A sophisticated Real User Monitoring (RUM) system that combines traditional performance monitoring with AI-powered analytics. The system collects, analyzes, and visualizes web performance metrics while providing intelligent insights and predictions.
- Core Web Vitals Monitoring
- Largest Contentful Paint (LCP)
- First Contentful Paint (FCP)
- Cumulative Layout Shift (CLS)
- Element-Level Analysis
- Detailed tracking of HTML elements
- Class and ID-based performance correlation
- DOM structure impact analysis
- Anomaly Detection
- Real-time performance deviation analysis
- Pattern recognition in metric trends
- Automated alert generation
- Predictive Analytics
- Performance trend forecasting
- Resource utilization predictions
- User experience impact analysis
- Dynamic Visualization
- Real-time metric updates
- Interactive performance charts
- Customizable data views
- Smart Insights
- Automated performance recommendations
- Root cause analysis
- Optimization suggestions
- Framework: Next.js 15.3.0 with React 19
- UI Components: NextUI v2.6.11
- Styling: TailwindCSS 3.4.0
- Charts: Recharts 2.15.2
- Theme Support: next-themes 0.4.6
- API Routes: Next.js API routes
- Data Processing: Node.js with TypeScript
- External Services:
- Sitemap parsing (xml2js)
- HTTP requests (node-fetch)
// RUM Metrics Collection
const metrics = {
LCP: {
value: number,
element: string,
tagName: string,
classList: string[],
id: string
},
FCP: {
value: number,
element: string,
tagName: string,
classList: string[],
id: string
},
CLS: {
value: number,
element: string,
tagName: string,
classList: string[],
id: string
}
};
- Node.js (v18 or higher)
- npm or yarn
- TypeScript 5.0
# Clone the repository
git clone [repository-url]
# Install dependencies
npm install
# Start development server
npm run dev
Create a .env.local
file with the following variables:
NEXT_PUBLIC_API_URL=http://localhost:3000
- Jest configuration for unit testing
- React Testing Library for component testing
- TypeScript for type safety
src/
├── app/
│ ├── api/ # API routes
│ ├── _components/ # Reusable components
│ ├── page.tsx # Main dashboard
│ └── layout.tsx # Root layout
├── utils/ # Utility functions
└── types/ # TypeScript definitions
The system uses PerformanceObserver to collect metrics:
const observer = new PerformanceObserver((list) => {
list.getEntries().forEach((entry) => {
// Process LCP, FCP, and CLS metrics
// Send to backend for analysis
});
});
-
Metric Analysis
- Pattern recognition in performance data
- Correlation analysis between metrics
- Trend prediction models
-
Insight Generation
- Automated performance recommendations
- Root cause analysis
- Optimization suggestions
-
Alert System
- Smart threshold detection
- Context-aware notifications
- Priority-based alerting
- Machine Learning Model Integration
- Advanced Predictive Analytics
- Automated Performance Optimization
- Enhanced Visualization Capabilities
- Integration with CI/CD Pipelines
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
[Specify License]
For support, please create an issue or contact the maintainers.