Abstract
Observed Arctic sea ice losses are a sentinel of anthropogenic climate change. These reductions are projected to continue with ongoing warming, ultimately leading to an ice-free Arctic (sea ice area <1âmillionâkm2). In this Review, we synthesize understanding of the timing and regional variability of such an ice-free Arctic. In the September monthly mean, the earliest ice-free conditions (the first single occurrence of an ice-free Arctic) could occur in 2020â2030s under all emission trajectories and are likely to occur by 2050. However, daily September ice-free conditions are expected approximately 4âyears earlier on average, with the possibility of preceding monthly metrics by 10âyears. Consistently ice-free September conditions (frequent occurrences of an ice-free Arctic) are anticipated by mid-century (by 2035â2067), with emission trajectories determining how often and for how long the Arctic could be ice free. Specifically, there is potential for ice-free conditions in MayâJanuary and AugustâOctober by 2100 under a high-emission and low-emission scenario, respectively. In all cases, sea ice losses begin in the European Arctic, proceed to the Pacific Arctic and end in the Central Arctic, if becoming ice free at all. Future research must assess the impact of model selection and recalibration on projections, and assess the drivers of internal variability that can cause early ice-free conditions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 ⬠/ 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 ⬠per year
only 9,92 ⬠per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The CMIP6 sea ice area data is the same as analysed in ref. 10. The underlying SIC data, also used for the spatial plot (Fig. 5), is available on the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/search/cmip6/). The data for the CESM2-LE (ref. 112) is available at https://www.cesm.ucar.edu/projects/cvdp-le/data-repository. The data for the CLIVAR Large Ensemble Archive38 is available at https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.html.
References
Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747â750 (2016).
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. & Zwally, H. J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104, 15803â15814 (1999).
Kwok, R. & Rothrock, D. A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958â2008. Geophys. Res. Lett. 36, L15501 (2009).
Kacimi, S. & Kwok, R. Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018â2021. Geophys. Res. Lett. 49, e2021GL097448 (2022).
Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).
Meier, W., Fetterer, F., Windnagel, A. K. & Stewart, J. S. Climate data record of passive microwave sea ice concentration, version 4. National Snow and Ice Data Center https://nsidc.org/data/G02202/versions/4 (2021).
England, M., Jahn, A. & Polvani, L. Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Clim. 32, 4039â4053 (2019).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Parkinson, C. L. & Kellogg, W. Arctic sea ice decay simulated for a CO2-induced temperature rise. Clim. Change 2, 149â162 (1979).
Notz, D. & SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).
Notz, D. How well must climate models agree with observations? Phil. Trans. R. Soc. A 373, 20140164 (2015).
Jahn, A., Kay, J., Holland, M. & Hall, D. How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett. 43, 9113â9120 (2016).
Knutti, R. et al. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909â1918 (2017).
Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383â1394 (2012).
Newton, R. et al. White Arctic vs. blue Arctic: a case study of diverging stakeholder responses to environmental change. Earths Future 4, 396â405 (2016).
Polyak, L. et al. History of sea ice in the Arctic. Quat. Sci. Rev. 29, 1757â1778 (2010).
Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322â3326 (2014).
Pistone, K., Eisenman, I. & Ramanathan, V. Radiative heating of an ice-free Arctic Ocean. Geophys. Res. Lett. 46, 7474â7480 (2019).
Holland, M. & Bitz, C. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221â232 (2003).
Screen, J. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334â1337 (2010).
Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121 (2019).
Jenkins, M. & Dai, A. The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett. 48, e2021GL094599 (2021).
Casas-Prat, M. & Wang, X. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves. Geophys. Res. Lett. 47, e2020GL088100 (2020).
Waseda, T. et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep. 8, 4489 (2018).
Li, J., Ma, Y., Liu, Q., Zhang, W. & Guan, C. Growth of wave height with retreating ice cover in the Arctic. Cold Reg. Sci. Technol. 164, 102790 (2019).
Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048681 (2011).
Nielsen, D., Pieper, P. & Barkhordarian, A. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 12, 263â270 (2022).
Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39â54 (2022).
Learmonth, J. A. et al. Potential effects of climate change on marine mammals. Oceanogr. Mar. Biol. 44, 431 (2006).
Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea-ice breakup on survival and population size of polar bears in western Hudson Bay. J. Wildl. Manag. 71, 2673â2683 (2007).
Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97âS125 (2008).
Renaut, S., Devred, E. & Babin, M. Northward expansion and intensification of phytoplankton growth during the early ice-free season in Arctic. Geophys. Res. Lett. 45, 10,590â10,598 (2018).
Hollowed, A. B., Planque, B. & Loeng, H. Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish. Oceanogr. 22, 355â370 (2013).
Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874â889 (2021).
Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720â9728 (2016).
Schiermeier, Q. The great Arctic oil race begins. Nature 482, 13â14 (2012).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937â1958 (2016).
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277â286 (2020).
Mewes, D. & Jacobi, C. Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys. 19, 3927â3937 (2019).
Hahn, L. C., Armour, K. C., Battisti, D. S., Donohoe, A. & Fajber, R. Seasonal changes in atmospheric heat transport to the Arctic under increased CO2. Geophys. Res. Lett. 50, e2023GL105156 (2023).
Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).
Kay, J. E. et al. Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Clim. 25, 5190â5207 (2012).
Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181â184 (2014).
Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci. https://doi.org/10.3389/feart.2021.710036 (2021).
Bitz, C. M. & Roe, G. H. A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Clim. 17, 3623â3632 (2004).
Massonnet, F. et al. Arctic sea-ice change tied to its mean state through thermodynamic processes. Nat. Clim. Change 8, 599â603 (2018).
Holland, M. M. & Landrum, L. The emergence and transient nature of Arctic amplification in coupled climate models. Front. Earth Sci. 9, 719024 (2021).
Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. https://doi.org/10.1029/2009GL037820 (2009).
Notz, D. & Marotzke, J. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051094 (2012).
Kay, J. E., Holland, M. M. & Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Let. https://doi.org/10.1029/2011GL048008 (2011).
Mueller, B., Gillett, N., Monahan, A. & Zwiers, F. Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas, and anthropogenic aerosol forcing. J. Clim. 31, 7771â7787 (2018).
Polvani, L. et al. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Change 10, 130â133 (2020).
England, M. R. & Polvani, L. M. The Montreal Protocol is delaying the occurrence of the first ice-free Arctic summer. Proc. Natl Acad. Sci. USA 120, e2211432120 (2023).
Mahlstein, I. & Knutti, R. September Arctic sea ice predicted to disappear near 2 °C global warming above present. Geophys. Res. Lett. https://doi.org/10.1029/2011JD016709 (2012).
Stroeve, J. & Notz, D. Insights on past and future sea-ice evolution from combining observations and models. Glob. Planet. Change 135, 119â132 (2015).
Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289â295 (2017).
Roach, L. & Blanchard-Wrigglesworth, E. Observed winds crucial for Arctic sea ice loss. Geophys. Res. Lett. 49, e2022GL097884 (2022).
Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12, 430â434 (2019).
Polyakov, I. V. et al. Fluctuating Atlantic inflows modulate Arctic Atlantification. Science 381, 972â979 (2023).
Holland, M. M., Bitz, C. M. & Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2006GL028024 (2006).
Goosse, H., Arzel, O., Bitz, C. M., de Montety, A. & Vancoppenolle, M. Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040546 (2009).
Mioduszewski, J. R., Vavrus, S., Wang, M., Holland, M. & Landrum, L. Past and future interannual variability in Arctic sea ice in coupled climate models. Cryosphere 13, 113â124 (2019).
Auclair, G. & Tremblay, L. B. The role of ocean heat transport in rapid sea ice declines in the Community Earth System Model Large Ensemble. J. Geophys. Res. Oceans 123, 8941â8957 (2018).
Döscher, R. & Koenigk, T. Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Sci. 9, 217â248 (2013).
Paquin, J.-P., Döscher, R., Sushama, L. & Koenigk, T. Causes and consequences of mid-21st-century rapid ice loss events simulated by the Rossby Centre regional atmosphere-ocean model. Tellus A Dyn. Meteorol. Oceanogr. https://doi.org/10.3402/tellusa.v65i0.19110 (2013).
Vavrus, S., Holland, M. & Bailey, D. Changes in Arctic clouds during intervals of rapid sea ice loss. Clim. Dyn. 36, 1475â1489 (2011).
Boe, J., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2, 341â343 (2009).
Pfirman, S., Haxby, W. F., Colony, R. & Rigor, I. Variability in the Arctic sea ice drift. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020063 (2004).
DeRepentigny, P., Jahn, A., Holland, M. M. & Smith, A. Arctic sea ice in two configurations of the CESM2 during the 20th and 21st centuries. J. Geophys. Res. Oceans 125, e2020JC016133 (2020).
Wang, B., Zhou, X., Ding, Q. & Liu, J. Increasing confidence in projecting the Arctic ice-free year with emergent constraints. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0b17 (2021).
Zhou, X., Wang, B. & Huang, F. Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean. Environ. Res. Lett. 17, 114033 (2022).
Landrum, L. & Holland, M. Extremes become routine in an emerging new Arctic. Nat. Clim. Change 10, 1108â1115 (2020).
Thackeray, C. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972â978 (2019).
Snape, T. J. & Forster, P. M. Decline of Arctic sea ice: evaluation and weighting of CMIP5 projections. J. Geophys. Res. Atmos. 119, 546â554 (2014).
Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice-free Arctic during the summer months. Geophys. Res. Lett. 43, 256â263 (2016).
Jahn, A. Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nat. Clim. Change 8, 409â413 (2018).
Bonan, D. B., Schneider, T., Eisenman, I. & Wills, R. C. J. Constraining the date of a seasonally ice-free Arctic using a simple model. Geophys. Res. Lett. 48, e2021GL094309 (2021).
Kim, Y., Min, S., Gillett, N., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 14, 3139 (2023).
Screen, J. A. & Williamson, D. Ice-free Arctic at 1.5 °C? Nat. Clim. Change 7, 230â231 (2017).
Sigmond, M., Fyfe, J. C. & Swart, N. C. Ice-free Arctic projections under the Paris Agreement. Nat. Clim. Change 8, 404â408 (2018).
Arthun, M., Onarheim, I. H., Dörr, J. & Eldevik, T. The seasonal and regional transition to an ice-free Arctic. Geophys. Res. Lett. 48, e2020GL090825 (2021).
Ridley, J. K. & Blockley, E. W. Brief communication: solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2â°C COP climate targets. Cryosphere 12, 3355â3360 (2018).
Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052676 (2012).
Notz, D. & Stroeve, J. The trajectory towards a seasonally ice-free Arctic Ocean. Curr. Clim. Change Rep. 4, 407â416 (2018).
Niederdrenk, A. L. & Notz, D. Arctic sea ice in a 1.5 °C warmer world. Geophys. Res. Lett. 45, 1963â1971 (2018).
Diebold, F. X. & Rudebusch, G. D. Probability assessments of an ice-free Arctic: comparing statistical and climate model projections. J. Econom. 231, 520â534 (2022).
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc. 90, 1095â1107 (2009).
Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130â141 (1963).
Holland, M. & Hunke, E. A review of Arctic sea ice climate predictability in large-scale earth system models. Oceanography 35, 20â27 (2022).
Screen, J. A. & Deser, C. Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophys. Res. Lett. 46, 2222â2231 (2019).
Blanchard-Wrigglesworth, E., Bitz, C. M. & Holland, M. M. Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048807 (2011).
Senftleben, D., Lauer, A. & Karpechko, A. Constraining uncertainties in CMIP5 projections of September Arctic sea ice extent with observations. J. Clim. 33, 1487â1503 (2020).
Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 14, 035005 (2019).
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86â89 (2015).
Maslowski, W., Kinney, J. C., Higgins, M. & Roberts, A. The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci. 40, 625â654 (2012).
Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052868 (2012).
Liu, J., Curry, J. A., Wang, H. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1114910109 (2012).
Docquier, D. & Koenigk, T. Observation-based selection of climate models projects Arctic ice-free summers around 2035. Commun. Earth Environ. 2, 144 (2021).
Topal, D. & Ding, Q. Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. Nat. Clim. Change 13, 710â718 (2023).
Khosravi, N. et al. The Arctic Ocean in CMIP6 models: biases and projected changes in temperature and salinity. Earths Future 10, e2021EF002282 (2022).
Muilwijk, M. et al. Divergence in climate model projections of future Arctic Atlantification. J. Clim. 36, 1727â1748 (2023).
Heuzè, C., Zanowski, H., Karam, S. & Muilwijk, M. The deep Arctic Ocean and Fram Strait in CMIP6 models. J. Clim. 36, 2551â2584 (2023).
OâNeill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461â3482 (2016).
Bonan, D. B., Lehner, F. & Holland, M. M. Partitioning uncertainty in projections of Arctic sea ice. Environ. Res. Lett. 16, 044002 (2021).
Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M. & Stern, H. Arctic sea ice retreat in 2007 follows thinning trend. J. Clim. 22, 165â176 (2009).
Parkinson, C. L. & Comiso, J. C. On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys. Res. Lett. 40, 1356â1361 (2013).
Sanderson, B. et al. Community climate simulations to assess avoided impacts in 1.5 °C and 2 °C futures. Earth Syst. Dyn. 8, 827â847 (2017).
Screen, J. Arctic sea ice at 1.5 and 2 °C. Nat. Clim. Change 8, 362â363 (2018).
Tietsche, S., Notz, D., Jungclaus, J. H. & Marotzke, J. Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045698 (2011).
Armour, K. C., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K. E. & Bitz, C. M. The reversibility of sea ice loss in a state of the art climate model. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048739 (2011).
Li, C., Notz, D., Tietsche, S. & Marotzke, J. The transient versus the equilibrium response of sea ice to global warming. J. Clim. 26, 5624â5636 (2013).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393â1411 (2021).
Lebrun, M., Vancoppenolle, M., Madec, G. & Massonnet, F. Arctic sea-ice-free season projected to extend into autumn. Cryosphere 13, 79â96 (2019).
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253â293 (2021).
Jahn, A. & Holland, M. M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys. Res. Let. 40, 1206â1211 (2013).
Hamilton, L. & Stroeve, J. 400 predictions: the SEARCH Sea Ice Outlook 2008â2015. Polar Geogr. 39, 274â287 (2016).
Ding, Q. et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 12, 28â33 (2019).
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. https://doi.org/10.1029/2007GL029703 (2007).
Liu, J., Song, M., Horton, R. M. & Hu, Y. Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl Acad. Sci. USA 110, 12571â12576 (2013).
Rosenblum, E. & Eisenman, I. Faster Arctic sea ice retreat in CMIP5 than in CMIP3 due to volcanoes. J. Clim. 29, 9179â9188 (2016).
Dörr, J., Notz, D. & Kern, S. UHH sea ice area product. Universität Hamburg https://doi.org/10.25592/uhhfdm.8559 (2021).
Comiso, J. SSM/I Concentrations Using the Bootstrap Algorithm (NASA, 1995).
Cavalieri, D., Gloersen, P. & Campbell, W. Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res. 89, 5355â5369 (1984).
Krylov, A. et al. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2007PA001497 (2008).
Darby, D. Arctic perennial ice cover over the last 14 million years. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2007PA001479 (2008).
Miller, G. et al. Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 29, 1679â1715 (2010).
Tarduno, J. A. et al. Evidence for extreme climatic warmth from late Cretaceous Arctic vertebrates. Science 282, 2241â2243 (1998).
Jenkyns, H., Forster, A., Schouten, S. & Damsté, J. S. S. High temperatures in the late Cretaceous Arctic Ocean. Nature 432, 888â892 (2004).
Nathorst, A. G. Ueber die reste eines Brotfruchtbaums Artocarpus dicksonii n. sp., aus den cenomanen Kreideablagerungen Grönlands. Kongl. Svenska Vetenskaps-Akad. Hand. 24, 2â9 (1890).
Stein, R. et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat. Commun. 7, 11148 (2016).
Nøgaard-Pedersen, N., Mikkelsen, N. & Kristoffersen, Y. Arctic Ocean record of last two glacial-interglacial cycles off North Greenland/Ellesmere Island â implications for glacial history. Mar. Geol. 244, 93â108 (2007).
Nørgaard-Pedersen, N., Mikkelsen, N., Lassen, S. J., Kristoffersen, Y. & Sheldon, E. Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off Northern Greenland. Paleoceanogr. Paleoclimatol. 22, PA1218 (2007).
Adler, R. E. et al. Sediment record from the western Arctic Ocean with an improved late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Glob. Planet. Change 68, 18â29 (2009).
Sime, L. C., Sivankutty, R., Vallet-Malmierca, I., de Boer, A. M. & Sicard, M. Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka. Clim. Past 19, 883â900 (2023).
Vermassen, F. et al. A seasonally ice-free Arctic Ocean during the last interglacial. Nat. Geosci. 16, 723â729 (2023).
Lozhkin, A. V. & Anderson, P. M. The last interglaciation in northeast Siberia. Quat. Res. 43, 147â158 (1995).
Tremblay, L. B., Schmidt, G. A., Pfirman, S., Newton, R. & DeRepentigny, P. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? Phil. Trans. Roy. Soc. A 373, 2052 (2015).
de Vernal, A. et al. Natural variability of the Arctic Ocean sea ice during the present interglacial. Proc. Natl Acad. Sci. USA 117, 26069â26075 (2020).
Jakobsson, M., Long, A., Ingoĺfsson, O., Kjær, K. H. & Spielhagen, R. F. New insights on Arctic quaternary climate variability from palaeo-records and numerical modelling. Quat. Sci. Rev. 29, 3349â3358 (2010).
Pfirman, S., Fowler, C., Tremblay, B. & Newton, R. The last Arctic sea ice refuge. Circle 4, 6â8 (2009).
Newton, R., Pfirman, S., Tremblay, L. B. & DeRepentigny, P. Defining the âice shedâ of the Arctic Oceanâs last ice area and its future evolution. Earths Future 9, e2021EF001988 (2021).
Acknowledgements
A.J. was supported by an Alexander von Humboldt Fellowship and NSF CAREER award 1847398. M.M.H. acknowledges support from NSF awards 2138788 and 2040538. J.E.K. was supported by NASA PREFIRE award 849K995 and NSF award 2233420. We thank J. Dörr for sharing the sea ice area data calculated for the SIMIP analysis10 and C. Wyburn-Powell for the assistance with regridding of the CMIP6 models for the spatial analysis. We also thank the participants at the Interagency Arctic Research Policy Committee (IARPC) webinar on an ice-free Arctic for the helpful discussions. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modelling groups for producing and making their model output available, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. We also acknowledge the US Climate and Ocean: Variability, Predictability and Change (CLIVAR) Working Group on Large Ensembles, the modelling centres that contributed to the CLIVAR Large Ensemble project, and the CESM2-LE project.
Author information
Authors and Affiliations
Contributions
A.J. decided on the overall scope of the article, wrote the majority of the article, and did all data analyses for the figures in the main article. M.M.H. and J.E.K. contributed to the writing of the manuscript, provided input on the article scope and figures, and edited the manuscript. M.M.H. also performed data analysis for supplementary figures and created one of the supplementary figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth and Environment thanks Muyin Wang, Dániel Topál and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Albedo
-
The fraction of incoming shortwave solar radiation that is reflected by a surface, ranging between 0 and 1.
- Internal variability
-
The variability in the climate system attributable to the chaotic nature of the climate system.
- Negative feedbacks
-
Dampening feedbacks in the climate system, reducing an initial perturbation.
- Positive feedbacks
-
Amplifying feedbacks in the climate system, enhancing an initial perturbation.
- Sea ice area
-
(SIA). The total area of sea ice present, without any threshold, calculated as sea ice concentration multiplied by grid area and summed over all Northern Hemisphere grid boxes. Note that sometimes, sea ice area is calculated only for grid cells with at least 15% sea ice cover.
- Sea ice extent
-
(SIE). The area of all grid boxes that have at least 15% sea ice concentration, calculated as sea ice concentration multiplied by the area of all grid boxes with 15% or more sea ice concentration.
- Sea ice sensitivity
-
The change in sea ice area divided by the change in global or Arctic temperature or cumulative CO2 emissions over the same time period.
- Shared Socioeconomic Pathway
-
(SSP). A forcing scenario that is part of the Scenario Model Intercomparison Project of CMIP6.
- Tipping point
-
An irreversible change in an environmental condition.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jahn, A., Holland, M.M. & Kay, J.E. Projections of an ice-free Arctic Ocean. Nat Rev Earth Environ 5, 164â176 (2024). https://doi.org/10.1038/s43017-023-00515-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-023-00515-9
This article is cited by
-
Observations reveal changing coastal storm extremes around the United States
Nature Climate Change (2025)
-
Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate
Nature Reviews Earth & Environment (2025)
-
Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward
npj Climate and Atmospheric Science (2025)
-
Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model
Communications Earth & Environment (2025)
-
Modelling the response of an ice disc to radial water flow in the context of sea ice thickening
Experiments in Fluids (2025)