Nature Neurosciencehttps://www.nature.com/uploads/product/neuro/rss.gif
http://feeds.nature.com/neuro/rss/current
https://www.nature.com/articles/s41593-025-01962-x
Nature Neuroscience, Published online: 29 May 2025; doi:10.1038/s41593-025-01962-xThe neuronal composition of the intestinal submucosal plexus is incompletely understood. Here Li et al. define their neuron classes, connectome and stepwise acquisition of identities.]]>Wei LiKhomgrit MorarachZiwei LiuSanghita BanerjeeYanan ChenAshley L. HarbJoel M. KosareffCharles R. HallFernando López-RedondoElham JalalvandSuad H. MohamedAnastassia MikhailovaDavid R. LindenUlrika Marklunddoi:10.1038/s41593-025-01962-xNature Neuroscience, Published online: 2025-05-29; | doi:10.1038/s41593-025-01962-x2025-05-29Nature Neuroscience10.1038/s41593-025-01962-xhttps://www.nature.com/articles/s41593-025-01962-x
https://www.nature.com/articles/s41593-025-01980-9
Nature Neuroscience, Published online: 28 May 2025; doi:10.1038/s41593-025-01980-9How does the brain learn to predict rewards? In this issue of Nature Neuroscience, Qian, Burrell et al. show that understanding how dopamine guides learning requires knowledge of how animals interpret tasks â what they believe is happening and when. By carefully manipulating cueâreward contingencies, the authors show that dopamine responses track belief-state reward prediction errors. These findings reaffirm â against recent challenges â that mesolimbic dopamine neurons signal prediction errors in line with the temporal difference learning rule, a core algorithm that bridges neuroscience and artificial intelligence.]]>Eleonora BanoSteven RyuAdam Kepecsdoi:10.1038/s41593-025-01980-9Nature Neuroscience, Published online: 2025-05-28; | doi:10.1038/s41593-025-01980-92025-05-28Nature Neuroscience10.1038/s41593-025-01980-9https://www.nature.com/articles/s41593-025-01980-9
https://www.nature.com/articles/s41593-025-01972-9
Nature Neuroscience, Published online: 28 May 2025; doi:10.1038/s41593-025-01972-9The choroid plexus (ChP) provides molecular cues for brain development. However, the underlying mechanisms are unclear. This study identifies an apocrine secretion mechanism in the ChP that modulates the CSF protein composition and instructs cortical development.]]>Yaâel CourtneyJoshua P. HeadNeil DaniOlga V. ChechnevaFrederick B. ShipleyYong ZhangMichael J. HoltzmanCameron SadeghTowia A. LibermannMaria K. Lehtinendoi:10.1038/s41593-025-01972-9Nature Neuroscience, Published online: 2025-05-28; | doi:10.1038/s41593-025-01972-92025-05-28Nature Neuroscience10.1038/s41593-025-01972-9https://www.nature.com/articles/s41593-025-01972-9
https://www.nature.com/articles/s41593-025-01975-6
Nature Neuroscience, Published online: 28 May 2025; doi:10.1038/s41593-025-01975-6Animals need to adapt behavior to balance survival with fulfillment of essential needs. Krauth et al. identify neurons in the lateral hypothalamus that, when activated, prioritize survival over other critical needs by triggering an appropriate motor action.]]>Nathalie KrauthLara K. SachGiacomo SitziaChristoffer ClemmensenOle Kiehndoi:10.1038/s41593-025-01975-6Nature Neuroscience, Published online: 2025-05-28; | doi:10.1038/s41593-025-01975-62025-05-28Nature Neuroscience10.1038/s41593-025-01975-6https://www.nature.com/articles/s41593-025-01975-6
https://www.nature.com/articles/s41593-025-01966-7
Nature Neuroscience, Published online: 27 May 2025; doi:10.1038/s41593-025-01966-7Parhizkar et al. show that lemborexant, an orexin receptor antagonist, protects against neurodegeneration in male tau transgenic mice by preventing tau protein build-up and inflammation, highlighting its potential for preventing neurodegeneration.]]>Samira ParhizkarXin BaoWei ChenNicholas RensingYun ChenMichal KipnisSihui SongGrace GentEric TycksenMelissa ManisChoonghee LeeJavier Remolina SerranoMegan E. BoschEmily FrankeCarla M. YuedeEric C. LandsnessMichael WongDavid M. Holtzmandoi:10.1038/s41593-025-01966-7Nature Neuroscience, Published online: 2025-05-27; | doi:10.1038/s41593-025-01966-72025-05-27Nature Neuroscience10.1038/s41593-025-01966-7https://www.nature.com/articles/s41593-025-01966-7
https://www.nature.com/articles/s41593-025-01979-2
Nature Neuroscience, Published online: 27 May 2025; doi:10.1038/s41593-025-01979-2The microgliaâneuron interactions contributing to neuronal hyperexcitability are unclear. Here, the authors show how GABA and C3 signaling coordinate microglial engulfment of inhibitory synapses, driving excitatoryâinhibitory imbalance and neuronal hyperexcitability in epilepsy.]]>Zhang-Peng ChenXiansen ZhaoSuji WangRuolan CaiQiangqiang LiuHaojie YeMeng-Ju WangShi-Yu PengWei-Xuan XueYang-Xun ZhangWei LiHua TangTengfei HuangQipeng ZhangLiang LiLixia GaoHong ZhouChunhua HangJing-Ning ZhuXinjian LiXiangyu LiuQifei CongChao Yandoi:10.1038/s41593-025-01979-2Nature Neuroscience, Published online: 2025-05-27; | doi:10.1038/s41593-025-01979-22025-05-27Nature Neuroscience10.1038/s41593-025-01979-2https://www.nature.com/articles/s41593-025-01979-2
https://www.nature.com/articles/s41593-025-01964-9
Nature Neuroscience, Published online: 26 May 2025; doi:10.1038/s41593-025-01964-9Rogers et al. show that psilocybin enhances fear extinction, suppresses fear neurons and recruits extinction neurons in the retrosplenial cortex in mice, providing evidence that its effects are linked to individual-neuron reorganization.]]>Sophie A. RogersElizabeth A. HellerGregory Corderdoi:10.1038/s41593-025-01964-9Nature Neuroscience, Published online: 2025-05-26; | doi:10.1038/s41593-025-01964-92025-05-26Nature Neuroscience10.1038/s41593-025-01964-9https://www.nature.com/articles/s41593-025-01964-9
https://www.nature.com/articles/s41593-025-01929-y
Nature Neuroscience, Published online: 22 May 2025; doi:10.1038/s41593-025-01929-yAging induces pathological changes in central nervous system (CNS) myelin, which in turn induce microglia dysregulation. What is the consequence of this microglial response on white matter pathology in aging? Groh et al. show that a maladaptive white matter-associated microglia state that emerges in aging recruits peripheral T cells to the CNS, which leads to degeneration of myelinated axons and loss of function.]]>Jonathan K. MonteiroVeronique E. Mirondoi:10.1038/s41593-025-01929-yNature Neuroscience, Published online: 2025-05-22; | doi:10.1038/s41593-025-01929-y2025-05-22Nature Neuroscience10.1038/s41593-025-01929-yhttps://www.nature.com/articles/s41593-025-01929-y