ãã¦ãçµ±è¨çå ææ¨è«ã«ã¤ãã¦ã ãã ãã¨ç¬ç¿ãã¦ãããã®ã·ãªã¼ãºã§ãããä»åã¯Donald Rubinãèæ¡ããRubinの因果モデルã§ç¨ãããããå¾åã¹ã³ã¢(Propensity Score)ãåãä¸ãã¦ã¿ããã¨æãã¾ããããå岩波DS3ã§äºåã«å稿èªãã§ä¸èº«ã¯ç¥ã£ã¦ããã¯ããããªãã®ããã¨ãããããã³ãã¯ãåå¼ãã ããï¼ç¬ï¼ã
å ã ã¯è¦³å¯ãã¼ã¿ï¼ã¤ã¾ãRCTãå«ãå®é¨ãã¼ã¿ã§ã¯ãªãï¼ããå æé¢ä¿ãæ¨å®ããããã®ææ³ã¨ãããã¨ã§ãããã«ãã¦è¦³å¯ãã¼ã¿ã«é ããå½±é¿ãä¸ããå ±å¤éãçªãæ¢ãããã®å ±å¤éããåãã§ããå½±é¿ããã©ã³ã¹ãããçã®å æå¹æãæ¨å®ããããã¨ããã®ã主ç¼ã§ãããã¤ã¾ããRCTãå®è·µã§ããªããããªç«å¦ãã¼ã¿ã社ä¼ç§å¦çãã¼ã¿ã«å¯¾ããé©ç¨ãã¡ã¤ã³ã ã£ãããã§ãã
ããããªãããæè¿ã¯ä¾ãã°åºåããã¼ã±ãã£ã³ã°ã¨ãã£ããããç¨åº¦ã®ä»å ¥ï¼å¦ç½®ï¼*1ã¯ã§ãã¦ãäºå®ä¸RCTãå¾¹åºãããã¨ã¯ä¸å¯è½ããªèª¿æ»ãã¼ã¿ã«ããã¦ãåæ§ã®ãã¼ãºãå¢ãã¦ããã¨ãèãã¾ãã岩波DS3ã«ããã®ãããªäºä¾ã®ç´¹ä»ãå®éã«ããã¦ãããä»å¾ãåæ§ã®åãçµã¿ã¯åºåã»ãã¼ã±ãã£ã³ã°é åã§ã¯å¢ãã¦ãããã®ã¨äºæ³ããã¾ãã
ä»åã¯åèªèº«ã®åå¼·ãæ±ºå®çã«ä¸è¶³ãã¦ãããããåºæ¬çã«ã¯ã»ã¼å ¨é¢çã«ä»ã®è³æãåèã«ããªããåå¿é²çã«å 容ãã¾ã¨ããã«éããªãå 容ã«çµå§ãã¦ãã¾ãããã®ãã大åã®æ°å¼ã»å®ç¾©é¡ã¯å²æãã¦ããã¾ãããã¡ãã¨ãã解説ãèªã¿ããã¨ããæ¹ã¯å²©æ³¢DS3ããæ±ãããã ããããã³ã广æ¨å®è¨äºããæ¸ãããã ãã䏿ç¥ç¹ããã®ããã°è¨äºããèªã¿ããã ããã¨ããè¦ããããã¾ãã

岩波ãã¼ã¿ãµã¤ã¨ã³ã¹ Vol.3
- ä½è : 岩波ãã¼ã¿ãµã¤ã¨ã³ã¹åè¡å§å¡ä¼
- åºç社/ã¡ã¼ã«ã¼: 岩波æ¸åº
- çºå£²æ¥: 2016/06/10
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
- ãã®ååãå«ãããã° (4ä»¶) ãè¦ã
ããã¦Rã§ã®å®è·µé¨åã«ã¤ãã¦ã¯ä»¥ä¸ã®id:isseing33ããï¼id:SAMããã®ããã°è¨äºãåèã«ãã¦ãã¾ãã
http://d.hatena.ne.jp/isseing333/20110511/1305124310
Disclaimer
ãã¤ãéãã調ã¹ãªããã®è¨äºãªã®ã§ç大ã«ééã£ã¦ããå¯è½æ§ãããã¾ããééããè¦ã¤ããæ¹ã¯ç大ã«çªã£è¾¼ãã§ä¸ããã¨æé£ãã§ãããã
å¾åã¹ã³ã¢ã¨ã¯
å®ã¯åã¯å²©æ³¢DS3ã®åç¨¿ãæ ¡é²ãã¦ããæãããã¼ã¼ã¼ã£ã¨åãã£ã¦ãªãã£ããã§ãããè¦ã¯ãäºåã«å¥ã®èª¬æå¤æ°ï¼å
±å¤éï¼ã§ä»å
¥ç¾¤or対ç
§ç¾¤ã®å²ãä»ããç®ç夿°ã¨ãã¦ãã¸ã¹ãã£ãã¯å帰ããããããå¾ããããå
±å¤éããåæ¡ãã¦çè«çã«æ¨æ¸¬ãããå群ã«å±ããã§ããã確çå¤ãï¼åå½ã¦ã¯ãäºæ¸¬å¤ï¼ãæ°ããªèª¬æå¤æ°ã§ããå¾åã¹ã³ã¢ãã¨ãã¦ç¨æãããã®ä¸ã§æ¬æ¥ã®ç®ç夿°ãã¿ã¼ã²ããã¨ã群å²ãä»ãï¼å¾åã¹ã³ã¢ã説æå¤æ°ã¨ãã¦æ¹ãã¦å帰ãããã¨ããå ææ¨è«ã®æ çµã¿ã®ä¸ã§ç¨ãããããã®ãªãã§ããã
è¨ãæããã¨ãä»å ¥ç¾¤orå¯¾ç §ç¾¤ã®å²ãä»ãã¯å¤é¨ã®äººéãããç¨åº¦æ£æçã«æ±ºãããã®ã«éãããå®éã«ã¯æ§ã ãªå ±å¤éã«ãã£ã¦ãå®éã«ã¯ããå²ãä»ããããã¹ããã¨ããå¾åããã®è£å´ã«åå¨ããã®ã§ããã®å¾åããå¾åã¹ã³ã¢ãã¨ãã¦ã¢ãã«ã«çµã¿è¾¼ããã¨ã§è£æ£ãããã¨ãããã¨ãªã®ããªã¨ããã®ä¸ã§ãæ¬æ¥ã®ç®ç夿°ãã¢ããªã³ã°ãã¦åå½ã¦ã¯ãããçµæãæ½å¨ççµæå¤æ°ã¨ãããçã®ãç®ç夿°ã«ãªããã¨ãããã¨ã®ããã§ãã
ï¼â»ãã ãæ¬æ¥ãªããã®ãããªå¾åã¹ã³ã¢ã«ãã£ã¦è£æ£ãããã¹ãåãã¯ãã£ã¦ã¯å°ãããã§ãçã«çæ³çã«ãã¡ãã¨ãã©ã³ã¹ãããRCTã§ããã°å¾åã¹ã³ã¢ã¯å ¨ã¦0.5ã«ãªãã¨ãããã¨ãè¨ãã¾ãï¼
å¾åã¹ã³ã¢ãã©ã®ããã«ãã¦å¹æãçºæ®ãããã¨ããæ§åãåãªãã«ã¤ã¡ã¼ã¸ãã¦å³ã«ãããã®ãã以ä¸ã§ãã

ãããã¦å ±å¤éã«åºã¥ãã¦ãã¸ã¹ãã£ãã¯å帰ããããå®éã«ä»å ¥ç¾¤ã»å¯¾ç §ç¾¤ã«å¯¾ãã¦ãå ±å¤éããæ¨æ¸¬ããããå²ãä»ã確çããå¾åã¹ã³ã¢ãã¨ãã¦ç®åºããããã説æå¤æ°ã¨ãã¦ã¢ãã«ã«çµã¿è¾¼ããã¨ãããã¨ã§ï¼"strong ignorability"ã®ä»®å®ãããªãã¡ãä»å ¥ç¾¤ã»å¯¾ç §ç¾¤ã®å²ãä»ãã¨æ½å¨ççµæå¤æ°ã¨ãå ±å¤éãæ¡ä»¶ä»ããã¨ç¬ç«ã§ãããã¨ããä»®å®ãæãç«ã¤ãªãã°ï¼å¤æ¬¡å ã®å ±å¤éå ¨ã¦ã«å¯¾ãã¦èª¿æ´ãè¡ã£ãã®ã¨åãçµæãå¾ããããã¨ã«ãªããããã§ãã
ããã«ãããå¤ãã®å ±å¤éããã®å½±é¿ã1ã¤ã®å¤æ°ã«ã¾ã¨ãä¸ãããã¨ã«ãªããç®ç夿°ãè¤æ°åå¨ããã±ã¼ã¹ï¼ä¾ã¨ãã¦ã¯CMã«æ¥è§¦ãããã¨ã§å½±é¿ãåãããååèªç¥åº¦ããå©ç¨æåããå®éã®è³¼è²·è¡åããªã©ï¼ã§æ¯åã¢ããªã³ã°ã®ãã³ã«å ±å¤éã調æ´ãããããã¨ããå¾åã¹ã³ã¢ã ãã§è£æ£ããã°è¯ããªããã¨ããã¡ãªãããããã¨ã®ãã¨ã§ããä¸ã®æ¹ã§ç´¹ä»ãã¦ããCMæ¥è§¦å¹æãã¼ã¿ã»ããããç°ãªã3ã¤ã®ç®ç夿°ã«å¯¾ãã¦å ¨ã¦1ã¤ã®å¾åã¹ã³ã¢ã«ãã調æ´ã§äºè¶³ãã¦ãã¾ãã
ã¨ã¯è¨ããããã ãå¾åã¹ã³ã¢ãå ±å¤éã«å¼·ãä¾åãã¦ããã¨ãããããåããããã«ãå ±å¤éã®é¸æãå¾åã¹ã³ã¢ã®è¯ãæªããæ±ºããã¨ãããã¨ãè¨ãã¾ãããã®é¸æåºæºã¨ãã¦cçµ±è¨éï¼ï¼ROCã«ã¼ãã®ä¸å´é¢ç©ï¼ãªããã®ãæå±ããã¦ãã¦ããã0.8ãè¶ ãã¦ããã°OKã¨ããããã«å»å¦ã»ç«å¦ç³»ã§ã¯è¨ããã¦ããã¨ã®ãã¨ã§ãããæ©æ¢°å¦ç¿ã®æèã ã¨ããã¯k-folds CVã¨ãã§è¦ãæ¹ãè¯ãã®ã§ã¯ãªãããªãã¨ããæ°ãããããã®è¾ºã®è©±ã¯ã¾ãè¨äºãæ¹ãã¦åãããããã¨æãã¾ãã
ãªãã岩波DS3ã®p.74ã§ãã³ã¡ã³ãããã¦ããããã«ãå¾åã¹ã³ã¢ã®ç®åºã¯ãã¸ã¹ãã£ãã¯å帰ã«éãå¿
è¦ã¯ãªããä½ãããã®æ©æ¢°å¦ç¿2ã¯ã©ã¹åé¡å¨ã§ãè¯ãããã§ããé½ã«ã¯ã©ã¹åé¡äºå¾ç¢ºçãåºãããã®ã§ããã°OKã¨è¦ã¦è¯ãããã§ãã*2ã
IPWæ¨å®éã¨DRæ¨å®é
ååã®DIDï¼å·®åã®å·®åæ³ï¼ã§ã鿥çã«è§¦ãã話é¡ã§ãããåºæ¬çã«ãã®æã®å ææ¨è«ã§æ±ããããã®ã¨ããã®ã¯ç«¯çã«è¨ãã°ããä»å
¥ããå ´åãã¨ãä»å
¥ããªãã£ãå ´åãã¨ã§ã®ï¼ç®ç夿°ã¸ã®ï¼å¹æã®å·®ãã§ããããã®å®éçãªå¤§ããã§ãã岩波DS3ã®p.65ã§è§¦ãããã¦ããããã«ããããå æå¹æã¨ãå¹³åå¦ç½®å¹æ(Average Treatment Effect: ATE)ã¨å¼ã³ã¾ããå ææ¨è«ã¯ããã®ATEããã®ä»ã®å
±å¤éã«ãã£ã¦æªããããã®ãé²ãããã®å¶ã¿ã§ããã¨ãè¨ãã¾ãã
ã§ãå¾åã¹ã³ã¢ã§è£æ£ããATEãæ±ããã«ã¯ã岩波DS3ã§ç´¹ä»ããã¦ããç¯å²ã§ã¯2ã¤æ¹æ³ãããã¾ããä¸ã¤ã¯é確çéã¿ä»ãæ³(Inverse Probability Weighting: IPW)ã«ãããã®ãããä¸ã¤ã¯äºéã«ããã¹ããªæ¨å®æ³(Doubly Robust: DR)ã«ãããã®ã§ãã
ã©ã¡ããå¤åå®ç¾©å¼ãè¦ãããã¯ãã®åé¢ãè¦ãæ¹ãåãããããã¦ãè¦ã¯IPWã¯ãåã ã®ãµã³ãã«ã«å¾åã¹ã³ã¢ã®éæ°ï¼å¯¾ç §ç¾¤ã®å ´åã¯1ããå¾åã¹ã³ã¢ãå¼ããå¤ï¼ã§éã¿ä»ããããã¦ATEãè£æ£ãããã®ãã§ãDRã¯ãåã ã®ãµã³ãã«ã«å¯¾ãã¦ã¾ãå ±å¤éã«ããå帰ã¢ãã«ãä½ã£ã¦åå½ã¦ã¯ãã«ãã£ã¦ç®ç夿°ã®äºæ¸¬å¤ãåºããããã¨å ã®ç®ç夿°ã¨ã§å¾åã¹ã³ã¢ã®éæ°ã§å éå¹³åããã¦ATEãè£æ£ãããã®ãã§ãããªãå ·ä½çãªå¼ã¯å²©æ³¢DS3ã®p.75ã«å ¨ã¦è¨è¼ããã¦ããã®ã§ããã§ã¯å²æãã¾ãã以ä¸ã®Rå®è¡ä¾ã«ãåºã¦ãã¾ãããå帰ã¢ãã«ã®è¨ç®ã§ä»£ç¨ãããã¨ãå¯è½ã§ãã
ããã«ãã£ã¦ãä¾ãã°å²©æ³¢DS3ã®pp.91-100ã§ç´¹ä»ããã¦ãããããªãå ±å¤éï¼ããã§ã¯åãªãµã¼ãåå è ï¼ããã«ã®ãã¢ã°ã©ãã£ãã¯æ å ±ãªã©ï¼ãå½±é¿ãã¦ããããã§å¸¸èã«åãã¦CMã®å¹æï¼ATEããã¤ãã¹ã«ãªã£ã¦è¦ããããããªç¾è±¡ãè£æ£ã§ããããã«ãªããã¨ããããã§ãã
ã¡ãªã¿ã«ãATE以å¤ã«ããä»å
¥ç¾¤ã«ãããå¹³åä»å
¥å¹æ(Average Treatment Effect on the Treated: ATT)ãã対ç
§ç¾¤ã«ãããå¹³åä»å
¥å¹æ(Average Treatment Effect on the Untreated: ATU)ãã¨ããæ¦å¿µããããåºåã»ãã¼ã±ãã£ã³ã°ã®æèã§è¨ãã°ãã¿ã¼ã²ãã£ã³ã°ãããï¼orãããªãã£ãï¼äººã
ã«å¯¾ãã¦ããã¢ã¼ã·ã§ã³ãè¡ã£ãå ´åã¨è¡ããªãã£ãå ´åã¨ã®å·®ã®å¤§ãããã表ããã®ãªã®ã§ãROIï¼æè³åççï¼ãªã©å¹æã®å¤§ãããç¥ãããå ´åã¯ãã¡ãã®æ¹ãããå®ç¨çããããã¾ããã
Rã§ãµã³ãã«ãã¼ã¿ã»ããã«å¯¾ãã¦å¾åã¹ã³ã¢ãç¨ããå ææ¨è«ããã£ã¦ã¿ãï¼lalondeãã¼ã¿ã»ãã
ããã§ã¯ãå®éã«Rã§å¾åã¹ã³ã¢ãç¨ããå ææ¨è«ããã£ã¦ã¿ã¾ããããã¾ãã¯ãå®çªã§Rã«æåããå
¥ã£ã¦ããå¾åã¹ã³ã¢å®è·µç¨ã®ãã¼ã¿ã»ããã§ãã"lalonde"ãç¨ãããã®å¾å²©æ³¢DS3ã§ç¨ãããã¦ããCMæ¥è§¦ãã¼ã¿ã»ãããç¨ãããã¨ã¨ãã¾ãã
lalondeãã¼ã¿ã»ããã§ããã{Matching}ããã±ã¼ã¸ãã以ä¸ã®éãèªã¿è¾¼ãã¾ãã
> library(Matching) ## ## Matching (Version 4.9-2, Build Date: 2015-12-25) ## See http://sekhon.berkeley.edu/matching for additional documentation. ## Please cite software as: ## Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching ## Software with Automated Balance Optimization: The Matching package for R.'' ## Journal of Statistical Software, 42(7): 1-52. ## > data(lalonde)
ããã±ã¼ã¸èªã¿è¾¼ã¿æã®èª¬æã«æ¢ã«æ¸ãã¦ããããã«ããã®ããã±ã¼ã¸èªä½ãå®ã¯å¾åã¹ã³ã¢ãããã³ã°ã®ããã®ãã®ã§ã"lalonde"ã¯ãã®ä¸ã®ä»£è¡¨çãªãã¼ã¿ã»ããã§ãããã«ããè¦ãã¨ä»¥ä¸ã®ãããªèª¬æããªããã¦ãã¾ãã
<b>Format</b> A data frame with 445 observations on the following 12 variables. age age in years. educ years of schooling. black indicator variable for blacks. hisp indicator variable for Hispanics. married indicator variable for martial status. nodegr indicator variable for high school diploma. re74 real earnings in 1974. re75 real earnings in 1975. re78 real earnings in 1978. u74 indicator variable for earnings in 1974 being zero. u75 indicator variable for earnings in 1975 being zero. treat an indicator variable for treatment status. <b>Details</b> Two demos are provided which use this dataset. The first, DehejiaWahba, replicates one of the models from Dehejia and Wahba (1999). The second demo, AbadieImbens, replicates the models produced by Abadie and Imbens in their Matlab code. Many of these models are found to produce good balance for the Lalonde data.
ããã§ã¯re78ï¼1978å¹´ã«ãããå®éã®åå
¥é¡ï¼ãæçµçãªç®ç夿°ã«ãã¾ããããã§ãã¾ãã¯å¾åã¹ã³ã¢ãç®åºãã¾ããid:SAMããã®ä¾ã§ã¯å
¨ã¦ã®å
±å¤éãçªã£è¾¼ãã§ã¾ããããä»åã¯åå
¥é¡ç³»ã¯é¤å¤ãã¦ãã¢ã°ã©ãã£ãã¯æ
å ±ã ãã使ããã¨ã«ãã¦ã¿ã¾ãã
> model <- glm(treat~age+educ+black+hisp+married+nodegr,lalonde,family=binomial) > ps <- model$fitted.values > summary(model) Call: glm(formula = treat ~ age + educ + black + hisp + married + nodegr, family = binomial, data = lalonde) Deviance Residuals: Min 1Q Median 3Q Max -1.3941 -0.9933 -0.9237 1.3086 1.6633 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.053028 1.047384 1.005 0.31471 age 0.005917 0.014267 0.415 0.67833 educ -0.063960 0.071354 -0.896 0.37005 black -0.254369 0.363974 -0.699 0.48464 hisp -0.829159 0.504230 -1.644 0.10009 married 0.234241 0.266182 0.880 0.37886 nodegr -0.838552 0.309383 -2.710 0.00672 ** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 604.20 on 444 degrees of freedom Residual deviance: 589.43 on 438 degrees of freedom AIC: 603.43 Number of Fisher Scoring iterations: 4 > head(ps) 1 2 3 4 5 6 0.4279364 0.2572819 0.5519755 0.3580844 0.4118540 0.3809886
ããã§å¾ãããå¾åã¹ã³ã¢psã¨ç¾¤å²ãä»ãã§ããlalonde$treatã¨ã説æå¤æ°ã¨ãã¦ãç®ç夿°ã§ããlalonde$re78ãç·å½¢å帰ãã¦ã¿ã¾ãã
> re.model <- lm(lalonde$re78~lalonde$treat+ps) > summary(re.model) Call: lm(formula = lalonde$re78 ~ lalonde$treat + ps) Residuals: Min 1Q Median 3Q Max -7173 -4502 -1829 2796 54249 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3009.3 1480.5 2.033 0.04269 * lalonde$treat 1667.7 643.4 2.592 0.00986 ** ps 3844.1 3540.0 1.086 0.27812 --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 6578 on 442 degrees of freedom Multiple R-squared: 0.02044, Adjusted R-squared: 0.016 F-statistic: 4.611 on 2 and 442 DF, p-value: 0.01043
æ£ç´è¨ã£ã¦ãã¾ãã¢ãã«ã®èª¬æåã¯é«ããªãæ°ããã¾ããã群å²ãä»ãã«ããå½±é¿ã¯p < 0.05ã§ææãã¤ããã®ååå¸°ä¿æ°ã¯1667.7ã¨ãããã¨ã§æ£ã®å¤ã示ãã¦ãã¾ããããªãã¡ä»å ¥ã«ããre78ã®åä¸ãè¦ããããã¨ãããã¨ã«ãªãã¾ãã
ãã ããæ¢ã«è¦ãããã«ããã ãã§ã¯å®éã«å
±å¤éãèæ
®ãã¦è£æ£ããATEãç®åºãããã¨ã¯ã§ãã¾ããã以ä¸ã®ããã«IPWæ¨å®éã¨DRæ¨å®éãæ±ãã¦ã¿ã¾ãããããªããä¿¡é ¼åºéã®ç®åºã¯ããã§ã¯å²æãã¾ãã
# IPW > y <- lalonde$re78 > z1 <- lalonde$treat > (ipwe1 <- sum((z1*y)/ps)/sum(z1/ps)) [1] 6195.964 > (ipwe0 <- sum(((1-z1)*y)/(1-ps))/sum((1-z1)/(1-ps))) [1] 4563.501 > ipwe1 - ipwe0 [1] 1632.463 # DR # SAMããã®ä¾ã«ãªãã£ã¦é¢æ°åãã¦ããã¾ã > dre <- function(data, target, treat, ps, formula) { + n <- nrow(data) + y <- data[target] + data1 <- data[data[treat]==1,] + data0 <- data[data[treat]==0,] + model1 <- lm(formula=formula, data=data1) + model0 <- lm(formula=formula, data=data0) + fitted1 <- predict(model1, data) + fitted0 <- predict(model0, data) + dre1 <- (1/n)*sum(y+((z1-ps)/ps)*(y-fitted1)) + dre0 <- (1/n)*sum(((1-z1)*y)/(1-ps)+(1-(1-z1)/(1-ps))*fitted0) + return(c(dre1, dre0)) + } > > ret <- dre(lalonde, "re78", "treat", ps, + re78~age+educ+black+hisp+married+nodegr) > ret [1] 6185.915 4566.401 > ret[1] - ret[2] [1] 1619.514
IPW / DWæ¨å®éã¨ããè¥å¹²id:SAMããã®çµæããã大ãããªãã¾ãããã¾ããå
ã«ç·å½¢åå¸°ã§æ±ããååå¸°ä¿æ°1667.7ããããè£æ£æ¸ã¿ATEèªä½ã®å¤§ããã¯ããå°ãããªã£ã¦ãããã¨ãåããã¾ãã
Rã§ãµã³ãã«ãã¼ã¿ã»ããã«å¯¾ãã¦å¾åã¹ã³ã¢ãç¨ããå ææ¨è«ããã£ã¦ã¿ãï¼å²©æ³¢DS3ã®CMæ¥è§¦ãã¼ã¿ã»ãã
ãã¼ã¿ã»ããã®æ¦è¦ã岩波DS3ã®pp.92-3ã«è¼ã£ã¦ãã¾ãããè¦ã¯ããããã·ã³ã°ã«ã½ã¼ã¹ããã«(SSP)*3å¸å ´èª¿æ»ï¼ãã¼ã±ãã£ã³ã°ãªãµã¼ãï¼ãã¼ã¿ã§ããã¹ããã²ã¼ã ã¢ããªã®ãã¬ã¤ç¶æ³ããããå½è©²æéä¸ã«æ¾æ ããCMã«æ¥è§¦ï¼è¦è´ï¼ãããå¦ãã«ãã£ã¦ãã©ããããå¤åããããåæãããã¨ã§CMã®åºåå¹æãæ¨å®ãããã¨ããã®ãããã§ã®èª²é¡ã§ããå
訳ã¨ãã¦ã¯CMã¸ã®æ¥è§¦ã®æç¡ãã²ã¼ã ãã¬ã¤ã®æç¡ã»åæ°ã»ç§æ°ãTVã®è¦è´ç§æ°ã¨ãã£ãè¡åå±¥æ´ãããå¹´é½¢ã»æ§å¥ã»å®¶ææ§æã»å±
ä½å°ã»æå¾ã»å¦æ´ã¨ãã£ããã¢ã°ã©ãã£ãã¯ï¼ã½ã·ãªã°ã©ãã£ãã¯å±æ§ãå«ãã§ãã¾ãã
æ¬æä¸ã§ã触ãããã¦ãã¾ãããç¹ã«webã«ãããã¸ã¿ã«åãé²è¡ãã¦ããæ¨ä»ã§ã¯CMã«æ¥è§¦ããorããªãã¨ãããçµæçã«çãã群å²ãä»ããèªä½ãæ¢ã«æ§ã ãªç°å¢è¦å ã«æ¯ãåããããã¨ãåãã£ã¦ãã¾ããä¾ãã°ãã¹ããã²ã¼ã ã¯é«é½¢è ã»ã©ãã¬ã¤ããªãå¾åãå¼·ã䏿¹ã§é«é½¢è ã»ã©TVã¯ããè¦è´ãã¦ããããããã®æç¹ã§æ¢ã«å¤§ããªãã¤ã¢ã¹ãåå¨ãããã¨ãäºæ³ããã¾ããã¾ãããããããã®æã®ãã¼ã±ãã£ã³ã°ãªãµã¼ããã¼ã¿ã«ããããããã«ã²ã¼ã å©ç¨è ã¯å°æ°æ´¾ãªã®ã§ããã®ç¹ã«ããä¸åè¡¡ãã¼ã¿ã¨ãã¦ã®ãã¤ã¢ã¹ãçºçãã¾ãã
çµæã¨ãã¦æ¬æpp.93-4åã³è¡¨2ã«ãè¨ããã¦ããããã«ãåç´ã«ã²ã¼ã ãã¬ã¤ç§æ°ãæ¯ã¹ãã¨ä½æ ãCMæ¥è§¦ç¾¤ã®æ¹ãéæ¥è§¦ç¾¤ãããçããªããã¨ããè¬ã®é転ç¾è±¡ãèµ·ãã¦ãã¾ã£ã¦ãã¾ãããããä½ã¨ããã¦æ£ããè©ä¾¡ã§ããªããï¼ã¨ããã®ããã®äºä¾ã§ã®æå¤§ã®ãã¤ã³ãã¨ãªãã¾ãã
ã¾ãå ãã¼ã¿ã§ãããCSVãã¡ã¤ã«ãGitHubã«ä¸ãã£ã¦ããã®ã§ãã¡ãã使ãã¾ãã
æ®éã«ãã¦ã³ãã¼ããã¦ä»¥ä¸ã®ããã«ã¤ã³ãã¼ããã¦ããã¾ãããã
> d <- read.csv('https://github.com/iwanami-datascience/vol3/raw/master/kato%26hoshino/q_data_x.csv') > head(d)
試ãã«è¡¨2ãåç¾ãã¦ã¿ãã¨ãããªãã¾ãã
> mean(d$gamesecond[d$cm_dummy==1]) [1] 2478.066 > mean(d$gamesecond[d$cm_dummy==0]) [1] 3107.706
確ãã«ãç´ ã®ã¾ã¾ã ã¨CMã«æ¥è§¦ããæ¹ãããã§ãªãå ´åããã使 ãã²ã¼ã ãã¬ã¤ç§æ°ãçãã¨ããçµæã«ãªã£ã¦ãã¾ããããã¯ãããä½ã§ãç´æã«åããã®ã§ãå¾åã¹ã³ã¢ã§è£æ£ãã¦ããã¨ãããã¨ãèãããã¨æãã¾ãããã®ãã¼ã¿ã«å¯¾ããRã«ããå¾åã¹ã³ã¢ãç¨ããåæä¾ãæ¢ã«GitHubã«ä¸ãã£ã¦ãã¾ãããããã§ã¯ããããªãã£ã¦åçµããå½¢ã§ãã£ã¦ã¿ã¾ãã
å¾åã¹ã³ã¢
ã¾ããå¾åã¹ã³ã¢ãåºãã¾ããããã§ã¯CMæ¥è§¦ç¾¤ãå¦ããéè¦ãªã®ã§ãä¾ã«å¾ã£ã¦ãã¸ã¹ãã£ãã¯å帰ã§å¾åã¹ã³ã¢ãæ±ãã¦ããã¾ãã
> model <- glm(cm_dummy ~ TVwatch_day + age + sex + marry_dummy + child_dummy + inc + pmoney + area_kanto +area_tokai + area_keihanshin + job_dummy1 + job_dummy2 + job_dummy3 + job_dummy4 + job_dummy5 + job_dummy6 + job_dummy7 + fam_str_dummy1 + fam_str_dummy2 + fam_str_dummy3 + fam_str_dummy4, d, family=binomial) > ps <- model$fitted.values > head(ps) 1 2 3 4 5 6 0.04649543 0.25479069 0.18673620 0.22727078 0.24095033 0.15785738 > head(d$cm_dummy) [1] 0 0 0 0 0 0
ããã§å¾åã¹ã³ã¢psãæ±ã¾ãã¾ãããã¡ãªã¿ã«cçµ±è¨éãåºãã ããªãåºãã¦ã{rms}ããã±ã¼ã¸ã®lrm颿°ã§ä»¥ä¸ã®ããã«åãã¾ãã
> library(rms) > model_lrm <- lrm(cm_dummy ~ TVwatch_day + age + sex + marry_dummy + child_dummy + inc + pmoney + area_kanto +area_tokai + area_keihanshin + job_dummy1 + job_dummy2 + job_dummy3 + job_dummy4 + job_dummy5 + job_dummy6 + job_dummy7 + fam_str_dummy1 + fam_str_dummy2 + fam_str_dummy3 + fam_str_dummy4, d) > model_lrm Logistic Regression Model lrm(formula = cm_dummy ~ TVwatch_day + age + sex + marry_dummy + child_dummy + inc + pmoney + area_kanto + area_tokai + area_keihanshin + job_dummy1 + job_dummy2 + job_dummy3 + job_dummy4 + job_dummy5 + job_dummy6 + job_dummy7 + fam_str_dummy1 + fam_str_dummy2 + fam_str_dummy3 + fam_str_dummy4, data = d) Model Likelihood Discrimination Rank Discrim. Ratio Test Indexes Indexes Obs 10000 LR chi2 2726.06 R2 0.321 C 0.792 0 5856 d.f. 21 g 1.509 Dxy 0.583 1 4144 Pr(> chi2) <0.0001 gr 4.521 gamma 0.585 max |deriv| 9e-06 gp 0.275 tau-a 0.283 Brier 0.183 Coef S.E. Wald Z Pr(>|Z|) Intercept -1.7709 0.2615 -6.77 <0.0001 TVwatch_day 0.0001 0.0000 31.99 <0.0001 age -0.0026 0.0029 -0.89 0.3750 sex 0.0006 0.0647 0.01 0.9927 marry_dummy -0.0781 0.0856 -0.91 0.3610 child_dummy 0.3142 0.0743 4.23 <0.0001 inc -0.0005 0.0002 -2.92 0.0035 pmoney 0.0119 0.0077 1.54 0.1227 area_kanto 0.4050 0.0790 5.12 <0.0001 area_tokai -0.7233 0.0765 -9.45 <0.0001 area_keihanshin -2.0420 0.0756 -27.01 <0.0001 job_dummy1 0.1752 0.1562 1.12 0.2619 job_dummy2 0.1651 0.1677 0.98 0.3250 job_dummy3 0.5399 0.1604 3.37 0.0008 job_dummy4 0.3604 0.2433 1.48 0.1386 job_dummy5 0.6414 0.1520 4.22 <0.0001 job_dummy6 0.2848 0.1581 1.80 0.0717 job_dummy7 0.1540 0.1834 0.84 0.4013 fam_str_dummy1 0.7640 0.2045 3.74 0.0002 fam_str_dummy2 1.0033 0.2176 4.61 <0.0001 fam_str_dummy3 0.6137 0.2021 3.04 0.0024 fam_str_dummy4 0.1799 0.2216 0.81 0.4167
æ¬æä¸ã«ãåºã¦ãã¾ãããcçµ±è¨éã¯0.792ã¨ãããã¨ã§æ¦ãåé¡ãªãã¨ãããã¨ã«ãªãã¾ããããã£ã¨ããããï¼ä¾ãã°ï¼ã©ã³ãã ãã©ã¬ã¹ãã¨ãã§ãã£ã¦ã¿ããã©ããªãã®ããªãã¨ããæ°ã¯ãã¾ããããã
ã²ã¼ã ããã¬ã¤ãããå¦ãã¸ã®CMæ¥è§¦ã®å½±é¿
GitHubã®ä¾ã§ã¯ãã®å¾è²ã åæãã±ã¼ã¹åãããã¦ããã¾ããã䏿¦ããã§ã¯CMæ¥è§¦ãã²ã¼ã ããã¬ã¤ãããå¦ãã«å½±é¿ããããè¦ã¦ã¿ã¾ãããã
> summary(glm(as.factor(d$gamedummy)~d$cm_dummy+ps, family=binomial)) Call: glm(formula = as.factor(d$gamedummy) ~ d$cm_dummy + ps, family = binomial) Deviance Residuals: Min 1Q Median 3Q Max -0.4535 -0.4086 -0.3903 -0.3691 2.3977 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.35915 0.07406 -31.854 < 2e-16 *** d$cm_dummy 0.17658 0.08907 1.982 0.04744 * ps -0.59756 0.18533 -3.224 0.00126 ** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 5277.3 on 9999 degrees of freedom Residual deviance: 5266.5 on 9997 degrees of freedom AIC: 5272.5 Number of Fisher Scoring iterations: 5
CMã«æ¥è§¦ããã¨ãã²ã¼ã ï¼ã¢ããªï¼ããã¬ã¤ããã¨ããå æå¹æããããã¨ãåããã¾ã*4ã以ä¸ãã²ã¼ã ãã¬ã¤ç§æ°ã«ã¿ã¼ã²ãããçµã£ã¦åæãé²ãã¦ããã¾ãããã®ä»ã®ã²ã¼ã ãã¬ã¤æç¡ã»ã²ã¼ã ãã¬ã¤åæ°ã®ATTæ¨å®ã«ã¤ãã¦ã¯ã岩波DS3æ¬æ¸ä¸¦ã³ã«GitHubã®Rå®è¡ä¾ãã覧ãã ããã
ATEã®æ¨å®
ã¾ãã岩波DS3ã®ä¾ã«å¾ã£ã¦æåã«ATEãæ¨å®ãã¾ããã²ã¼ã ãã¬ã¤ç§æ°ã®ATEã¯ä»¥ä¸ã®ããã«ãã¦æ±ã¾ãã¾ããã¡ãªã¿ã«id:SAMããã®è¨äºã§ãå¾®å¦ã«è§¦ãããã¦ãã¾ãããç®ç夿°ã¨ä»å ¥ããã¼å¤æ°ã¨ãå¾åã¹ã³ã¢ã§éã¿ä»ãç·å½¢å帰ï¼ãã ãåçãæãï¼ããæã®ååå¸°ä¿æ°ã¨ãã¦ããATEã¯æ±ã¾ãã¾ãããã¡ãã®æ¹ãæ¨æºåå·®ãåæã«ç®åºã§ããã®ã§ä¾¿å©ã§ããã
> ivec1 <- d$cm_dummy # Treated group > ivec0 <- rep(1, nrow(d))-ivec1 # Untreated group > ivec <- cbind(ivec1,ivec0) > iestp1 <- (ivec1/ps) > iestp0 <- (ivec0/(1-ps)) > iestp <- iestp1+iestp0 > ipwe_gs <- lm(d$gamesecond ~ ivec+0, weights=iestp) > summary(ipwe_gs) Call: lm(formula = d$gamesecond ~ ivec + 0, weights = iestp) Weighted Residuals: Min 1Q Median 3Q Max -25199 -5328 -3601 -3011 531077 Coefficients: Estimate Std. Error t value Pr(>|t|) ivecivec1 4143.3 277.3 14.94 <2e-16 *** ivecivec0 2639.4 262.4 10.06 <2e-16 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 27220 on 9998 degrees of freedom Multiple R-squared: 0.03143, Adjusted R-squared: 0.03124 F-statistic: 162.2 on 2 and 9998 DF, p-value: < 2.2e-16
岩波DS3ã®æ¬æè¡¨4ã«ç¤ºããã¦ããã®ã¨åãããã«ãCMæ¥è§¦ç¾¤ã®ã²ã¼ã ãã¬ã¤æéã4143.3ç§ãéæ¥è§¦ç¾¤ã§ã¯2639.4ç§ã¨ããATEãå¾ããã¾ããã
ATTã®æ¨å®
䏿¹ãæ¬æã§ãææããã¦ããããã«ãã¼ã±ãã£ã³ã°ä¸éè¦ãªã®ã¯ããããCMã«æ¥è§¦ãããã©ããããã²ã¼ã ãã¬ã¤æéã伸ã³ãããã¨ããATTã®æ¹ãªã®ã§ããã¡ããæ±ãã¦ã¿ã¾ãã
> iestp1_ATT <- ivec1 > iestp0_ATT <- ivec0*ps/(1-ps) > iestp_ATT <- iestp1_ATT+iestp0_ATT > ipwe_ATT_gs = lm(d$gamesecond ~ ivec+0, weights=iestp_ATT) > summary(ipwe_ATT_gs) Call: lm(formula = d$gamesecond ~ ivec + 0, weights = iestp_ATT) Weighted Residuals: Min 1Q Median 3Q Max -19751 -2478 -1918 -1143 220618 Coefficients: Estimate Std. Error t value Pr(>|t|) ivecivec1 2478.1 227.4 10.897 <2e-16 *** ivecivec0 2080.3 209.0 9.952 <2e-16 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 14640 on 9998 degrees of freedom Multiple R-squared: 0.02132, Adjusted R-squared: 0.02112 F-statistic: 108.9 on 2 and 9998 DF, p-value: < 2.2e-16
CMæ¥è§¦ç¾¤ã«ãããã²ã¼ã ãã¬ã¤ç§æ°ã«å¯¾ããATTã¯ç´400ç§ãããã®ãã©ã¹ãã¨ããçµæã«è³ãã¾ããã
å¾åã¹ã³ã¢ã§CMæ¥è§¦å¹æã調æ´ããä¸ã§ãããã«å±æ§ãä¸ããå½±é¿ãæ¨å®ãã
次ã«ãå¾åã¹ã³ã¢ã§èª¿æ´ããç·å½¢å帰ã¢ãã«ãæ¨å®ãããã®çµæãããã©ã®ãããªãã¢ã°ã©ãã£ãã¯å±æ§ãCMã¸ã®æ¥è§¦ã®æç¡ã«é¢ä¿ãªãã²ã¼ã ãã¬ã¤ç§æ°ã«å½±é¿ãåããªããããç¹å®ãããã¨ãç®æãã¾ãã
> idx1 <- which(d$cm_dummy==1) > idx0 <- which(d$cm_dummy==0) > ME_tr_gs <- lm(gamesecond ~ child_dummy + area_kanto +area_tokai + area_keihanshin + T + F1 + F2 + F3 + M1 + M2 ,weights=(1/ps[idx1]) ,data=d[d$cm_dummy==1,]) > ME_un_gs <- lm(gamesecond ~ child_dummy + area_kanto +area_tokai + area_keihanshin + T + F1 + F2 + F3 + M1 + M2,weights=(1/(1-ps[idx0])), data=d[d$cm_dummy==0,]) > summary(ME_tr_gs) Call: lm(formula = gamesecond ~ child_dummy + area_kanto + area_tokai + area_keihanshin + T + F1 + F2 + F3 + M1 + M2, data = d[d$cm_dummy == 1, ], weights = (1/ps[idx1])) Weighted Residuals: Min 1Q Median 3Q Max -64781 -10218 -718 1582 470814 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 498.6 819.6 0.608 0.54298 child_dummy -1938.9 666.3 -2.910 0.00363 ** area_kanto -2729.2 1083.7 -2.518 0.01182 * area_tokai -3030.9 996.9 -3.040 0.00238 ** area_keihanshin 7833.9 807.3 9.704 < 2e-16 *** T 6413.3 2904.3 2.208 0.02728 * F1 -1042.6 1221.1 -0.854 0.39326 F2 1142.6 1047.0 1.091 0.27521 F3 -265.1 1539.0 -0.172 0.86326 M1 1247.3 1122.2 1.111 0.26646 M2 9624.8 929.9 10.350 < 2e-16 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 30060 on 4133 degrees of freedom Multiple R-squared: 0.07586, Adjusted R-squared: 0.07362 F-statistic: 33.93 on 10 and 4133 DF, p-value: < 2.2e-16 > summary(ME_un_gs) Call: lm(formula = gamesecond ~ child_dummy + area_kanto + area_tokai + area_keihanshin + T + F1 + F2 + F3 + M1 + M2, data = d[d$cm_dummy == 0, ], weights = (1/(1 - ps[idx0]))) Weighted Residuals: Min 1Q Median 3Q Max -17693 -4250 -2398 -932 411626 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 631.86 596.66 1.059 0.289648 child_dummy 1827.26 511.62 3.572 0.000358 *** area_kanto -28.27 846.67 -0.033 0.973368 area_tokai 41.52 646.05 0.064 0.948758 area_keihanshin -1091.39 607.28 -1.797 0.072358 . T 7141.70 2363.25 3.022 0.002522 ** F1 382.83 858.52 0.446 0.655671 F2 944.73 874.04 1.081 0.279797 F3 -282.52 1035.28 -0.273 0.784942 M1 7164.78 847.54 8.454 < 2e-16 *** M2 981.14 699.32 1.403 0.160673 --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 23780 on 5845 degrees of freedom Multiple R-squared: 0.01878, Adjusted R-squared: 0.0171 F-statistic: 11.19 on 10 and 5845 DF, p-value: < 2.2e-16
岩波DS3ã®è¡¨6ã¨åãçµæã«ãªã£ã¦ããã¯ãã§ãããã®çµæããã¯ãåä¾ã®æç¡ã(child_dummy)ã®å¹æãCMæ¥è§¦ç¾¤ã§ã¯è² ã«ãCMéæ¥è§¦ç¾¤ã§ã¯æ£ã«ä½ç¨ãã¦ãããã¨ãåããã¾ããã¤ã¾ããåä¾ããã層ãã«ã¯CMã¯å½±é¿ãä¸ããªãï¼ä½æ
ãªãCMã«æ¥è§¦ãã¦ããã«ããããããæ¬æ¥æ³å®ããããã©ã¹ã®å¹æã«éãããéã«æ¥è§¦ããªãã£ãã«ããããããæ¬æ¥æ³å®ãããããã¤ã³ãããªãï¼ãã¨ãæ¨æ¸¬ããã¾ãã
ãåä¾ããã層ããé¤å¤ããå ´åã®ATTã®æ¨å®
ããã§é§ç®æ¼ãã¨ãã¦ããåä¾ããã層ããé¤å¤ãã¦ããä¸åº¦ATTãè¨ç®ãç´ãã¾ãã
> d2 <- subset(d, d$cm_dummy==0 | d$child_dummy==0) > ivec1_ltd <- d2$cm_dummy > ivec0_ltd <- rep(1, nrow(d2))-ivec1_ltd > model2 <- glm(cm_dummy ~ TVwatch_day + age + sex + marry_dummy + child_dummy + inc + pmoney + area_kanto +area_tokai + area_keihanshin + job_dummy1 + job_dummy2 + job_dummy3 + job_dummy4 + job_dummy5 + job_dummy6 + job_dummy7 + fam_str_dummy1 + fam_str_dummy2 + fam_str_dummy3 + fam_str_dummy4, family=binomial, data = d2) > ps2 <- model2$fitted > > ivec_ltd <- cbind(ivec1_ltd,ivec0_ltd) > iestp1_ltd <- ivec1_ltd > iestp0_ltd <- ivec0_ltd*ps2/(1-ps2) > iestp_ltd <- iestp1_ltd+iestp0_ltd > ipwe_ltd_gs <- lm(d2$gamesecond ~ ivec_ltd+0, weights=iestp_ltd) > summary(ipwe_ltd_gs) Call: lm(formula = d2$gamesecond ~ ivec_ltd + 0, weights = iestp_ltd) Weighted Residuals: Min 1Q Median 3Q Max -11639 -2430 -1136 0 226619 Coefficients: Estimate Std. Error t value Pr(>|t|) ivec_ltdivec1_ltd 2430.0 253.6 9.583 < 2e-16 *** ivec_ltdivec0_ltd 1880.3 241.0 7.801 6.87e-15 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 12380 on 8239 degrees of freedom Multiple R-squared: 0.0182, Adjusted R-squared: 0.01796 F-statistic: 76.35 on 2 and 8239 DF, p-value: < 2.2e-16
ãåä¾ããã層ããé¤å¤ããã¨ãããCMæ¥è§¦ç¾¤ã®ã²ã¼ããã¬ã¤ç§æ°ã¯2430.0ãéæ¥è§¦ç¾¤ã¯1880.3ã¨ããçµæã«ãªãã¾ãããããã¯å ¨ã¦ã®å±¤ã§ç®åºããå¤ããããããå ãã«-48, -200ãããã®å·®ãããªããæ¥è§¦ç¾¤ã§ã®ã²ã¼ã ãã¬ã¤ç§æ°ã¯ã»ã¨ãã©å¤ãããªãä¸ã«ããã2群ã®å·®ã¯åºãã£ã¦ãã¾ãã
ããã«ããããã®ä¾ã§ã¯ãåä¾ããã層ã¸ã®CMã®ã¿ã¼ã²ãã£ã³ã°ãåãæ¢ãã¦ãCMæ¥è§¦ç¾¤ã«ä¸ããããã²ã¼ã ãã¬ã¤ç§æ°å¢å¤§å¹æã¯ããã大ãããªãããã¨ãè¨ããããã§ãCMåºç¨¿äºç®ããããåä¾ãããªã層ãã¸ã¨å¤ãæ¯ãåãããã¨ã§ããã«CM广ãé«ã¾ããã¨ããæå¾ ããã¾ãã
ãã®ããã«ãå¾åã¹ã³ã¢ãç¨ãã¦é©åã«ãã¼ã±ãã£ã³ã°ãªãµã¼ããã¼ã¿ãåæãããã¨ã§ãåé ã«è¦ããããªä¸é©åãªæ¨è«ã«æãããããã¨ãªããããæ£ç¢ºãã¤å¹æçãªåæçµæãå¾ããã¨ãã§ããã¨ããããã§ãã
ææ³
ã¨ãããã¨ã§ãé
ã馳ããªããå¾åã¹ã³ã¢ã«ã¤ãã¦å¦ãã§ã¿ã¾ãããå®ã¯CMæ¥è§¦å¹æãã¼ã¿ã»ããã¨å
¨ãåæ§ã®é転ç¾è±¡ãæã®è·å ´ã§è¦ããããã¨ãããã®ã§ããã®æãããã使ã£ãæ¹ãè¯ãã£ãã®ããªãã¨ä»æ´ãªããåçãã¦ããã¾ãï¼æ±ï¼ã
ããã¦å¾åã¹ã³ã¢ãæ±ããã¢ããªã³ã°ã®ã¨ãããªãã§ãããããã¯æ©æ¢°å¦ç¿ã§ãä½ã§ãOKã¨ãã話ãªã®ã§ãããããä¾ãã°ã©ã³ãã ãã©ã¬ã¹ãã¨ãéç·å½¢åé¡å¨ã使ãã¨ããL1æ£ååã§æ±åæ§è½ãä¸ããã¨ããã¯ã©ã¹éã¿ä»ãã§ä¸åè¡¡ãã¼ã¿ãè£æ£ããã¨ãããã£ã¦ã¿ããããã®ããªãã¨æã£ãã®ã§ããã
å¾ã¯è¶ çµ¶ç´°ãããã¨ãªãã§ããã岩波DS3ã®GitHubã®Rã¹ã¯ãªãããåå人ã®å¥½ã¿ã¨ã¯éãã®ã§é©å½ã«æ¸ãç´ãã¾ããï¼ç¬ï¼ããã®è¾ºã¯åãªã好ã¿ã®åé¡ãªã®ã§ãä½åã容赦ãããã
*1:åå人ã¯ããã¾ã§ãå¦ç½®ãã¨ããèªã¯ä½¿ã£ã¦ããªãã£ãã®ã§ã以å¾ãä»å ¥ãã«åºæ¬çã«ã¯çµ±ä¸ãã¦ãã¾ã
*2:ãã ãåççã«ã¯ãããªéç·å½¢åé¡å¨çãªãã®ã¾ã§æå ¥ããªããã°ãããªãæç¹ã§ä½ããã¾ããã¨ãè¨ããã
*3:ãã¼ã±ãã£ã³ã°ãªãµã¼ãä¼ç¤¾ãæåã§åéããããã«ï¼ãã©ã³ãã£ã¢ã«æ§ã ãªããã¤ã¹ãç¨ãã¦è¡åãè¨é²ï¼ãã¢ã°ã©ãã£ãã¯ã»ã½ã·ãªã°ã©ãã£ãã¯å±æ§æ å ±ãæä¾ãã¦ããããã¨ã§ãåºåãªã©ã®ãã¼ã±ãã£ã³ã°ã®å¹æã測å®ããããã®æ çµã¿ã§ã
*4:ãã ããã®è¨ç®ã¯ä¸åè¡¡ãã¼ã¿ã«ãããã®ãªã®ã§ãã¯ã©ã¹éã¿ä»ãããããã¨å®ã¯p = 0.1864ã¨ãªã£ã¦ææã§ãªããªãã¨ããããã