rito Backend EngineerTokyo, JapanPHP 5 æè¡è èªå®ä¸ç´è©¦é¨ãèªå®è çµ±è¨æ¤å® 3 ç´
rito Backend EngineerTokyo, JapanPHP 5 æè¡è èªå®ä¸ç´è©¦é¨ãèªå®è çµ±è¨æ¤å® 3 ç´
DjangoCongressJP 2023ã§ä»¥ä¸ã®ãã¼ã¯ãèãã¦ãä¹ ãã¶ãã«ã»ãã¥ãªãã£ç±ãåºã¦ãããã¨ãããSQLã¤ã³ã¸ã§ã¯ã·ã§ã³ã«ã¤ãã¦èª¿ã¹ã¦ããã¨ãããsqlmapã¨ãããã¼ã«ãè¦ã¤ãã¾ããã sqlmapã¯ãªã¼ãã³ã½ã¼ã¹ã®SQLã¤ã³ã¸ã§ã¯ã·ã§ã³ã«ç¹åãã¦ããä¾µå ¥ãã¹ããã¼ã«ã§ãã ä»åã¯èå¼±æ§ãæ±ããWebã¢ããªã±ã¼ã·ã§ã³ãæ§ç¯ãã¦ããã¡ãã«å¯¾ãã¦sqlmapã使ã£ã¦SQLã¤ã³ã¸ã§ã¯ã·ã§ã³ãä½é¨ãã¦ã¿ã¾ãã â» ä»åã¯SQLã¤ã³ã¸ã§ã¯ã·ã§ã³ã®å¦ç¿ã®ããã®ãã®ã§ãããèªåã管çããã·ã¹ãã 以å¤ã«å¯¾ãã¦ã¯æ±ºãã¦å®è¡ããªãã§ãã ãããããµã¤ãææè ã®åæç¡ãã«sqlmapã使ã£ã¦ãããã¬ã¼ã·ã§ã³ãã¹ãããããã¨ã¯æ¢ãã¦ãã ããã sqlmapã«å¯¾å¿ãã¦ããDBã¯ä»¥ä¸ã«ãªãã¾ããã¡ã¸ã£ãªã¼RDSã§ããã°æãããã¦ãã¾ãã MySQL Oracle PostgreSQL Microsoft
pglite + pgvector ã§æç« ã®é¡ä¼¼åº¦æ¤ç´¢ãå®è£ ãã¾ãã åæ© ã¨ã«ããæã£åãæ©ããã¼ã«ã«ã«ãã¼ã¿ãçªã£è¾¼ãã§ããã¦æ¤ç´¢ãã RAG ã®éå½¢ãã»ããã£ããã§ããã調ã¹ã¦ãå¤§è¦æ¨¡ã¹ãã¬ã¼ã¸ãåæã¨ãã大æãããªå®è£ ãå¤ãã§ãã ã¹ã¯ãªãããæ¸ããããã³ã¨å®è¡ã§ããã»ããã¢ããä¸è¦ãªãã®ãããã¨ãè²ã ã¨å®é¨ãã§ãã¾ãã mastra/rag ãèªãã§ãããç°¡åã«ã§ããæ°ãããã®ã§ããã¾ããããã ãchunk ã®ããã¥ã¡ã³ãåå²ç¸å½ã®ãã®ã¯ã¾ã ä½ã£ã¦ã¾ãããããã¾ã§é£ããæ¦å¿µã§ããªãã®ã§ãéã«ä½ãããã§ã¯ããã¾ãã qrdrant ãæ¤è¨ãã¾ãããããµã¼ãã¼ã建ã¦ãã®ãé¢åã§ãã æºå: ãã¯ãã«åç¨ã®é¢æ° ä»å㯠@ai-sdk/openai ã使ã£ã¦ãã¯ãã«åããã¾ã // OPENAI_API_KEY= import { openai } from "@ai-sdk/open
ã¯ããã« ãã¼ã¿æ´»ç¨ã¨çæAI æ§é åããããã¼ã¿ã¨çæAI äºä¾ Uber LinkedIn Pinterest ãããã« ã¯ããã« ikki-sanã®ãã¼ã¿æ´»ç¨ã®æ°ä¸»åã¸ã®ã³ã¡ã³ããããã ãªã¨æããªããèªãã§ãæè¿èªåããããªæãã®é åã®ãã¨ããã³ãã¼æå±ã®ãããã¯ãããã¼ã¸ã£ã¼ã¨ãã¦ãã£ã¦ããã®ã§ãèãã¦ãããã¨ãã¾ã¨ãã¦ã¿ãã ãã®æ°å¹´éã§ããã¼ã¿ã®æ°ä¸»åãã¯ã¤ãã¤ãé²ã¾ãªãã£ãå°è±¡ã§ããããã®åå ã¯ãSQLã®ç¿å¾é£æåº¦ãã«ããã¨ããã大ãããããã«é¢ãã¦ã¯çæAIã§ç¸å½è§£æ±ºãããã¯ããªã®ã§ãä»å¾ã¯ãã¼ã¿ã®æ°ä¸»åãã¹ã¿ã³ãã¼ãã«ãªãã¨äºæ³ãã¦ãã¾ããâ ikki / stable代表 (@ikki_mz) 2025å¹´4æ7æ¥ ãã¼ã¿æ´»ç¨ã¨çæAI ããã¾ã§ç¤¾å ã«èç©ãããæ§é åããããã¼ã¿ãåå¾ã»æä½ããã«ã¯SQLããã³ãã¼ã¿ãã¼ã¹ã®çè§£ãå¿ è¦ã§ããããã®çè§£ããªã人ãã¡ã¯èª°ãã«ã
ããã¯ä½ï¼ ç§tenajimaããã¼ã¿åºç¤ã®ãã¤ãã©ã¤ã³ãä½ãã¨ããã¬ãã¥ã¼ããã¨ãã«æèãã¦ããç¹ãè¨èªåãããã®ã§ã ãã¼ã¿åºç¤ãä½ãä¸ã§ã®èãæ¹ã®ä¸ã¤ã«å½¹ç«ã¦ã¦ããã ããã°å¹¸ãã§ã ãã®è¨äºã®åæ dbtã使ã£ããã¼ã¿åºç¤æ§ç¯ã念é ã«ç½®ãã¦æ¸ãã¦ãã¾ããdbtã®è¨æ³ãåºã¦ãã¾ã CTEsã使ããç°å¢ãæ³å®ãã¦ãã¾ã è¨äºå ã§ãã¼ã¿ã¨ã³ã¸ãã¢ãã¢ããªãã£ã¯ã¹ã¨ã³ã¸ãã¢ãç·ç§°ãã¦ãã¼ã¿ã¨ã³ã¸ãã¢ã¨å¼ãã§ãã¾ã ãã¼ã¿åºç¤ãã使ãå´ãã®ã¯ã¨ãªã¨ãä½ãå´ãã®ã¯ã¨ãªã®éã æè¿ã§ã¯ãã¡ã¼ã¹ããã£ãªã¢ãããã¼ã¿ã¨ã³ã¸ãã¢ã®æ¹ãåºã¦ãã¦ããããããã¾ãããããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã¢ããªã¹ããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ãçµé¨ãã¦ãã¼ã¿ã¨ã³ã¸ãã¢ãè¡ã£ã¦ãã人ãä¸è¬çã¨èãã¦ãã¾ãã ç¹ã«ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã¢ããªã¹ããããã¼ã¿ã¨ã³ã¸ãã¢ã¸ã®è»¢åã¯ç§ã®å¨ãã§ã¯å¤ãããã«æãã¦ããããã®æ¹éã¯(éå»ã®
ã¯ããã« ãã¼ã¿ã¢ããªãã£ã¯ã¹äºæ¥æ¬é¨ã®kobayashiã§ãã BigQueryã®ãªãªã¼ã¹ãã¼ãããã§ãã¯ãã¦ããã¨ãã QUALIFY clauseãGAããã¦ããã®ã§æ©é試ãã¦ã¿ã¾ããã Release notes  | BigQuery  | Google Cloud Query syntax QUALIFY clause  | BigQuery  | Google Cloud Qualifyå¥ã¨ã¯ ã¯ã¨ãªã§åæé¢æ°ã使ç¨ããå ´åã«åæé¢æ°ã®çµæã§ãã£ã«ã¿ãªã³ã°ãè¡ãã¾ãã æ©è½ã試ãã¦ã¿ã æ©éQualifyå¥ã試ãã¦ã¿ããã¨æãã¾ãã使ããã¼ã¿ã¯ä»¥ä¸ã®ãããªæ°è±¡ãã¼ã¿ãæ±ã£ã¦ã¿ã¾ãã date month city w_type temperature precipitation sunlight cloudage
æ £ããªãã¨ä½¿ãã®ãå¿ããã¡ãªQUALIFYå¥ãå®ã¯é常ã«ä¾¿å© SQLã«ãããQUALIFYå¥ WINDOW颿°ã¯ãSQLã§ä¸çªæåã«ã¤ã¾ã¥ããã¤ã³ãããããã¾ããã OVER PARTITION BY ãããæé¬±â¦ãããªåå¦è ã®æ¹ãå¤ãã®ã§ã¯ãªãã§ããããã ä»åã¯ãããªWINDOW颿°ã®çµæã«åºã¥ãããã£ã«ã¿ããããã®ã«ä¾¿å©ãª QUALIFY å¥ã«ã¤ãã¦ã§ãã 使ãããã©ãããã©ã¼ã ãéããã¦ãã¦ãç¾ç¶ã§ã¯ MySQLãPostgreSQLã®ãããªã¢ããªã±ã¼ã·ã§ã³ç³»ã®DBã§ã¯å®è£ ããã¦ããããRedshift, BigQuery, Snowflakeã®ãããªåæç¨ã®DBã§ãã使ããªããã®ã§ãããããæå¤ã¨ç¥ããªã人ãå¤ãï¼ã®ããããã¾ããã ãããå人çã«ã¯ããªã便å©ã§æãã¦ããããå¥ã®ä¸ã¤ã ã¨æã£ã¦ãã¾ãã QUALIFYå¥ã¨ã¯ æ©éQUALIFYå¥ã¨ã¯ãªããããã¨ããã¨ããã説æãã¾
åã®ç¶ãã§ãã crmprogrammer38.hatenablog.com Window颿°ã§ã¯ãWindowã®ä¸ã§ä¸¦ã³æ¿ããããé çªã«åè¡ã§è¨ç®ããä»çµã¿ãããã¾ããç´¯è¨ã®è¨ç®ãä¾ã«ãã¾ããï¼BIãã¼ã«ã§ãã©ã³ãã³ã°ãµã ã®åç§°ãã¤ãã¦ããããã¾ãï¼ ä»¥ä¸ã®å¹´å¥ç´¯è¨ã®é ç®ã¯ãå¹´æ¯ã®Windowã®ä¸ã§å¹´æã®å¤ãé ã«åºè²»ãè¶³ããå¤ã¨ãªãã¾ãã å¹´ å¹´æ åºè²» å¹´å¥ç´¯è¨ 2016 201611 27,000 27,000 2016 201612 24,000 51,000 2017 201701 18,000 18,000 2017 201702 3,000 21,000 2017 201703 15,000 36,000 2017 201704 27,000 63,000 ãããåºåããSQLã¯æ¬¡ã«ãªãã¾ãã(rows betweenãçç¥ããªãã§æ¸ãã¦ãã¾ã) select å¹´ ,å¹´æ ,
ã¯ããã« ã¡ãã£ã¨ã¨ã£ã¤ãã«ãããã©ã¨ã£ã¦ã便å©ãªåæé¢æ°ã«ã¤ãã¦ããªãã¹ãåããããã説æãã¦ã¿ããã¨æãã¾ããOracleã対象ã«ãã¦ãã¾ãããä»ã®DBã§ããã¶ãä¼¼ããããªãã®ã§ãããï¼ç¡è²¬ä»»ï¼ã ã¾ãåæé¢æ°ã¨ã¯ä½ããããã®ããã§ãããä¸è¨ã§è¨ãã¨éå颿°ã¨åãéè¨åä½ãããããã®è¡ã«å¶éç¯å²ã§å®è¡ãããã®ã§ããããã§ããéå颿°ã¨ã¯ãMAXãSUMãAVGçãGROUP BYã¨å ±ã«ä½¿ãè¡ãã¾ã¨ããã¦éè¨è¨ç®ãã颿°ã§ãããåæé¢æ°ã¯éå颿°ã¨åæ§ã®è¨ç®ããã¾ãããéå颿°ã¨éãè¡ãã¾ã¨ãã¾ãããããããã®è¡ã§éè¨è¨ç®ãçµæãè¿ãã¾ãããããéå颿°ã¨ã®å¤§ããªéãã§ãã ã¾ããéå颿°ã§ã¯GROUP BYã®åãã«ã©ã å¤ããã¤å ¨è¡ãä¸ã¤ã«éè¨ãã¾ãããåæé¢æ°ã§ã¯éè¨å¯¾è±¡ã¨ãªãè¡ã®ç¯å²ãä»»æã§æå®ã§ãã¾ãã颿°ã«ç¶ãOVERå¥ã§ãã®ç¯å²æå®ãè¡ãã¾ããéå颿°ã¨åæé¢æ°ã¯åºæ¬åãååãª
èæ¯ã¨ç¶æ³ æ°ã·ã¹ãã ã«ãã¼ã¸ã§ã³ã¢ããããéãç«¯å¢æã«ã¯ä¸å®æéãç¾ã·ã¹ãã ã¨æ°ã·ã¹ãã ã®ä¸¡æ¹ã«ãã¼ã¿å ¥åãå¿ è¦ã«ãªãå ´åãããã¾ãããã¹ã¿ã¼ç»é²ããã®ä»£è¡¨ã§ããå¾ã ã«ãã¦ãã¾ã æ¬çªç¨¼åãã¦ããªãæ°ã·ã¹ãã ã«å ¥åããå¿ãã¦ãã¾ãã¾ãããããªãã¨å ¥åæ¼ããããã¼ã¿ãæ¢ããªããã°ãªãã¾ããã ããããã㨠2ã¤ã®ãã¼ãã«ãæ¯è¼ãã¦ç°ãªãã¬ã³ã¼ãã®ã¿ãåºåããããè¦ã¯SQLã§ãã¼ã¿ãæ¯è¼ãããã â»IBM Db2 V11.1 Windowsã§ç¢ºèªãã¦ãã¾ããä»ã®DBMSã§ãã§ããã¯ãã§ãã æ¯è¼ãããã¼ãã« åãã¹ãã¼ãã§å 容ã®ç°ãªããã¼ãã«ãæ¯è¼ãã¾ããå¥ã®ãã¼ã¿ãã¼ã¹ãã䏿¹ã®ãã¼ãã«ãã³ãã¼ãã¦ååã夿´ãã¾ãã
LookMLå ¥é ã¯ããã« ãã®è¨äºã§ã¯ LookMLã®æ¸ãæ¹ãå¦ç¿ãã¦ããè¨äºã§ãã主ãªå 容ã¨ãã¦ã¯å®è·µããã¨ãã®ã¡ã¢ãä¸å¿ã«æ¸ãã¾ããï¼å¿ãããããã¨ãªã©ï¼ 誤ããªã©ãããã°æ¸ãç´ãã¦ããäºå®ã§ãããªããå 容ã«ã¤ãã¾ãã¦ã¯2023å¹´8æ9æ¥æç¹ã®èª¿æ»å 容ã§è¨è¼ãã¦ããã¾ããããããããäºæ¿ãã ããã LookMLã«å ¥ãåã«ãããã ãã¦æ¬é¡ã§ãããLookMLã¨ã¯ããããã©ããªãã®ã ã£ãã§ããããããã§å°ãã ããããããã¾ãããã LookML ã¯ãLooker Modeling Language ã®ç¥ã§ããã»ãã³ãã£ã㯠ãã¼ã¿ã¢ãã«ã使ããããã« Looker ã§ä½¿ç¨ãããè¨èªã§ããLookML ã使ç¨ãã¦ãSQL ãã¼ã¿ãã¼ã¹å ã®ãã£ã¡ã³ã·ã§ã³ãéè¨ãè¨ç®ãããã³ãã¼ã¿ã®é¢ä¿ãè¨è¿°ã§ãã¾ãã Looker ã¯ãLookML ã§è¨è¿°ãããã¢ãã«ã使ç¨ãã¦ãç¹å®ã®ãã¼ã¿ãã¼ã¹ã«å¯¾ã
ã¯ã¨ãª ã¬ãã¥ã¼IDæ¯ã®ææ°ç¶æ ãåå¾ãããã®ã§ã以ä¸ã®æµãã§ã¯ã¨ãªãè¨è¿°ãã¾ãã review_id ã§ã°ã«ã¼ãå åå¾ãããåã STRUCT ã§éç´ created_at ã®éé ã§ã½ã¼ã LIMIT 1 OFFSET(0) ã§1ä»¶ã®ã¿åå¾ lateståã§1段ãã¹ãããã®ã§ SELECT latest.* ã§å±é SELECT review_id, latest.*, FROM ( SELECT review_id, ARRAY_AGG(STRUCT( star, content, created_at ) ORDER BY created_at DESC LIMIT 1) [OFFSET(0)] latest, FROM reviews GROUP BY ALL ) ã¡ãªã¿ã«ãQUALIFY + ROW_NUMBER ã使ã£ã¦ãåæ§ã®çµæãå¾ããã¨ãã§ãã¾ããææ°ã®1ä»¶ã¨è¨ã㨠R
G-gen ã®ææã§ããBigQuery ã¯é常ã®éç¨ãã¼ã¿ãã¼ã¹ã¨ç°ãªããåæç¨ãã¼ã¿ãã¼ã¹ã§ãããã¨ããã鿣è¦åãããã¼ãã«ãæ±ããã¨ãå¤ããªãã¾ãããã®ããã®ç¬ç¹ã®ãã¼ã¿åã¨ãã¦ãARRAY (é å) 㨠STRUCT (æ§é ä½) ãããã¾ãããããã«ã¤ãã¦è§£èª¬ãã¾ãã æ¦è¦ ARRAY (é å) ARRAY ã¨ã¯ ãµã³ãã«ãã¼ãã« SELECT SELECT ã WHERE SELECT ã CROSS JOIN SELECT (SELECT ~ UNNEST) CREATE TABLE / INSERT å¶é STRUCT (æ§é ä½) STRUCT ã¨ã¯ ãµã³ãã«ãã¼ãã« SELECT SELECT ã WHERE CREATE TABLE / INSERT å¶é ARRAY<STRUCT> (ãã¹ããããç¹°ãè¿ãå) ARRAY<STRUCT> ã¨ã¯ ãµã³ãã«ãã¼ãã« SEL
ãã®è¨äºã§ã¯ BigQuery ã«è¿½å ããã pipe syntax ãã®ãã®ã«ã¤ãã¦ã¯ä»ã®è¨äºã«ä»»ã㦠pipe syntax 㨠Cloud Spanner ã«è¿½å ããã GQL ã®å¯¾å¿é¢ä¿ã«ã¤ãã¦æ¸ãã¾ãã pipe syntax ã«ã¤ãã¦ããç¥ããã人ã¯ãããããªã³ã¯ããã¦ãã Google Cloud å ¬å¼ã®ããã¥ã¡ã³ããè«æã Medium ãªã©ã®ã³ãã¥ããã£ã®è¨äºãèªãã¨è¯ãããããã¾ããã å°å ¥ BigQuery ã«è¿½å ããã pipe syntax 2024å¹´10æ8æ¥ä»ã®ãªãªã¼ã¹ãã¼ãã§ BigQuery ã® pipe syntax ã® Preview ãçºè¡¨ããã¾ããã You can now use pipe syntax anywhere you write GoogleSQL. Pipe syntax supports a linear query struct
縦æã¡ããæ¨ªæã¡ã¸ã®å¤æã¾ããæ¨ªæã¡ã«ããã縦æã¡ã®ã¾ã¾user_idãareaãã¨ã®åè¨å¤ãåºåããã«ã¯ã以ä¸ã®ããã«ã¯ã¨ãªãæ¸ãã°OKã§ãã æçµçã«æ¬²ãããã¼ã¿ã¯ãå ¨ã¦ãã®çµæã«å«ã¾ãã¦ãã¾ãããã®ã¯ã¨ãªããæ¬è¨äºã§ã¯ã¯ã¨ãªï¼ã¨å¼ã³ã¾ãã #ã¯ã¨ãªï¼ select user_id, area, sum(amount) from sales group by user_id, areaå¿ è¦ãªãã¼ã¿ãéä¸è¶³ãªãå¾ãããã®ã§ããã¨ã¯ä¸ã§å¾ããããã¼ã¿ã横æã¡ã«å¤æããã ãã§ãã ãã®ãã¼ã¿ã横æã¡ã«å¤å½¢ããããã«ã¯ã以ä¸ã®ããã«ã¯ã¨ãªï¼ä»¥ä¸ã¯ã¨ãªï¼ï¼ãæ¸ãæãã¾ããã¯ã¨ãªï¼ã§å¾ããããã¼ã¿ã¯ãã¯ã¨ãªï¼ã®ä¸ã§xã¨ååãã¤ãã¦ãã¾ãã #ã¯ã¨ãª2 select user_id, max(case area when "Ginza" then amount else null end) as G
çæAIå©ç¨ããã°ã©ãã³ã°ï¼èª°ã§ãããã°ã©ã ãæ¸ãã㨠ä¸ã®ä¸ã©ããªãï¼/opencampus202508
æ¦è¦ åå¦çå¤§å ¨ãèªã¿ã以ä¸ã®çç±ããæéãåãããã®ãè¨è¼ããã ãã¼ã¿åæã§ãããã«è¿ããã¨ãé ¼ã¾ãã(ãã®ãããªé¢åãããå¦çã¯ããã¼ã¿åæã§ã¯ãããã) ãããªãµãã«SQLãæ¸ãããã ããã£ã¡ã楽ããã¨ç¥ã£ãã 詳ããã¯åå¦çå¤§å ¨ãèªããã¨ããããããã¾ãã ãã¼ã¿ãªã©ããåå¦çå¤§å ¨ãã®githubã«ããã¾ãã åæ ä»¥ä¸ã®SQLã¯PostgreSQLã®ãã®ã§ãã(æä¸é¨ã®æ¥ä»ã®è¨ç®ä»¥å¤ã¯ã»ãã§ãåããã) å 容 æãå¤ãä¾¡æ ¼å¸¯(æé »å¤)ã®åå¾ äºç´ãæ ¼ç´ãããã¼ãã«ãããæãé »åºããä¾¡æ ¼å¸¯ãåå¾ããã æ£ç¢ºãªä¾¡æ ¼ã§ã¯ãªããROUND颿°ã使ã£ã¦ååã®æ¡ã§åæ¨äºå ¥ããããã®ã対象ã«ããã SQL
AIã¨ã¼ã¸ã§ã³ãæä»£ã®ã¨ã³ã¸ãã¢ã«ãªãã #jawsug #jawsdays2025 / 20250301 Agentic AI Engineering
Tableau Prepã使ã£ãSQLãã¬ã¼ã¹ãè¡ããå¿«é©ãªããã¼è¨è¨ãèãã Tableauã§ããªã»ã¼ã«ã¹ã¨ã³ã¸ãã¢ããã¦ãã @rsugimura17 ã§ããä»åã¯Tableau Prep BuilderãTableau Prep Conductor ã®SQL ãã¬ã¼ã¹ãè¡ããå¿«é©ãªããã¼è¨è¨ãèãã¦ããã¾ãã Tableau Prepã¨ã¯ï¼ ãã¼ã¿ãçµåãåæã«é©ããå½¢å¼ã¸å¤æãã¯ãªã¼ãã³ã°ããããã®ãã¸ã¥ã¢ã«ãã¤ç´æ¥çãªæ¹æ³ãæä¾ãã Tableau ã®ãã¼ã¿å¤æè£½åã§ãããªã³ãã¬ãã¹ã§ãã¯ã©ã¦ãã§ãããã¼ã¿ãã¼ã¹ã¾ãã¯ã¹ãã¬ããã·ã¼ãã®ã©ãã«ãã£ã¦ããã¼ã¿ã«æ¥ç¶ã§ããå¤ç¨®å¤æ§ãªãã¼ã¿ã¸ã®ã¢ã¯ã»ã¹ãçµã¿åãããã¯ãªã¼ãã³ã°ãã³ã¼ãã£ã³ã°ãªãã§è¡ãã¾ããTableau Prep ã¯2ã¤ã®è£½åã§æ§æããã¦ãã¾ãããã¼ã¿ããã¼ãæ§ç¯ããããã® Tableau Prep Builderãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}