Abstract
There is growing scientific1,2 and political3,4 interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased at twice the global rate, largely as a result of iceâalbedo and temperature feedbacks5,6,7,8. Although deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short-lived climate forcers (SLCFs; refs 9,10). Politically, action on SLCFs may be particularly promising because the benefits of mitigation are seen more quickly than for mitigation of CO2 and there are large co-benefits in terms of improved air quality11. This Letter is one of the first to systematically quantify the Arctic climate impact of regional SLCFs emissions, taking into account black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), organic carbon (OC) and tropospheric ozone (O3), and their transport processes and transformations in the atmosphere. This study extends the scope of previous works2,12 by including more detailed calculations of Arctic radiative forcing and quantifying the Arctic temperature response. We find that the largest Arctic warming source is from emissions within the Asian nations owing to the large absolute amount of emissions. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible mitigation scenario for SLCFs, phased in from 2015 to 2030, could cut warming by 0.2 (±0.17)âK in 2050.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
209,00 ⬠per year
only 17,42 ⬠per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Fyfe, J. C. et al. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci. Rep. 3, 2645 (2013).
Quinn, P. K. et al. The Impact of Black Carbon on Arctic Climate (Arctic Monitoring and Assessment Programme (AMAP), 2011).
Time to Act to Reduce Short-lived Climate Pollutants (Climate and Clean Air Coalition, UNEP, 2014); http://www.unep.org/ccac/Portals/50162/docs/publications/Time_To_Act/SLCP_TimeToAct_lores.pdf.
Summary for Policy-makers: Arctic Climate Issues 2015 (Monitoring and Assessment Programme (AMAP), 2015).
Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159â254 (IPCC, Cambridge Univ. Press, 2013).
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334â1337 (2010).
Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).
Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geosci. 7, 181â184 (2014).
Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers (UNEP, 2011); http://www.unep.org/publications/ebooks/slcf.
Shindell, D. T. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183â189 (2012).
Iyer, G. C. et al. Improved representation of investment decisions in assessments of CO2âmitigation. Nature Clim. Change 5, 436â440 (2015).
Quinn, P. K. et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 8, 1723â1735 (2008).
Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423â428 (2004).
Jacobson, M. Z. Climate response of fossil fuel and biofuel soot, accounting for sootâs feedback to snow and sea ice albedo and emissivity. J. Geophys. Res. 109, D21201 (2004).
Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, 2156â2202 (2007).
Bond, T. C. et al. Bounding the role of black carbon in the climate system: AÂ scientific assessment. J. Geophys. Res. Atmos. 118, 5380â5552 (2013).
Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2nd edn (Wiley, 2006).
Shindell, D. T. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294â300 (2009).
Shindell, D. T. Evaluation of the absolute regional temperature potential. Atmos. Chem. Phys. 12, 7955â7960 (2012).
Collins, W. J. et al. Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys. 13, 2471â2485 (2013).
Flanner, M. G. Arctic climate sensitivity to local black carbon. J. Geophys. Res. Atmos. 118, 1840â1851 (2013).
Sand, M. et al. The Arctic response to remote and local forcing of black carbon. Atmos. Chem. Phys. 13, 211â224 (2013).
Klimont, Z. et al. ECLIPSE v4a: Global Emission Data Set Developed with the GAINS Model for the Period 2005 to 2050: Key Features and Principal Data Sources (International Institute for Applied Systems Analysis (IIASA), 2013); http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_login.jsf.
Stohl, A. et al. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 15, 10529â10566 (2015).
Najafi, M. R., Zwiers, F. W. & Gillett, N. P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nature Clim. Change 5, 246â249 (2015).
Amman, M. (ed.) Future Emissions of Air Pollutants in EuropeâCurrent Legislation Baseline and the Scope for Further Reductions TSAP Report No. 1, version 1.0 (DG-Environment of the European Commission, 2012).
Quaas, J. et al. Aerosol indirect effectsâgeneral circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697â8717 (2009).
van Vuuren, D. et al. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change 81, 119â159 (2007).
Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. 74, 887â935 (2007).
Victor, D. G. Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet (Cambridge Univ. Press, 2011).
Hansen, J. M. et al. Climate simulations for 1880â2003 with GISS modelE. Clim. Dynam. 29, 661â696 (2007).
Gettelman, A., Kay, J. E. & Shell, K. M. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453â1469 (2012).
Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36, 193â200 (2008).
Acknowledgements
This paper was developed as part of the Arctic Monitoring Assessment Programme (AMAP). The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007â2013) under grant agreement no 282688âECLIPSE. M.S. was supported by The Norwegian Research Council by grant number 235548/E10, CRAICC and through the NOTUR/Norstore project. K.v.S. acknowledges support by NSERC through the Canadian NETCARE research network. M.G.F. was also supported by NSF ARC-1253154. Contributions by SMHI were funded by the Swedish Environmental Protection Agency under contract NV-09414-12 and through the Swedish Clean Air and Climate Research Program (Scac).
Author information
Authors and Affiliations
Contributions
M.G.F., K.v.S., J.L., T.K.B. and M.S. conceived, designed and performed the model simulations and analysed the data; M.S. made the figures and led the writing of the paper. All authors contributed to the writing of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Sand, M., Berntsen, T., von Salzen, K. et al. Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nature Clim Change 6, 286â289 (2016). https://doi.org/10.1038/nclimate2880
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2880
This article is cited by
-
Black carbon scavenging by low-level Arctic clouds
Nature Communications (2023)
-
Estimate Ground-based PM2.5 concentrations with Merra-2 aerosol components in Tehran, Iran: Merra-2 PM2.5 concentrations verification and meteorological dependence
Environment, Development and Sustainability (2023)
-
Quantifying contributions of ozone changes to global and arctic warming during the second half of the twentieth century
Climate Dynamics (2023)
-
Up in the aerosol
Nature Geoscience (2022)
-
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Nature Geoscience (2022)