Zum Inhalt springen

Mittelpunkt

aus Wikipedia, der freien Enzyklopädie
Beispiele mit Mittelpunkten: Strecke, Kreis, Ellipse, Quader, Kugel, Ellipsoid

Der Begriff Mittelpunkt steht in der Geometrie in engem Zusammenhang zur Punktsymmetrie:[1]

  • Ist eine Punktmenge in der Ebene oder im Raum zu genau einem Punkt punktsymmetrisch, so nennt man den Mittelpunkt von .

Beispiele mit Mittelpunkt:

  1. Strecke
  2. Kreis, Ellipse, Hyperbel
  3. Quadrat, Rechteck, reguläres Polygon mit einer geraden Anzahl von Ecken
  4. Quader, Kugel, Ellipsoid, Kegel
  5. Torus

Quadriken, die einen Mittelpunkt besitzen, nennt man Mittelpunktsquadriken.[2]

Beispiele ohne Mittelpunkt: Dreieck, reguläres Polygon mit einer ungeraden Zahl von Ecken, Parabel, Zylinder.

Beispiele mit mehreren Symmetriepunkten: ein paralleles Geradenpaar, ein Zylinder.
Punktmengen, die punktsymmetrisch zu wenigstens zwei Punkten sind, sind dann auch gegenüber wenigstens einer Verschiebung invariant, da die Hintereinanderausführung zweier Punktspiegelungen eine Parallelverschiebung (Translation) ist.

Der Begriff Mittelpunkt ist typisch für die affine Geometrie. Projektiv entspricht der Mittelpunkt einer Strecke zwei Punktepaaren in harmonischer Lage. Ein Kreis oder Ellipse hat projektiv keinen Mittelpunkt, denn ein nichtausgearteter Kegelschnitt ist projektiv zu jedem Punkt nicht auf dem Kegelschnitt symmetrisch, d. h. es gibt eine zentrale Involution mit Zentrum , die den Kegelschnitt invariant lässt.

In der Physik nennt man den Schwerpunkt von Massen Massenmittelpunkt.

Beispiele in Koordinaten

[Bearbeiten | Quelltext bearbeiten]
Mittelpunkt einer Strecke

Sind zwei Punkte und der Ebene in kartesischen Koordinaten gegeben, so hat der Mittelpunkt der Strecke die Koordinaten[3]

und .

Die Mittelpunktskoordinaten sind also jeweils das arithmetische Mittel der Koordinaten der Randpunkte.

Für eine Strecke im Raum mit den Endpunkten und sind die Koordinaten des Mittelpunkts entsprechend gegeben als

.
Mittelpunkt von Kreis, Ellipse

Der Mittelpunkt des Kreises mit der Gleichung ist .
Der Mittelpunkt der Ellipse mit der Gleichung ist .
Bei Kugel und Ellipsoid ist jeweils eine Koordinate mehr.

Torus

Der Torus mit der Gleichung

hat als Mittelpunkt. Die Symmetrie am Nullpunkt ist an dem ausschließlichen Auftreten von Quadraten der Koordinaten leicht zu erkennen.

Mittelpunkte besonderer Kreise

[Bearbeiten | Quelltext bearbeiten]

In der Geometrie wird das Wort Mittelpunkt auch zur Kennzeichnung von Mittelpunkten besonderer Kreise geometrischer Objekte verwendet:

  1. Umkreismittelpunkt, Inkreismittelpunkt eines Dreiecks.
  2. Krümmungsmittelpunkt ist der Mittelpunkt des Krümmungskreises in einem Kurvenpunkt.
  3. Schmiegkreismittelpunkt in einem Kurvenpunkt.
Commons: Mittelpunkt – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Mittelpunkt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. K. P. Grotemeyer: Analytische Geometrie. Sammlung Göschen, 1962, S. 113.
  2. Grotemeyer, S. 113
  3. Andreas Filler: Elementare Lineare Algebra (= Mathematik Primarstufe und Sekundarstufe I + II). Spektrum Akademischer Verlag, Heidelberg 2011, ISBN 978-3-8274-2412-9, S. 55.