Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
Top Machine Learning Dataset: Find Open Datasets
Next article icon

Maths for Machine Learning

Last Updated : 10 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Mathematics is the foundation of machine learning. Math concepts plays a crucial role in understanding how models learn from data and optimizing their performance.

Before diving into machine learning algorithms, it's important to familiarize yourself with foundational topics, like Statistics, Probability Distributions, Linear Algebra, Matrix Operations, Regression, Geometry, Dimensionality Reduction and Vector Calculus.

Linear Algebra and Matrix Operations

Linear algebra is important for many machine learning algorithms. Concepts like vectors, matrices and matrix operations are essential for understanding data representations, transformations and model computations. From calculating gradients to managing multidimensional datasets, linear algebra enables efficient implementation of algorithms.

  • Matrices
  • Eigenvalues and Eigenvectors
  • LU Decomposition
  • QR Decomposition
  • Singular Value Decomposition (SVD)
  • Orthogonalization
  • Diagonalization
  • Non- Negative Matrix Factorization
  • Vectors
  • Vector Spaces and Subspaces
  • Linear Mappings

Regression Analysis

Regression analysis is a statistical method for understanding relationships between variables. It is crucial for predictive modeling and interpreting patterns in data. Techniques like linear regression provide the foundation for supervised learning, where the goal is to predict continuous outcomes.

  • Linear Regression
  • Logistic regreession
  • Bayesian Linear Regression
  • Ridge and lasso Regresson
  • Normal Equation in Linear Regression
  • Maximum Likelihood Estimation (MLE)
  • Mean Squared Error

Statistics

Statistics helps interpret and summarize data, by providing the tools for probability estimations, hypothesis testing and descriptive analytics. Machine learning heavily uses statistical methods for data preprocessing, model evaluation and performance validation.

  • Mean, Standard Deviation and Variance
  • Sample Error and True Error
  • Confidence Intervals
  • Correlation and Covariance
  • Correlation Coefficient
  • Pearson Correlation Coefficient
  • Covariance Matrix
  • Hypothesis Testing
    • Null and Alternative Hypothesis
    • Type 1 and Type 2 Errors
    • p-value interaction
  • Parametric Methods
    • T-test
    • Paired Samples t-test
    • ANOVA Test
  • Non-Parametric Methods
    • Mann-Whitney U test
    • Wilcoxon signed-rank test
    • Kruskal-Wallis test
    • Friedman test
  • Bias Vs Variance and Its Trade-Off
  • Bootstrap method
  • Normal Probability Plot
  • Q-Q Plot
  • Curve Fitting
  • Residuals Leverage Plot

Geometry

Geometrical concepts are used in visualizing data distributions and understanding the spatial structure of feature spaces. Geometry plays a important role in clustering, classification and dimensionality reduction techniques.

  • Vector Norms
  • Inner Product
  • Outer Product
  • Dot and Cross Product
  • Euclidean Distance
  • Manhattan Distance
  • Minkowski Distance
  • Cosine Similarity
  • Jaccard Similarity
  • Orthogonality and Projections

Calculus

In Calculus, differentiation and integration is critical for optimization tasks in machine learning. It is used to compute gradients and adjust model parameters during training processes like gradient descent.

  • Fundamental Calculus Concepts
    • Differentiation
    • Partial Derivatives
    • Gradient Descent
    • Chain Rule
    • Jacobian and Hessian Matrices
  • Inverse Trigonometric Functions Differentiation
  • Partial Differentiation
  • Higher-Order Derivatives
  • Optimization Techniques using Gradient Descent
  • Uni-variate Optimization

Vector Calculus

Vector calculus extends calculus to multivariable systems. It is useful in understanding how changes in multi-dimensional spaces affect outcomes. It is the fundamental for deep learning.

  • Gradient
  • Divergence and Curl
  • Line Integrals
  • Laplacian Operator

Probability and Distributions

Probability theory let us deal with uncertainty in data and predictions. Understanding probability distributions is essential for building probabilistic models and algorithms like Bayesian networks or Markov chains.

  • Probability
  • Bayes’ Theorem
  • Joint, Conditional and Marginal Probability
  • Discrete Probability Distributions
    • Discrete Uniform Distribution
    • Bernoulli Distribution
    • Binomial Distribution
    • Poisson Distribution
  • Continuous Probability Distributions
    • Continuous Uniform Distribution
    • Exponential Distribution
    • Normal Distribution
    • Beta Distribution
    • Gamma Distribution
  • Sampling Distributions
    • Chi-Square Distribution
    • F - Distribution
    • t - Distribution
  • Central Limit Theorem

Dimensionality Reduction

Dimensionality reduction techniques make large datasets simpler by keeping only the most important information. Methods like Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) use math concepts from linear algebra (vectors and matrices etc) to achieve this.

  • Introduction to Dimensionality Reduction
  • Principal Component Analysis (PCA)
  • Linear Discriminant Analysis (LDA)
  • Generalized Discriminant Analysis (GDA)
  • t-SNE Algorithm

Some Related Articles-

  • Introduction to Machine Learning
  • Machine learning Tutorial
  • Top 50 Machine Learning Interview Questions (2023)
ML-Tutorial
Machine Learning

Why Learn Mathematics for Machine Learning?

  • Math provides the theoretical foundation for understanding how machine learning algorithms work.
  • Concepts like calculus and linear algebra enable fine-tuning of models for better performance.
  • Knowing the math helps troubleshoot issues in models and algorithms.
  • Topics like deep learning, NLP and reinforcement learning require strong mathematical foundations.

How Much Math is Required for Machine Learning?

The amount of math required for machine learning depends on your goals. Let's see the breakdown based on different level.:

Basic Understanding (Entry-Level)

  • Linear Algebra: Basics of vectors, matrices and matrix operations.
  • Statistics: Descriptive statistics, mean, median, variance and standard deviation.
  • Probability: Basics of probability theory and common distributions (e.g., normal distribution).
  • Calculus: High-level understanding of derivatives for gradient-based optimization.

Intermediate Understanding (Practical Implementation)

  • Linear Algebra: Eigenvalues, eigenvectors and singular value decomposition (SVD).
  • Probability and Statistics: Bayes' theorem, hypothesis testing and confidence intervals.
  • Calculus: Partial derivatives and chain rule for backpropagation in neural networks.
  • Optimization: Understanding gradient descent and its variations (e.g., stochastic gradient descent).

Advanced Understanding (Research and Custom Algorithms)

  • Vector Calculus: Jacobians, Hessians and multivariable functions for advanced optimization.
  • Probability Distributions: Advanced distributions (e.g., Poisson, exponential) and Markov models.
  • Linear Algebra: Deep understanding of transformations, tensor operations and matrix decompositions.
  • Statistics: Advanced concepts like statistical learning theory and Bayesian inference.
  • Calculus: Deeper integration into neural networks and understanding convergence proofs.

For practical applications and using pre-built libraries, basic to intermediate math is sufficient. However, for creating custom algorithms or advancing research, a deeper understanding of math is necessary.


Next Article
Top Machine Learning Dataset: Find Open Datasets
author
mohit gupta_omg :)
Improve
Article Tags :
  • Machine Learning
  • AI-ML-DS
Practice Tags :
  • Machine Learning

Similar Reads

  • Machine Learning Tutorial
    Machine learning is a branch of Artificial Intelligence that focuses on developing models and algorithms that let computers learn from data without being explicitly programmed for every task. In simple words, ML teaches the systems to think and understand like humans by learning from the data.It can
    5 min read
  • Prerequisites for Machine Learning

    • Python for Machine Learning
      Welcome to "Python for Machine Learning," a comprehensive guide to mastering one of the most powerful tools in the data science toolkit. Python is widely recognized for its simplicity, versatility, and extensive ecosystem of libraries, making it the go-to programming language for machine learning. I
      6 min read
    • SQL for Machine Learning
      Integrating SQL with machine learning can provide a powerful framework for managing and analyzing data, especially in scenarios where large datasets are involved. By combining the structured querying capabilities of SQL with the analytical and predictive capabilities of machine learning algorithms,
      6 min read
    • Getting Started with Machine Learning

      • Advantages and Disadvantages of Machine Learning
        Machine learning (ML) has revolutionized industries, reshaped decision-making processes, and transformed how we interact with technology. As a subset of artificial intelligence ML enables systems to learn from data, identify patterns, and make decisions with minimal human intervention. While its pot
        3 min read
      • Why ML is Important ?
        Machine learning (ML) has become a cornerstone of modern technology, revolutionizing industries and reshaping the way we interact with the world. As a subset of artificial intelligence (AI), ML enables systems to learn and improve from experience without being explicitly programmed. Its importance s
        4 min read
      • Real- Life Examples of Machine Learning
        Machine learning plays an important role in real life, as it provides us with countless possibilities and solutions to problems. It is used in various fields, such as health care, financial services, regulation, and more. Importance of Machine Learning in Real-Life ScenariosThe importance of machine
        13 min read
      • What is the Role of Machine Learning in Data Science
        In today's world, the collaboration between machine learning and data science plays an important role in maximizing the potential of large datasets. Despite the complexity, these concepts are integral in unraveling insights from vast data pools. Let's delve into the role of machine learning in data
        9 min read
      • Top Machine Learning Careers/Jobs
        Machine Learning (ML) is one of the fastest-growing fields in technology, driving innovations across healthcare, finance, e-commerce, and more. As companies increasingly adopt AI-based solutions, the demand for skilled ML professionals is Soaring. Machine Learning JobsThis article delves into the Ty
        10 min read
      geeksforgeeks-footer-logo
      Corporate & Communications Address:
      A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
      Registered Address:
      K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
      GFG App on Play Store GFG App on App Store
      Advertise with us
      • Company
      • About Us
      • Legal
      • Privacy Policy
      • In Media
      • Contact Us
      • Advertise with us
      • GFG Corporate Solution
      • Placement Training Program
      • Languages
      • Python
      • Java
      • C++
      • PHP
      • GoLang
      • SQL
      • R Language
      • Android Tutorial
      • Tutorials Archive
      • DSA
      • Data Structures
      • Algorithms
      • DSA for Beginners
      • Basic DSA Problems
      • DSA Roadmap
      • Top 100 DSA Interview Problems
      • DSA Roadmap by Sandeep Jain
      • All Cheat Sheets
      • Data Science & ML
      • Data Science With Python
      • Data Science For Beginner
      • Machine Learning
      • ML Maths
      • Data Visualisation
      • Pandas
      • NumPy
      • NLP
      • Deep Learning
      • Web Technologies
      • HTML
      • CSS
      • JavaScript
      • TypeScript
      • ReactJS
      • NextJS
      • Bootstrap
      • Web Design
      • Python Tutorial
      • Python Programming Examples
      • Python Projects
      • Python Tkinter
      • Python Web Scraping
      • OpenCV Tutorial
      • Python Interview Question
      • Django
      • Computer Science
      • Operating Systems
      • Computer Network
      • Database Management System
      • Software Engineering
      • Digital Logic Design
      • Engineering Maths
      • Software Development
      • Software Testing
      • DevOps
      • Git
      • Linux
      • AWS
      • Docker
      • Kubernetes
      • Azure
      • GCP
      • DevOps Roadmap
      • System Design
      • High Level Design
      • Low Level Design
      • UML Diagrams
      • Interview Guide
      • Design Patterns
      • OOAD
      • System Design Bootcamp
      • Interview Questions
      • Inteview Preparation
      • Competitive Programming
      • Top DS or Algo for CP
      • Company-Wise Recruitment Process
      • Company-Wise Preparation
      • Aptitude Preparation
      • Puzzles
      • School Subjects
      • Mathematics
      • Physics
      • Chemistry
      • Biology
      • Social Science
      • English Grammar
      • Commerce
      • World GK
      • GeeksforGeeks Videos
      • DSA
      • Python
      • Java
      • C++
      • Web Development
      • Data Science
      • CS Subjects
      @GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
      We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
      Lightbox
      Improvement
      Suggest Changes
      Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
      geeksforgeeks-suggest-icon
      Create Improvement
      Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
      geeksforgeeks-improvement-icon
      Suggest Changes
      min 4 words, max Words Limit:1000

      Thank You!

      Your suggestions are valuable to us.

      '); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
      ').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

      You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

      However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
      '); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
      '); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
      '); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
      "For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
      Continue without supporting
      `; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

      What kind of Experience do you want to share?

      Interview Experiences
      Admission Experiences
      Career Journeys
      Work Experiences
      Campus Experiences
      Competitive Exam Experiences