger, M. G. Schultz, M. Suttie, G. R. van der Werf, Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences9, 527â554 (2012).
17
R. Ramo, E. Roteta, I. Bistinas, D. van Wees, A. Bastarrika, E. Chuvieco, G. R. van der Werf, African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. U.S.A.118, e2011160118 (2021).
18
T. T. van Leeuwen, G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald, J. A. Carvalho Jr., G. D. Cook, W. J. de Groot, C. Hély, E. S. Kasischke, S. Kloster, J. L. McCarty, M. L. Pettinari, P. Savadogo, E. C. Alvarado, L. Boschetti, S. Manuri, C. P. Meyer, F. Siegert, L. A. Trollope, W. S. W. Trollope, Biomass burning fuel consumption rates: A field measurement database. Biogeosciences11, 7305â7329 (2014).
19
M. O. Andreae, Emission of trace gases and aerosols from biomass burning â an updated assessment. Atmos. Chem. Phys.19, 8523â8546 (2019).
20
B. Zheng, F. Chevallier, P. Ciais, Y. Yin, Y. Wang, On the role of the flaming to smoldering transition in the seasonal cycle of African fire emissions. Geophys. Res. Lett.45, 11,998â12,007 (2018).
21
M. N. Deeter, D. Mao, S. MartÃnez-Alonso, H. M. Worden, M. O. Andreae, H. Schlager, Impacts of MOPITT cloud detection revisions on observation frequency and mapping of highly polluted scenes. Remote Sens. Environ.262, 112516 (2021).
22
R. R. Buchholz, H. M. Worden, M. Park, G. Francis, M. N. Deeter, D. P. Edwards, L. K. Emmons, B. Gaubert, J. Gille, S. MartÃnez-Alonso, W. Tang, R. Kumar, J. R. Drummond, C. Clerbaux, M. George, P.-F. Coheur, D. Hurtmans, K. W. Bowman, M. Luo, V. H. Payne, J. R. Worden, M. Chin, R. C. Levy, J. Warner, Z. Wei, S. S. Kulawik, Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sens. Environ.256, 112275 (2021).
23
B. Zheng, F. Chevallier, Y. Yin, P. Ciais, A. Fortems-Cheiney, M. N. Deeter, R. J. Parker, Y. Wang, H. M. Worden, Y. Zhao, Global atmospheric carbon monoxide budget 2000â2017 inferred from multi-species atmospheric inversions. Earth Syst. Sci. Data11, 1411â1436 (2019).
24
Y. Yin, F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison, M. Saunois, Decadal trends in global CO emissions as seen by MOPITT. Atmos. Chem. Phys.15, 13433â13451 (2015).
25
Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. F. Arellano, D. K. Henze, A 15-year record of CO emissions constrained by MOPITT CO observations. Atmos. Chem. Phys.17, 4565â4583 (2017).
26
Y. Yin, P. Ciais, F. Chevallier, G. R. van der Werf, T. Fanin, G. Broquet, H. Boesch, A. Cozic, D. Hauglustaine, S. Szopa, Y. Wang, Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophys. Res. Lett.43, 10,472â10,479 (2016).
27
N. Nechita-Banda, M. Krol, G. R. van der Werf, J. W. Kaiser, S. Pandey, V. Huijnen, C. Clerbaux, P. Coheur, M. N. Deeter, T. Röckmann, Monitoring emissions from the 2015 Indonesian fires using CO satellite data. Philos. Trans. R. Soc. Lond. B Biol. Sci.373, 20170307 (2018).
28
M. Krol, W. Peters, P. Hooghiemstra, M. George, C. Clerbaux, D. Hurtmans, D. McInerney, F. Sedano, P. Bergamaschi, M. El Hajj, J. W. Kaiser, D. Fisher, V. Yershov, J.-P. Muller, How much CO was emitted by the 2010 fires around Moscow?Atmos. Chem. Phys.13, 4737â4747 (2013).
29
B. Zheng, F. Chevallier, P. Ciais, Y. Yin, M. N. Deeter, H. M. Worden, Y. Wang, Q. Zhang, K. He, Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett.13, 044007 (2018).
30
M. Deeter, G. Francis, J. Gille, D. Mao, S. MartÃnez-Alonso, H. Worden, D. Ziskin, J. Drummond, R. Commane, G. Diskin, K. McKain, The MOPITT Version 9 CO product: Sampling enhancements and validation. Atmos. Meas. Tech.15, 2325â2344 (2022).
31
Z. Liu, P. Ciais, Z. Deng, S. J. Davis, B. Zheng, Y. Wang, D. Cui, B. Zhu, X. Dou, P. Ke, T. Sun, R. Guo, H. Zhong, O. Boucher, F.-M. Bréon, C. Lu, R. Guo, J. Xue, E. Boucher, K. Tanaka, F. Chevallier, Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Sci. Data7, 392 (2020).
32
Z. Liu, P. Ciais, Z. Deng, R. Lei, S. J. Davis, S. Feng, B. Zheng, D. Cui, X. Dou, B. Zhu, R. Guo, P. Ke, T. Sun, C. Lu, P. He, Y. Wang, X. Yue, Y. Wang, Y. Lei, H. Zhou, Z. Cai, Y. Wu, R. Guo, T. Han, J. Xue, O. Boucher, E. Boucher, F. Chevallier, K. Tanaka, Y. Wei, H. Zhong, C. Kang, N. Zhang, B. Chen, F. Xi, M. Liu, F.-M. Bréon, Y. Lu, Q. Zhang, D. Guan, P. Gong, D. M. Kammen, K. He, H. J. Schellnhuber, Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun.11, 5172 (2020).
33
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.-N. Thépaut, The ERA5 global reanalysis. Q. J. R. Meteorol. Soc.146, 1999â2049 (2020).
34
N. Andela, G. R. van der Werf, Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Chang.4, 791â795 (2014).
35
N. Andela, D. C. Morton, L. Giglio, Y. Chen, G. R. van der Werf, P. S. Kasibhatla, R. S. DeFries, G. J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, C. Yue, J. T. Randerson, A human-driven decline in global burned area. Science356, 1356â1362 (2017).
36
L. Giglio, L. Boschetti, D. P. Roy, M. L. Humber, C. O. Justice, The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ.217, 72â85 (2018).
37
A. Tyukavina, P. Potapov, M. C. Hansen, A. H. Pickens, S. V. Stehman, S. Turubanova, D. Parker, V. Zalles, A. Lima, I. Kommareddy, X.-P. Song, L. Wang, N. Harris, Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens.3, 825190 (2022).
38
R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, X. Wang, Development of a Global Fire Weather Database. Nat. Hazards Earth Syst. Sci.15, 1407â1423 (2015).
39
A. Burrell, E. Kukavskaya, R. Baxter, Q. Sun, K. Barrett, in Ecosystem Collapse and Climate Change, J. G. Canadell, R. B. Jackson, Eds. (Springer International Publishing, Cham, 2021), pp. 69â100.
40
Y. Chen, D. M. Romps, J. T. Seeley, S. Veraverbeke, W. J. Riley, Z. A. Mekonnen, J. T. Randerson, Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang.11, 404â410 (2021).
41
D. L. Finney, Lightning threatens permafrost. Nat. Clim. Chang.11, 379â380 (2021).
42
T. D. Hessilt, J. T. Abatzoglou, Y. Chen, J. T. Randerson, R. C. Scholten, G. R. van der Werf, S. Veraverbeke, Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett.17, 054008 (2022).
43
B. Zheng, Global fire CO2 emissions 2000-2021, Figshare (2023); https://doi.org/10.6084/m9.figshare.21770624.
44
F. Chevallier, M. Fisher, P. Peylin, S. Serrar, P. Bousquet, F.-M. Bréon, A. Chédin, P. Ciais, Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res.110 (D24), D24309 (2005).
45
F. Chevallier, A. Fortems, P. Bousquet, I. Pison, S. Szopa, M. Devaux, D. A. Hauglustaine, African CO emissions between years 2000 and 2006 as estimated from MOPITT observations. Biogeosciences6, 103â111 (2009).
46
A. Fortems-Cheiney, F. Chevallier, I. Pison, P. Bousquet, S. Szopa, M. N. Deeter, C. Clerbaux, Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT). J. Geophys. Res.116, D05304 (2011).
47
S. L. Lewis, D. P. Edwards, D. Galbraith, Increasing human dominance of tropical forests. Science349, 827â832 (2015).
48
W. Li, N. MacBean, P. Ciais, P. Defourny, C. Lamarche, S. Bontemps, R. A. Houghton, S. Peng, Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992â2015). Earth Syst. Sci. Data10, 219â234 (2018).
(0)eLetters
eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.
Log In to Submit a ResponseNo eLetters have been published for this article yet.
Information & Authors
Information
Published In

Science
Volume 379 | Issue 6635
3 March 2023
3 March 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an article distributed under the terms of the Science Journals Default License.
Article versions
Submission history
Received: 23 July 2022
Accepted: 19 January 2023
Published in print: 3 March 2023
Acknowledgments
Funding: This work was supported by the Young Elite Scientists Sponsorship Program by CAST grant YESS20200135 (B.Z.), National Natural Science Foundation of China grant 41921005 (Q.Z.), and Scientific Research Start-up Funds from Tsinghua Shenzhen International Graduate School grant QD2021024C (B.Z.). H.Y. was supported by grant 50EE1904 funded by the German Federal Ministry of Economics and Technology.
Author contributions: Conceptualization: B.Z. and Q.Z. Methodology: B.Z., P.C., and F.C. Investigation: B.Z., P.C., H.Y., J.G.C., Y.C., and X.L. Visualization: B.Z. Funding acquisition: B.Z. and Q.Z. Project administration: B.Z. Supervision: B.Z., Q.Z., and K.H. Writing â original draft: B.Z. Writing â review and editing: B.Z., P.C., F.C., J.G.C., Y.C., E.C., M.D., C.H., Y.K., Ha.L., Hu.L., I.R.v.d.V., I.A., S.J.D., and Q.Z.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: The MOPITT Version 9 products are available from NASA through the Earthdata portal (https://earthdata.nasa.gov/) or directly from the ASDC archive (https://asdc.larc.nasa.gov/data/MOPITT/). The GFED 4.1s fire emissions data can be derived from https://www.geo.vu.nl/~gwerf/GFED/GFED4/. The CEDS anthropogenic emissions data files can be accessed through https://data.pnnl.gov/dataset/CEDS-4-21-21. The country- and sector-level CO2 emission growth rates are derived from the Carbon Monitor project (https://carbonmonitor.org/). The ERA5 reanalysis data can be derived from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The inversion-based global gridded fire CO2 emissions data are available from (43). The global atmospheric inversion system used in this study can be accessed through http://community-inversion.eu/installation.html#getting-the-code. License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse
Authors
Funding Information
Young Elite Scientists Sponsorship Program by CAST: YESS20200135
Scientific Research Start-up Funds from Tsinghua Shenzhen International Graduate School: QD2021024C
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
View Options
Check Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.