Nature Geoscience Nature Geoscience is a monthly journal dedicated to publishing high-quality original research papers across all areas of the geosciences. The journal’s content reflects all the disciplines within the geosciences, including studies of the Earth’s climate system, the solid Earth and the planets. Nature Geoscience covers studies based on all the methods used by geoscientists, ranging from field work and numerical modelling on regional and global scales to theoretical studies and remote sensing. Physical, chemical and biological investigations that contribute to our understanding of the Earth system or the planets are all represented. http://feeds.nature.com/ngeo/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Geoscience © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Geoscience https://www.nature.com/uploads/product/ngeo/rss.gif http://feeds.nature.com/ngeo/rss/current <![CDATA[Large contribution of antecedent climate to ecosystem productivity anomalies during extreme events]]> https://www.nature.com/articles/s41561-025-01856-4 <![CDATA[

    Nature Geoscience, Published online: 21 November 2025; doi:10.1038/s41561-025-01856-4

    Extreme events driven by long-term variations in precipitation, temperature and vapour pressure deficit often result in greater losses in ecosystem productivity than short-term extremes, according to an analysis of global eddy covariance flux data from 1995 to 2020.]]>
    <![CDATA[Large contribution of antecedent climate to ecosystem productivity anomalies during extreme events]]> Jinghao QiuYao ZhangMengyang CaiTrevor F. KeenanHongying ZhangPierre GentineXiangzhong LuoMitra CattrySha ZhouShilong Piao doi:10.1038/s41561-025-01856-4 Nature Geoscience, Published online: 2025-11-21; | doi:10.1038/s41561-025-01856-4 2025-11-21 Nature Geoscience 10.1038/s41561-025-01856-4 https://www.nature.com/articles/s41561-025-01856-4
    <![CDATA[Consumers of nitrite help nitrite accumulate in anoxic oceanic zones]]> https://www.nature.com/articles/s41561-025-01850-w <![CDATA[

    Nature Geoscience, Published online: 20 November 2025; doi:10.1038/s41561-025-01850-w

    Nitrite, a key player in the ocean’s nitrogen cycle, accumulates in deoxygenated waters for reasons that remain unclear. Our chemostat and three-dimensional models showed that competition amongst aerobic (oxygen-dependent) and anaerobic (oxygen-independent) microbes, rather than a lack of nitrite consumers, contributes to nitrite’s accumulation in anoxic waters.]]>
    <![CDATA[Consumers of nitrite help nitrite accumulate in anoxic oceanic zones]]> doi:10.1038/s41561-025-01850-w Nature Geoscience, Published online: 2025-11-20; | doi:10.1038/s41561-025-01850-w 2025-11-20 Nature Geoscience 10.1038/s41561-025-01850-w https://www.nature.com/articles/s41561-025-01850-w
    <![CDATA[Continental rifting sweeps enriched mantle from the roots of continents into the oceanic mantle]]> https://www.nature.com/articles/s41561-025-01854-6 <![CDATA[

    Nature Geoscience, Published online: 18 November 2025; doi:10.1038/s41561-025-01854-6

    Geochemical heterogeneity in near-continent oceanic volcanism hints at overlooked mantle enrichment processes. Models and data from the Indian Ocean suggest that rift-related convective instabilities can disturb the ancient roots of continents. This process sweeps geochemically enriched domains into the oceanic asthenosphere over tens of millions of years, explaining the observed longevity of geochemical mantle anomalies.]]>
    <![CDATA[Continental rifting sweeps enriched mantle from the roots of continents into the oceanic mantle]]> doi:10.1038/s41561-025-01854-6 Nature Geoscience, Published online: 2025-11-18; | doi:10.1038/s41561-025-01854-6 2025-11-18 Nature Geoscience 10.1038/s41561-025-01854-6 https://www.nature.com/articles/s41561-025-01854-6
    <![CDATA[Author Correction: Antarctic ice-shelf collapse in Holocene driven by meltwater release feedbacks]]> https://www.nature.com/articles/s41561-025-01881-3 <![CDATA[

    Nature Geoscience, Published online: 18 November 2025; doi:10.1038/s41561-025-01881-3

    Author Correction: Antarctic ice-shelf collapse in Holocene driven by meltwater release feedbacks]]>
    <![CDATA[Author Correction: Antarctic ice-shelf collapse in Holocene driven by meltwater release feedbacks]]> Yusuke SuganumaTakuya ItakiYuki HanedaKazuya KusaharaTakashi ObaseTakeshige IshiwaTakayuki OmoriMinoru IkeharaRobert McKayOsamu SekiDaisuke HiranoMasakazu FujiiYuji KatoAtsuko AmanoYuki TokudaHokuto IwataniYoshiaki SuzukiMotohiro HirabayashiHiroyuki MatsuzakiTakeyasu YamagataMasao IwaiKota KatsukiFrancisco J. Jimenez-EspejoHiroki MatsuiKoji SeikeMoto KawamataNaohisa NishidaMasato ItoShin SugiyamaJun’ichi OkunoTakanobu SawagakiAyako Abe-OuchiShigeru AokiHideki Miura doi:10.1038/s41561-025-01881-3 Nature Geoscience, Published online: 2025-11-18; | doi:10.1038/s41561-025-01881-3 2025-11-18 Nature Geoscience 10.1038/s41561-025-01881-3 https://www.nature.com/articles/s41561-025-01881-3
    <![CDATA[Future extreme precipitation amplified by intensified mesoscale moisture convergence]]> https://www.nature.com/articles/s41561-025-01859-1 <![CDATA[

    Nature Geoscience, Published online: 18 November 2025; doi:10.1038/s41561-025-01859-1

    Extreme daily precipitation events over land could increase by about 41% by 2100 under a high-emissions scenario with an increase in mesoscale moisture convergence, according to an ensemble of climate simulations with a resolution of 10–25 km.]]>
    <![CDATA[Future extreme precipitation amplified by intensified mesoscale moisture convergence]]> Ping ChangDan FuXue LiuFrederic S. CastruccioAndreas F. PreinGokhan DanabasogluXiaoqi WangJulio BacmeisterQiuying ZhangNan RosenbloomTeagan KingSusan C. Bates doi:10.1038/s41561-025-01859-1 Nature Geoscience, Published online: 2025-11-18; | doi:10.1038/s41561-025-01859-1 2025-11-18 Nature Geoscience 10.1038/s41561-025-01859-1 https://www.nature.com/articles/s41561-025-01859-1
    <![CDATA[Ocean submesoscales as drivers of submarine melting within Antarctic ice cavities]]> https://www.nature.com/articles/s41561-025-01831-z <![CDATA[

    Nature Geoscience, Published online: 18 November 2025; doi:10.1038/s41561-025-01831-z

    Submesoscale ocean features deliver heat beneath Thwaites Ice Shelf and contribute to submarine melting, according to numerical modelling combined with available observations.]]>
    <![CDATA[Ocean submesoscales as drivers of submarine melting within Antarctic ice cavities]]> Mattia PoinelliLia SiegelmanYoshihiro Nakayama doi:10.1038/s41561-025-01831-z Nature Geoscience, Published online: 2025-11-18; | doi:10.1038/s41561-025-01831-z 2025-11-18 Nature Geoscience 10.1038/s41561-025-01831-z https://www.nature.com/articles/s41561-025-01831-z
    <![CDATA[Author Correction: Record grounded glacier retreat caused by an ice plain calving process]]> https://www.nature.com/articles/s41561-025-01877-z <![CDATA[

    Nature Geoscience, Published online: 14 November 2025; doi:10.1038/s41561-025-01877-z

    Author Correction: Record grounded glacier retreat caused by an ice plain calving process]]>
    <![CDATA[Author Correction: Record grounded glacier retreat caused by an ice plain calving process]]> Naomi OchwatTed ScambosRobert S. AndersonJ. Paul WinberryAdrian LuckmanEtienne BerthierMaud BernatYulia K. Antropova doi:10.1038/s41561-025-01877-z Nature Geoscience, Published online: 2025-11-14; | doi:10.1038/s41561-025-01877-z 2025-11-14 Nature Geoscience 10.1038/s41561-025-01877-z https://www.nature.com/articles/s41561-025-01877-z
    <![CDATA[Seismic gap breached by the 2025 <i>M</i><sub>w</sub> 7.7 Mandalay (Myanmar) earthquake]]> https://www.nature.com/articles/s41561-025-01861-7 <![CDATA[

    Nature Geoscience, Published online: 14 November 2025; doi:10.1038/s41561-025-01861-7

    The 2025 Mw 7.7 Mandalay earthquake in Myanmar breached and propagated beyond a long-quiescent segment owing to a mechanically weak barrier at the segment boundary and distant nucleation, according to seismic, geodetic and numerical analyses.]]>
    <![CDATA[Seismic gap breached by the 2025 <i>M</i><sub>w</sub> 7.7 Mandalay (Myanmar) earthquake]]> Bo LiSigurjón JónssonCahli SuhendiJihong LiuDuo LiArthur DelormeYann KlingerPaul Martin Mai doi:10.1038/s41561-025-01861-7 Nature Geoscience, Published online: 2025-11-14; | doi:10.1038/s41561-025-01861-7 2025-11-14 Nature Geoscience 10.1038/s41561-025-01861-7 https://www.nature.com/articles/s41561-025-01861-7