
ãã2ã¶æãããã«æ¸¡ã£ã¦å¤ãã®æ¹ã ãããèæ¸ããæµè´ãã¾ãã£ã¦ããã®ã§ããããã®ãã¡ã®ä¸åããã¡ãããã¤ã¦è¨éæç³»ååæãå¦ãã§ããé ã«åã大å¤ãä¸è©±ã«ãªã£ããLogics of Blueブログã®é¦¬å ´ããã®æã«ãããRã¨Stanã§ã¯ããããã¤ãºçµ±è¨ã¢ããªã³ã°ã«ãããã¼ã¿åæå ¥éãã§ãã

- ä½è :é¦¬å ´ çå
- åºç社/ã¡ã¼ã«ã¼: è¬è«ç¤¾
- çºå£²æ¥: 2019/07/10
- ã¡ãã£ã¢: åè¡æ¬
以åã¯ãã¤ãºçµ±è¨ã¢ããªã³ã°ã®å ¥éæ¸ã¨ããã¨ãã¿ã©ãã¼ãããã¨ããã¼ã¿è§£æã®ããã®çµ±è¨ã¢ããªã³ã°å ¥éââä¸è¬åç·å½¢ã¢ãã«ã»é層ãã¤ãºã¢ãã«ã»MCMC (確çã¨æ å ±ã®ç§å¦)ã䏿ã§ããããçããããåç¥ã®ããã«æ¢ã«ã¡ã³ãããã¦ããªãWinBUGSã使ã£ã¦ãããªã©out-of-dateãªè¦ç´ ãå¤ããè¿å¹´ã¯ããã«æ¿ããè¯æ¸ã¯ãªããã®ãã¨ãã¤ãé ãæ©ã¾ãã¦ãã¾ãããä»åã®é¦¬å ´ããã®ãèæ¸ã¯ãã¾ãã«ããã«åã£ã¦æ¿ããç¾æç¹ã§ãã¹ãã®ä¸åã§ã¯ãªããã¨å人çã«ã¯èãã¦ãã¾ãã
ã¨ãããã¨ã§ããã¤ãéãæ¬æ¸å ¨ä½ã®æ§æãä¸éãç´¹ä»ããä¸ã§æ³¨ç®ãã¤ã³ããæãã¦ãããã¨æãã¾ããããã¦ããã¾ããã¤ããªããã®è©±ã§ãããåèªèº«ã®ç¥èä¸è¶³ãªã©ã«ãã誤èªãã¦ããé¨åãããããããã¾ããã®ã§ããæ°ä»ãã®æ¹ã¯ã©ãã©ããææãã ããm(_ _)m
å ¨ä½ã®æ§æ
ããããå
¨ä½ã¿ã¤ãã«ã«ãçµ±è¨ã¢ããªã³ã°ã«ãããã¼ã¿åæå
¥éãã¨ãããã¬ã¼ãºãå
¥ã£ã¦ãããã¨ãããåããããã«ãæ¬æ¸ã¯ç´ç²ã«çµ±è¨ã¢ããªã³ã°ã«åºã¥ããã¼ã¿åæã®å
¥éæ¸ã¨ãã¦ã®å´é¢ãããã¾ãããã®ç¹ãè¸ã¾ããªãããç´¹ä»ãã¦ããã¾ãã
1é¨ ãçè«ç·¨ããã¤ãºçµ±è¨ã¢ããªã³ã°ã®åºæ¬
1 ã¯ãããã! ãã¤ãºçµ±è¨ã¢ããªã³ã°
2 çµ±è¨å¦ã®åºæ¬
3 確çã®åºæ¬
4 確çåå¸ã®åºæ¬
5 çµ±è¨ã¢ãã«ã®åºæ¬
6 ãã¤ãºæ¨è«ã®åºæ¬
7 MCMCã®åºæ¬
ããã§ã¯æåã®ç« ã¨ãããã¨ã§ããã¤ãºã¨ãããçµ±è¨ã¢ããªã³ã°ãã®ãã®ã®åºæ¬ã«ã¤ãã¦è§¦ãããã¦ãã¾ããåºæ¥ãã ãã·ã³ãã«ã«èª¬æããã¨ããæ¹éã«æ²¿ã£ã¦ãå ¨ã¦ã®åºç¤é ç®ã極ãã¦ã·ã³ãã«ãã¤ã³ã³ãã¯ãã«ã¾ã¨ãããã¦ãã¾ããå人çã«ã¯ãã¤ãºã®å®çã®èª¬æãããã¾ã§ããã¤ãºæ´æ°ã®ããã®ãã®ã¨ãã¦æ¸ããã¦ããã¨ããã好ã¿ã ã£ãããã¾ããMCMCã®èª¬æãå¿ è¦æä½éãã¤ååã«ã¾ã¨ãããã¦ãã¦ãåå¦è ã§ãããç¨åº¦ã¯èªã¿ãããã¨æãã¾ãã
ã¾ãããã¯ä»ã®æç§æ¸ã§ãå¿è«åãããã«è¡¨è¨ãã¦ãããã®ãããã¾ãããçµ±è¨ã¢ãã«èªä½ã®å®ç¾©ã®ä»æ¹ãStanã®æ§æã«åããããã¨ãããªãæèãã¦ããããã«ãè¦ãã¾ããä¾ãã°ç·å½¢åå帰ã¢ãã«ã
ã¨æ¸ãã¦ãã¾ãããStanãªãmodelãããã¯ã§å®å
¨ã«ãã®éãã«ã³ã¼ãã£ã³ã°ãããã¨ã§ç·å½¢åå帰ã¢ãã«ã表ç¾ãããã¨ãåºæ¥ã¾ãã
model {
for (i in 1:N) {
// mu[i] = b0 + b1 * x[i]
Y[i] ~ normal(b0 + b1 * x[i], sigma);
}
}
ãããä¾ãã°Wikipedia日本語版の記事ã®ãããªä¼çµ±ç表è¨ã§æ¸ãã¨ãç´æçã«ã¯åããããããªãã¾ããStanã³ã¼ãã§æ¸ãæã©ããããã ã£ãï¼ã¨åå¦è
ãªãè¿·ã£ã¦ãã¾ãããããã¾ãããããããã¨ããã¾ã§èæ
®ããã¦ããã¨ããã«æ¬æ¸ã®ç¹å¾´ãããã¨æãã¾ãã
2é¨ ãåºç¤ç·¨ãRã¨Stanã«ãããã¼ã¿åæ
1 Rã®åºæ¬
2 ãã¼ã¿ã®è¦ç´
3 ggplot2ã«ãããã¼ã¿ã®å¯è¦å
4 Stanã®åºæ¬
5 MCMCã®çµæã®è©ä¾¡
6 Stanã³ã¼ãã£ã³ã°ã®è©³ç´°
ããããããããã¿ã¤ãã«ã«ããéããRã¨Stanã®ä½¿ãæ¹ã«é¢ãã話é¡ãå±éããã¦ããã¾ãã2.2ç¯ã§ã¯è¨è¿°çµ±è¨éã«é¢ãã説æãä¸éããªããã¦ãã¦ãçµ±è¨å¦ã®åå¦è
ã§ãããç¨åº¦å¿
è¦ãªæ¦å¿µãå¦ã¶ãã¨ãåºæ¥ã¾ãï¼ãã ãããã¯1é¨ã«åãã¦ãè¯ãã£ãããï¼ã2.4-6ç¯ã§ã¯ç¾ä»£çãªStanã®ä½¿ãæ¹ã®åæ©ãç¶²ç¾
ããã¦ãã¦åãããããã§ããã¡ãªã¿ã«åã¯{bayesplot}ãå
¨ã使ã£ããã¨ããªãã£ãã®ã§ãæ¬æ¸ãèªãã§å¤§å¤åèã«ãªãã¾ããï¼æ±ï¼ãã¤ãã§ã«{ggplot2}ã®ä½¿ãæ¹ããµã©ãªã¨ãªããæ¸ããã¦ããã®ã§ãé¨åçã¨ã¯ããç¾ä»£çãªRã®ä½¿ãæ¹ãããã§ç¸å¿ã«å¦ã¹ãã¨æãã¾ãã
3é¨ ãå®è·µç·¨ãä¸è¬åç·å½¢ã¢ãã«
1 ä¸è¬åç·å½¢ã¢ãã«ã®åºæ¬
2 åå帰ã¢ãã«
3 ã¢ãã«ãç¨ããäºæ¸¬
4 ãã¶ã¤ã³è¡åãç¨ããä¸è¬åç·å½¢ã¢ãã«ã®æ¨å®
5 brmsã®ä½¿ãæ¹
6 ããã¼å¤æ°ã¨åæ£åæã¢ãã«
7 æ£è¦ç·å½¢ã¢ãã«
8 ãã¢ã½ã³å帰ã¢ãã«
9 ãã¸ã¹ãã£ãã¯å帰ã¢ãã«
10 交äºä½ç¨
æ¦ãã¦ãã¤ã¸ã¢ã³ãæ´»ããã®ã¯GLMããããã«è¤éåããã¢ãã«ãªã®ã§ããããã®å段ã¨ãã¦ãGLMãã®ãã®ã«ã¤ãã¦å¦ã¶ã®ã¯éè¦ã§ããããã§ã¯GLMã¨ãããç·å½¢å帰ã¢ãã«ããåºçºãã¦ããã¢ã½ã³å帰ã»ãã¸ã¹ãã£ãã¯å帰ã¨ã¹ããããè¸ãã§å種ã¢ããªã³ã°ã«ã¤ãã¦ã®è§£èª¬ããªããã¦ãã¾ãã
ã¡ãªã¿ã«é·ããStanã®ã¢ãããã¼ãã«ä»ãã¦ããã¦ããªãã£ã身ã¨ãã¦ã¯ãå®ã¯æ¬æ¸ã§åãã¦{brms}ããã±ã¼ã¸ã®åå¨ãç¥ãã¾ããã
simple_lm_brm_3 <- brm( formula = sales ~ temperature, family = gaussian(), data = file_beer_sales_2, seed = 1, prior = c(set_prior("", class = "Intercept"), set_prior("", class = "sigma")) )
ã¨æ¸ãã ãã§äºååå¸ãæå®ããå帰ã¢ãã«ãè¨ç®ã§ããã¨ãããããªã«ä¾¿å©ãªãã®ã使
ä»ã¾ã§ç¥ããªãã£ããã ããï¼catch upãã¦ããªãã¦ããããªããããããªããããããªããã¨ããæãã§ãï¼æ³£ï¼ãå®ã¯è²ã
ãªé½åããã£ã¦Stanãpre-compileãããã¼ã«ã«ããã±ã¼ã¸ãä½ã£ããã¨ã¯ä½åº¦ããããã§ããããããªããã®æéãããããªãã¦æé«ã§ãããã¡ãªã¿ã«æ¬æ¸ã§ã¯{brms}ã使ã£ãå ´åã§ãå¾ã«Stanã§ã®å®éã®å®è£
ã³ã¼ãä¾ãè¼ãããã¦ãããåå¦è
ã«ã親åãªèª¬æã«ãªã£ã¦ããã¨æãã¾ãã
4é¨ ãå¿ç¨ç·¨ãä¸è¬åç·å½¢æ··åã¢ãã«
1 é層ãã¤ãºã¢ãã«ã¨ä¸è¬åç·å½¢æ··åã¢ãã«ã®åºæ¬
2 ã©ã³ãã åçã¢ãã«
3 ã©ã³ãã ä¿æ°ã¢ãã«
ãã¤ã¸ã¢ã³ãæãæ´»ããGLMM以éã®è©±é¡ãããããããã§åºã¦ãã¾ããå¤é广ãå«ãã¢ãã«ã¯ä¸è¬ã«è§£æçã«è§£ããã¨ããã¨çµæ§ããã©ããã®ãå¤ããå¾ã¦ãã¦ã©ã®è¨èªã§ãç¹æ®ãªã½ã«ãã使ãã±ã¼ã¹ãã¾ã¾ããã®ã§ãããããããã¤ã¸ã¢ã³ã§MCMCãµã³ããªã³ã°ãããã¨ã§å²ã¨å®¹æãã¤æè»ã«ã¢ããªã³ã°ãã¦ãã©ã¡ã¼ã¿ã®æ¨å®å¤ãå¾ããã¨ãã§ãã¾ã*1ã
ã¡ãªã¿ã«ããã¾ãåã«ã¯é©ãã ã£ããã§ããããã ã®GLMMã§ããã°ããã¾ã{brms}ã§å¯¾å¿ã§ãããã§ããã
glmm_pois_brms_keisu <- brm( formula = fish_num ~ temperature + (temperature || human), family = poisson(), data = fish_num_climate_4, seed = 1, iter = 6000, warmup = 5000, control = list(adapt_delta = 0.97, max_treedepth = 15) )
ã¨ããããã«{lme4}ããã¯ãªformulaã®æ¸ãæ¹ã§GLMMã表ç¾ã§ãããããã®ã§ããã®ç¨åº¦ãªãStanã³ã¼ããæ¸ãå¿
è¦ã¯ãªãããã§ãå®éã«ãã®ç« ã§ã¯Stanã³ã¼ãã«ããå®è£
ä¾ã¯åºã¦ãã¾ãããããå人çã«ã¯GLMMã®Stanã³ã¼ããè¼ãã¦ãããããåå¦è
ã«ã¯åå¼·ã«ããªã£ã¦è¯ãã£ãã®ã§ã¯ãªãããªã¨æãã¾ãã*2ã
5é¨ ãå¿ç¨ç·¨ãç¶æ 空éã¢ãã«
1 æç³»ååæã¨ç¶æ 空éã¢ãã«ã®åºæ¬
2 ãã¼ã«ã«ã¬ãã«ã¢ãã«
3 ç¶æ 空éã¢ãã«ã«ããäºæ¸¬ã¨è£é
4 æå¤ä¿æ°ã¢ãã«
5 ãã¬ã³ãã®æ§é
6 卿æ§ã®ã¢ãã«å
7 èªå·±å帰ã¢ãã«ã¨ãã®å¨è¾º
8 åçä¸è¬åç·å½¢ã¢ãã«:äºé åå¸ãä»®å®ããä¾
9 åçä¸è¬åç·å½¢ã¢ãã«:ãã¢ã½ã³åå¸ãä»®å®ããä¾
ããã¦æå¾ã®ç« ã¯ãé¦¬å ´ãããå¾æã®æç³»åã¨ç¶æ 空éã¢ãã«ã®è©±é¡ã§ããç¾å®åé¡ã¨ãã¦ãå®åã§ãã¤ã¸ã¢ã³ãæãæ´»ããã®ã¯ééããªãéç·å½¢æç³»åãã¼ã¿åæãªã®ã§ããããæåãåãä¸ãããã¦ããã®ã¯ããæå³èªç¶ãªæµãã ã¨ãè¨ããã§ãããã
åã¯æ æ ¢ãªã®ã§ãã¿ãã¨åçç·å½¢ã¢ãã«ãæ¸ãã¦ãã¾ã£ã¦ããã¾ãã«ãããã¨ãå¤ãã®ã§ãããç¶æ 空éã¢ãã«ãªã®ã§ãã¡ãã¨ç¶æ æ¹ç¨å¼ã¨è¦³æ¸¬æ¹ç¨å¼ã«åããmodelãããã¯ã®æ¸ãæ¹ãæ¬æ¸ã®ãã®ç« ã§ã¯ãªããã¦ãã¾ãã
model {
// ç¶æ
æ¹ç¨å¼ã«å¾ããç¶æ
ãé·ç§»ãã
for (i in 2:T) {
mu[i] ~ normal(mu[i - 1], s_w);
}
// 観測æ¹ç¨å¼ã«å¾ãã観測å¤ãå¾ããã
for (i in 1:T) {
y[i] ~ normal(mu[i], s_v);
}
}
ããããªããããã¤ããã®2ã«ã¼ãæ¸ãã®ãé¢åã§ç¶æ 空éã¢ãã«ã«ãã¦ã¾ããorzãã¨ãããã¨ã§ããããªæ æ ¢ãªåã«ãã¼ãããç¶æ 空éã¢ãã«ãæãã¦ãããç´ æ´ãããç« ã§ããå½ç¶ãªããä¸è¨ã®ãããªåç´ãªãã¼ã«ã«ã¬ãã«ã¢ãã«ã ãã§ã¯ãªããæå¤ä¿æ°ã¢ãã«*3ãå¹³æ»åï¼äºéå·®åï¼ãã¬ã³ãã¢ãã«ããã¼ã«ã«ç·å½¢ãã¬ã³ãã¢ãã«ãå£ç¯èª¿æ´ãèªå·±å帰ã¢ãã«ãããã«ã¯åçä¸è¬åç·å½¢ã¢ãã«ã¨ãã¦äºé åå¸åã³ãã¢ã½ã³åå¸ãä»®å®ãããã®ã¾ã§åãä¸ãããã¦ãã¾ããå人çãªææ³ã¨ãã¦ã¯ãããã ãããã°ãããè ¹ãã£ã±ãã¨ããæ°ããã¾ãã
ã¡ãªã¿ã«ãé¦¬å ´ãããèªèº«ã®æã«ããç¶æ 空éã¢ãã«ï¼ãã¤ã¸ã¢ã³ã®æ¬ãæ¢ã«ããã¾ãã

æç³»ååæã¨ç¶æ 空éã¢ãã«ã®åºç¤: Rã¨Stanã§å¦ã¶çè«ã¨å®è£
- ä½è :é¦¬å ´ çå
- åºç社/ã¡ã¼ã«ã¼: ãã¬ã¢ãã¹åºç
- çºå£²æ¥: 2018/02/14
- ã¡ãã£ã¢: åè¡æ¬
注ç®ãã¹ããã¤ã³ã
ããã¾ããã¤ãéãã§ãããå
¨ä½æ§æã®ã¨ããã§ç´¹ä»ãããã¤ã³ãã¨ã¯å¥ã«å人çã«æ³¨ç®ã«å¤ããã¨æã£ããã¤ã³ããåå¥ã«æãã¦ãããã¨æãã¾ãã
ãä½ãæ¬æ¸ã§ã¯æ±ããªããããæè¨ããã¦ãã
ããã¯1.6ç¯ãæ¬æ¸ã§èª¬æããªããã¨ãã«ãæè¨ããã¦ãããã¨ã§ããã
- é »åº¦è«çãªçµ±è¨å¦ã®åºç¤äºé ã®èª¬æ
- æå°¤æ³ãªã©é »åº¦è«ã«åºã¥ãã¢ããªã³ã°ã®è©±é¡
- èªç¶ãªå ±å½¹äºååå¸ãç¨ãã¦è§£æçã«è§£ãå°åºããæ¹æ³
- æ å ±éè¦æºã«ããã¢ãã«é¸æ
ã«ã¤ãã¦ã¯æ¬æ¸ã§ã¯è§¦ãããã¦ãã¾ããããã®æå³ã¨ãã¦ãèªè ã®æ··ä¹±ãæã説æã®ã·ã³ãã«ããæãªããããã¨ããè¶£æ¨ã®ãã¨ãæ¸ããã¦ãã¾ããããã«ã¯åã大ãã«è³æã§ããæ¦ãã¦ãçµ±è¨å¦ã«é¢ããããã¹ãããã¯ã®å¤ãã¯ã¨ãããã¨åç主義çã§ãç¹ã«å®åå®¶ã®å®è·µã®ç¾å ´ã«ããã¦ã¯æ®ã©æèãããªãï¼ä¸è¦ã ã¨ã¯è¨ã£ã¦ããªãï¼äºé ã«ã¤ãã¦é常ã«ä»ç´°ã«è¨è¿°ãã¦ãããã®ãå¤ããåå¦è æ³£ããã ã£ãããã¾ããããããæ··ä¹±ãé¿ãã¦ã·ã³ãã«ã§ãããã¨ã«å¾¹ããã¨ããå§¿å¢ã«ãåã¯å¥½æãæã¡ã¾ããã
1.6ç¯ã®æå¾ã«ã¯ã
æ¢åã®é »åº¦ä¸»ç¾©çãªåæææ³ãæ¹å¤ãããã¨ãªãããã¤ãºçµ±è¨ã¢ããªã³ã°ãç¨ããã¹ãçç±ã説æãããã¨ã¯ç°¡åã§ãããã¤ãºçµ±è¨ã¢ããªã³ã°ã¯ãå®åçã§ãªããèªç±ãªåæãå¯è½ã«ãã¦ãããã®ã§ãããã
ï¼å¤ªåããï¼
ã¨æ¸ããã¦ãããæ¬æ¸å
¨ä½ã«ä¸è²«ããããªã·ã¼ãæãããã¾ãããã®ãèªç±ããããããã¤ãºçµ±è¨ã¢ããªã³ã°ã®ééå³ã§ããã¨ãããã¨ãè¸ã¾ããä¸ã§æ¬æ¸ãèªãã°ããã確ããªå¦ã³ãããã¯ãã ã¨è¨ããã§ãããã
å¯è½ãªéãStanã³ã¼ãã£ã³ã°ã®æ·å± ãä¸ãã工夫ããªããã¦ãã
å è¿°ããããã«ã徿¥ã®Stanæ¬å種ã¨ã¯ç°ãªã£ã¦{brms}ãããªãå¤ç¨ãã¦ããã®ãç®æ°ããç¹ã§ãã確ãã«ãC++ãã¼ã¹ã®Stanã³ã¼ããç´æ¥æ¸ããæ¹ãä½ãã¨çãã¨ããã«æãå±ãã®ã¯äºå®ãªãã§ãããåå¦è ã§ããã°ï¼ããã¦æ±ºã¾ã£ãå½¢ã®ã¢ããªã³ã°ãç¹°ãè¿ãå®åå®¶ã§ããã°ï¼ããç¨åº¦ç°¡åã«ããããããã ãã§åºæ¥ãæ¹ã楽ãªã®ã¯è¨ãã¾ã§ãããã¾ããã
ããããæå³ã§ã¯ãã¢ããªã³ã°ã®ã¿ãªããgenerated quantitiesãããã¯ãæ¸ããªãã¦ãäºæ¸¬ã¾ã§ãã£ã¦ããã{brms}ã使ãããªããæ¹ãçååã«ããªãã¾ãããããããå¦ç¿ããä¸ã§ã®æ·å±
ãä¸ããããã§ãè¯ã試ã¿ã ãªã¨æãã¾ããã䏿¹ã§ãã¡ãã¨{brms}ã§ã®å®è¡ä¾ã ãã§ãªãStanã³ã¼ãã«ããå®è£
ä¾ã示ãã¦ããã¨ãããæè²çé
æ
®ã«æºã¡ã¦ãã¦ãããããã©ã¹ãã¤ã³ãã§ããå人çã«ã¯{brms}ã§GLMMã¾ã§çµããã¨ããã®ã¯ãç´ æ´ãããã®ä¸èªã§ãã
å人çãªææ³ãªã©
ããããR + Stanã®çµ±è¨ã¢ããªã³ã°ã«ç¹åããå
¥éæ¸ãç¾ããã¨ãããã¨ã§ãããã¾ã§æããã¦ãããã¿ã©ãã¼ãããã¤ãã«ã役御å
ããããã¾ããï¼ä¹
ä¿å
çããããªããï¼ãç¹ã«æ¬æ¸ã¯é常ã«åºç¤çãªãã¼ãã¾ã§å«ãã¦ç¶²ç¾
çã«æ¸ããã¦ããã®ã§ãç´ç²ã«çµ±è¨åæããããããªã*4ã¢ããªã¹ãã®ãããªç«å ´ã®äººã«ã¨ã£ã¦ã¯ãçµ±è¨å¦ãã®ãã®ã®æç§æ¸ã¨ãã¦ç¨ãã¦ãå·®ãæ¯ããªããããå®æåº¦ã®é«ãä¸åã ã¨æãã¾ãã
ãã ããè¨ãæ¹ãå¤ããã¨ãå ¨ã¦ããã¤ã¸ã¢ã³ã§æ±ããæ¬ãªã®ã§åå¦è ã§ããã°ããã ãã¯æ°ãã¤ããæ¹ãè¯ãããããã¾ãããä¾ãã°ãæ£è¦ç·å½¢ã¢ãã«ã¯æ®éã¯OLSã§ä¸ç¬ã§è§£ãã¦ãã¾ããã®ã§ãã£ã¦ãç¹ã«å¤é广ãªã©ãä¼´ããªãéãã¯MCMCã§ãã¤ãºçã«ãããã®ã§ã¯ããã¾ãããããç¨åº¦å¨è¾ºã®çµ±è¨å¦ã®æç§æ¸ã®å 容ãè¸ã¾ãã¤ã¤ããã®ä¸ã§ããæå³ãç¾ä»£çµ±è¨å¦ã®ç³ãåãã¨ãè¨ãããã¤ã¸ã¢ã³ã«å ¥éããããã®æ¬ãã¨ããä½ç½®ä»ãã§èªãæ¹ãè¯ãã®ããªã¨ã
ãã¨ã¯ãããã¯åç´ã«å人çã«æ°ã«ãªã£ãã¨ããã ãã®ãã¤ã³ããªãã§ãããç·å½¢ä»£æ°ã¨ãããè¡åè¨ç®ã®å°å ¥ããããã¤ã³ããGLMã®è©±é¡ã«å ¥ã£ãå¾ã¨ãããã¨ã§ãã¡ãã£ã¨ä¸èªç¶ããªã¨æãã¾ããããã£ã¨ãOLSã§ç·å½¢å帰ããã¨ããå¤å ¸çãªå ¥ãæ¹ãæ¬æ¸ã ã¨åºæ¥ãªãï¼ããããæµãã«ãªã£ã¦ããªãã®ã§ï¼ã®ã§ãããã¯è´ãæ¹ãªããã¨ããããã¾ããã
ã¨ããããå人çã«ã¯ããã§ãã¿ã©ãã¼ããã«ä»£ãã£ã¦åå¦è ã«ãè¦ãã§ããçµ±è¨ã¢ããªã³ã°ã®è¯æ¸ãè¦ã¤ãã£ãã¨ãããã¨ã§ãä»å¾ã¯ã©ãã©ãåå¦è ã®äººãã¡ã«è¦ãã¦ãããã¨æãã¾ããæ¬¡åã®æ¨è¦æ¸ç±ãªã¹ãã«ã¯å¿ ãæ¬æ¸ãå ¥ããã¤ããã§ãã
*1:ãã ãã½ã«ãã§ãã·ãã¨ä¸çºã§ãã©ã¡ã¼ã¿æ¨å®ã§ããæ¹ãStanã³ã¼ãã´ãªã´ãªæ¸ãããæ¥½ãªã®ã¯è¨ãã¾ã§ããªã
*2:ãã ãç©åãã²ãã¢ãã³ã¼ããåºæ¥ä¸ããã®ã§ãã¾ããªã¹ã¹ã¡ã§ããªãï¼ã³ã³ãã¤ã©ãæã£ã¦å¤§éã®warningsãåãã¾ããã®ã§ï¼
*3:ããã¯ãã¿æ¸ãã®åçç·å½¢ã¢ãã«ã§ãæ¸ãã
*4:æ©æ¢°å¦ç¿ã¯ç¹ã«ãããªã