Skip to content

rjethwa1-godaddy/ai-rum-monitoring

Repository files navigation

AI-Powered RUM Monitoring Dashboard

Overview

A sophisticated Real User Monitoring (RUM) system that combines traditional performance monitoring with AI-powered analytics. The system collects, analyzes, and visualizes web performance metrics while providing intelligent insights and predictions.

Key Features

1. Performance Metrics Collection

  • Core Web Vitals Monitoring
    • Largest Contentful Paint (LCP)
    • First Contentful Paint (FCP)
    • Cumulative Layout Shift (CLS)
  • Element-Level Analysis
    • Detailed tracking of HTML elements
    • Class and ID-based performance correlation
    • DOM structure impact analysis

2. AI-Enhanced Analytics

  • Anomaly Detection
    • Real-time performance deviation analysis
    • Pattern recognition in metric trends
    • Automated alert generation
  • Predictive Analytics
    • Performance trend forecasting
    • Resource utilization predictions
    • User experience impact analysis

3. Intelligent Dashboard

  • Dynamic Visualization
    • Real-time metric updates
    • Interactive performance charts
    • Customizable data views
  • Smart Insights
    • Automated performance recommendations
    • Root cause analysis
    • Optimization suggestions

Technical Architecture

Frontend

  • Framework: Next.js 15.3.0 with React 19
  • UI Components: NextUI v2.6.11
  • Styling: TailwindCSS 3.4.0
  • Charts: Recharts 2.15.2
  • Theme Support: next-themes 0.4.6

Backend

  • API Routes: Next.js API routes
  • Data Processing: Node.js with TypeScript
  • External Services:
    • Sitemap parsing (xml2js)
    • HTTP requests (node-fetch)

Data Collection

// RUM Metrics Collection
const metrics = {
  LCP: {
    value: number,
    element: string,
    tagName: string,
    classList: string[],
    id: string
  },
  FCP: {
    value: number,
    element: string,
    tagName: string,
    classList: string[],
    id: string
  },
  CLS: {
    value: number,
    element: string,
    tagName: string,
    classList: string[],
    id: string
  }
};

Development Setup

Prerequisites

  • Node.js (v18 or higher)
  • npm or yarn
  • TypeScript 5.0

Installation

# Clone the repository
git clone [repository-url]

# Install dependencies
npm install

# Start development server
npm run dev

Environment Configuration

Create a .env.local file with the following variables:

NEXT_PUBLIC_API_URL=http://localhost:3000

Testing

  • Jest configuration for unit testing
  • React Testing Library for component testing
  • TypeScript for type safety

Project Structure

src/
├── app/
│   ├── api/           # API routes
│   ├── _components/   # Reusable components
│   ├── page.tsx       # Main dashboard
│   └── layout.tsx     # Root layout
├── utils/             # Utility functions
└── types/             # TypeScript definitions

Performance Monitoring Implementation

The system uses PerformanceObserver to collect metrics:

const observer = new PerformanceObserver((list) => {
  list.getEntries().forEach((entry) => {
    // Process LCP, FCP, and CLS metrics
    // Send to backend for analysis
  });
});

AI Integration Points

  1. Metric Analysis

    • Pattern recognition in performance data
    • Correlation analysis between metrics
    • Trend prediction models
  2. Insight Generation

    • Automated performance recommendations
    • Root cause analysis
    • Optimization suggestions
  3. Alert System

    • Smart threshold detection
    • Context-aware notifications
    • Priority-based alerting

Future Enhancements

  1. Machine Learning Model Integration
  2. Advanced Predictive Analytics
  3. Automated Performance Optimization
  4. Enhanced Visualization Capabilities
  5. Integration with CI/CD Pipelines

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

[Specify License]

Support

For support, please create an issue or contact the maintainers.

About

FOS RUM Incident Logger & Monitor

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published