[éè¦ãªãç¥ãã (2023/8/12)] ç¾å¨ï¼ã¹ã©ã¤ãã® p.10 ã«ä¸ååãªè¨è¿°ãããã¾ãï¼ã«ã¼ãã®çã㯠0 以ä¸ã®æ°ã«éå®ãããã¨ã«æ³¨æãã¦ãã ãã (ãã¨ãã° -3 ã 2 ä¹ãã¦ã 9 ã§ããï¼ã«ã¼ã 9 㯠-3 ã§ã¯ããã¾ãã)ï¼ãªãï¼ç¾å¨çè ã®ãã½ã³ã³ãä¿®çä¸ã§ãã¼ã¿ããªãã®ã§ï¼ä¿®â¦
ä¸éè¿°èªè«çã«ããèªç¶æ°è«ã®å½¢å¼åã§ããããã¢ãç®è¡ï¼Peano arithmeticï¼ããããã¯å¸¸å¾®åæ¹ç¨å¼ã«é¢ããããã¢ãã®åå¨å®çãã¨ã¯ç°ãªãã¾ãã ãã¢ãã®å ¬çï¼ãã¢ãã®ããããè±: Peano axiomsï¼ ã¨ã¯ãèªç¶æ°ã®å ¨ä½ãç¹å¾´ã¥ããå ¬çã§ããããã¢ãã®å ¬æºï¼è±: Peano postulatesï¼ãããã¯ãããã³ãï¼ãã¢ãã®å ¬çï¼è±: Dedekind-Peano axiomsï¼ã¨ãå¼ã°ãã[1][2]ã1891å¹´ã«ã¤ã¿ãªã¢ã®æ°å¦è ã¸ã¥ã¼ããã»ãã¢ãã«ããå®å¼åãããã ãã¢ãã®å ¬çãèµ·ç¹ã«ãã¦ãåçç®è¡ã¨æ´æ°ã»æçæ°ã»å®æ°ã»è¤ç´ æ°ã®æ§æãªã©ãå®éã«å±éãã¦ã¿ããå¤å ¸çãªæ¸ç©ã«ã1930å¹´ã«åºçãããã©ã³ãã¦ã«ãããè§£æå¦ã®åºç¤ãï¼Grundlagen Der Analysisï¼ãããã éå â ã¨å®æ° 0 ã¨é¢æ° S ã¨éå E ã«é¢ããæ¬¡ã®å ¬çãããã¢ãã®å ¬çã¨ãã
ä½ããããªã¡ãã£ã¢è¨äºãåºã¦ããããã§ãã ãããèªãã§è²ã ãªäººãããã³ããå ¥ãã¾ãã£ã¦ããæ¨¡æ§ã§ããããã®è¨äºã®ä¸æè°ãªã¨ããã¯ãå®å ¨ã«ééã£ã説æã¨ããããã§ããªãã®ã«ä½æ ãï¼ä¸¡åéã«è©³ããï¼èª°ãèªãã§ãççãªéåæãè¦ãããã¨ãããªããããªãããªãã¨ã æ£ç´ãããã¯ã©ã¤ã¿ã¼ã»ã¤ã³ã¿ãã¥ã¢ã¼ã»ã³ã¡ã³ãã¼ã¿ã¼ã»ç·¨éè ã®èª°ã®ãããªã®ãã¯å ¨ãåãããªããã§ãããããã³ãå ¥ãããã¾ãã£ã¦ããå 容ã«ã¤ãã¦è²ã ããã¤ãã£ã¦ããã¾ã建è¨çã§ãªãã®ã§ãããã§ã¯è¨äºä¸ã§æ¬é¡ã¨ãã¦åãä¸ãããã¦ãããçµ±è¨å¦ã¨æ©æ¢°å¦ç¿ã®éããã«ã¤ãã¦ã¡ãã£ã¨ã³ã¡ã³ããã¦ã¿ããã¨æãã¾ãã ãããã¡ããåãããããæ¸ãã³ã¡ã³ããå¥ã«æ£ããã¨ã¯å ¨ãéããªãã®ã§ãããããã¨ãããééã£ã¦ãã¨ããããã£ãããã³ãã³çªã£è¾¼ãã§ããã ããã°å¹¸ãã§ã*1ãããã¦ã¬ãå¢åãã®ã³ã¡ã³ãã§ããªãã®ã§ä½åæªããããã çµ±è¨å¦ã¯ãã¼ã¿ãã説æãã
ç·å½¢è«çï¼ããããããããè±: Linear logicï¼ã¯ããå¼±å(weakening)è¦åãã¨ã縮ç´(contraction)è¦åãã¨ããæ§é è¦åãå¦å®ããé¨åæ§é è«çã®ä¸ç¨®ã§ããããè³æºã¨ãã¦ã®ä»®èª¬ (hypotheses as resources)ãã¨ããè§£éããããããªãã¡ãå ¨ã¦ã®ä»®èª¬ã¯è¨¼æã«ããã¦ãä¸åã ããæ¶è²»ããããå¤å ¸è«çãç´è¦³è«çã®ãããªè«çä½ç³»ã§ã¯ã仮説ï¼åæï¼ã¯å¿ è¦ã«å¿ãã¦ä½åº¦ã§ã使ãããä¾ãã°ãA 㨠A â B ã¨ããå½é¡ãã A â§ B ã¨ããçµè«ãå°åºããã®ã¯ã次ã®ããã«ãªãã A 㨠A â B ãåæã¨ããã¢ã¼ãã¹ããã³ã¹ï¼ãããã¯èªç¶æ¼ç¹¹ã§ãã嫿ã®é¤å»ï¼ã«ãããB ãå¾ãããã åæ A 㨠(1) ã®è«çç©ãã A â§ B ãå¾ãããã ãããã·ã¼ã¯ã¨ã³ãã§è¡¨ãã¨ãA, A â B ⢠A â§ B ã¨ãªããä¸è¨ã®è¨¼æã§ã¯ã©ã¡ãã®è¡ã§ããA ãçã§ã
We have three colored segment in this animation. Surprisingly the length of the longest one is always the sum of the length of the two smaller ones. This is actually a very special case of Ptolemyâs theorem. The theorem gives a connection between the sides and the diagonals of a cyclic quadrilateral. In this case the length of the dashed lines is equal so the theorem can be simplified to the state
第ï¼ç« ã§ã䏿§ä¹±æ°ãçºçãããMath.random()ã¡ã½ããã«ã¤ãã¦å¦ã³ã¾ãããã·ã¹ãã ã»ã·ãã¥ã¬ã¼ã·ã§ã³ã«ããã¦ã¯ã䏿§ä¹±æ°ã®ã¿ãªããããã¾ãã¾ãªåå¸ã®ä¹±æ°ãç¨ãããã¨ãããã¾ããæ¬ç« ã§ã¯ã䏿§ä¹±æ°ã夿ãã¦ãã¾ãã¾ãªåå¸ã®ä¹±æ°ãä½ãåºãææ³ãå¦ã³ã¾ãã é颿°æ³ Math.random()ã¡ã½ããã§å¾ãããä¹±æ°ã¯ãï¼ã¨ï¼ã®éãããªãã¡ãåºéã[0,1)ãã§ããããããåºéã[a.b)ãã®ãããªç¹å®åºéã®ä¸æ§ä¹±æ°ãå¾ãã«ã¯ã©ããããããã®ã§ããããã ä¸è¬ã«ãåºéã[0,1)ãã®ä¸æ§ä¹±æ°ããç¹å®åºéã®ä¸æ§ä¹±æ°ãå¾ãã«ã¯ã次ã®é颿°æ³ããã使ããã¾ãã åºéã[0,1)ãã®ä¸æ§ä¹±æ°ã®ç¢ºçå¯åº¦é¢æ°ãf(x)ãã¯ãå³ï¼ï¼ï¼ï¼ï¼ï½ã®ããã«ãªãã¾ã(注)ã ãããç©åããåå¸é¢æ°ãg(x)ãã¯å³ï¼ï¼ï¼ï¼ï¼ï½ã®ããã«ãªãã¾ãããg(x)ãã®å¤ã¯ï¼ããï¼ã®å¤ãã¨ãã¾ããããåºéã[0,1)ãã®ä¸æ§
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}