Skip to main content
Advertisement

Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells

Figure 5

Single-cell dynamics of the transitions between the LN and HN states.

TNGA cells from different regions of the distribution were sorted, plated, and then allowed to recover for 24 h before filming. They were then filmed for the indicated periods of time (for details, see Materials and Methods). (A) Sorted LN cells were filmed over 2 d. All cells are initially negative for GFP (at 0 h), but over the course of 24 h, individual cells begin to express Nanog-GFP. Notice that there is no pattern to the onset of expression and that by 24 h, a large proportion of the cells in this cluster are in the HN state. Images are taken from Video S1. Notice that this behaviour accounts for the observations of the experiments referred to in Figure 4B. (B) Similar protocol as in (A) but in this case, cells were selected from the plateau between the LN and the HN states and were filmed over 2 d to reveal the stochastic nature of the decision to move between the HN and LN states. The daughters of the cell labelled with a white arrow at 0 h can be seen to follow different paths: one of them up-regulates Nanog-GFP (yellow arrows), whereas the other down-regulates Nanog-GFP (black arrows). Images are derived from Video S2.

Figure 5

doi: https://doi.org/10.1371/journal.pbio.1000149.g005