Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Open CV
  • scikit-image
  • pycairo
  • Pyglet
  • Python
  • Numpy
  • Pandas
  • Python Database
  • Data Analysis
  • ML Math
  • Machine Learning
  • NLP
  • Deep Learning
  • Deep Learning Interview Questions
  • ML Projects
  • ML Interview Questions
  • 100 Days of Machine Learning
Open In App
Next Article:
Python PIL | ImageOps.equalize() method
Next article icon

Python | Intensity Transformation Operations on Images

Last Updated : 04 Jan, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report
Intensity transformations are applied on images for contrast manipulation or image thresholding. These are in the spatial domain, i.e. they are performed directly on the pixels of the image at hand, as opposed to being performed on the Fourier transform of the image. The following are commonly used intensity transformations:
  1. Image Negatives (Linear)
  2. Log Transformations
  3. Power-Law (Gamma) Transformations
  4. Piecewise-Linear Transformation Functions
Spatial Domain Processes - Spatial domain processes can be described using the equation: g(x, y) = T[f(x, y)] where f(x, y) is the input image, T is an operator on f defined over a neighbourhood of the point (x, y), and g(x, y) is the output. Image Negatives - Image negatives are discussed in this article. Mathematically, assume that an image goes from intensity levels 0 to (L-1). Generally, L = 256. Then, the negative transformation can be described by the expression s = L-1-r where r is the initial intensity level and s is the final intensity level of a pixel. This produces a photographic negative.

Log Transformations -

Mathematically, log transformations can be expressed as s = clog(1+r). Here, s is the output intensity, r>=0 is the input intensity of the pixel, and c is a scaling constant. c is given by 255/(log (1 + m)), where m is the maximum pixel value in the image. It is done to ensure that the final pixel value does not exceed (L-1), or 255. Practically, log transformation maps a narrow range of low-intensity input values to a wide range of output values. Consider the following input image. Below is the code to apply log transformation to the image. Python 1==
import cv2
import numpy as np

# Open the image.
img = cv2.imread('sample.jpg')

# Apply log transform.
c = 255/(np.log(1 + np.max(img)))
log_transformed = c * np.log(1 + img)

# Specify the data type.
log_transformed = np.array(log_transformed, dtype = np.uint8)

# Save the output.
cv2.imwrite('log_transformed.jpg', log_transformed)
Below is the log-transformed output.

Power-Law (Gamma) Transformation -

Power-law (gamma) transformations can be mathematically expressed as s = cr^{\gamma}. Gamma correction is important for displaying images on a screen correctly, to prevent bleaching or darkening of images when viewed from different types of monitors with different display settings. This is done because our eyes perceive images in a gamma-shaped curve, whereas cameras capture images in a linear fashion. Below is the Python code to apply gamma correction. Python 1==
import cv2
import numpy as np

# Open the image.
img = cv2.imread('sample.jpg')

# Trying 4 gamma values.
for gamma in [0.1, 0.5, 1.2, 2.2]:
    
    # Apply gamma correction.
    gamma_corrected = np.array(255*(img / 255) ** gamma, dtype = 'uint8')

    # Save edited images.
    cv2.imwrite('gamma_transformed'+str(gamma)+'.jpg', gamma_corrected)
Below are the gamma-corrected outputs for different values of gamma. Gamma = 0.1: Gamma = 0.5: Gamma = 1.2: Gamma = 2.2: As can be observed from the outputs as well as the graph, gamma>1 (indicated by the curve corresponding to 'nth power' label on the graph), the intensity of pixels decreases i.e. the image becomes darker. On the other hand, gamma<1 (indicated by the curve corresponding to 'nth root' label on the graph), the intensity increases i.e. the image becomes lighter.

Piecewise-Linear Transformation Functions -

These functions, as the name suggests, are not entirely linear in nature. However, they are linear between certain x-intervals. One of the most commonly used piecewise-linear transformation functions is contrast stretching. Contrast can be defined as:
Contrast =  (I_max - I_min)/(I_max + I_min)
This process expands the range of intensity levels in an image so that it spans the full intensity of the camera/display. The figure below shows the graph corresponding to the contrast stretching. With (r1, s1), (r2, s2) as parameters, the function stretches the intensity levels by essentially decreasing the intensity of the dark pixels and increasing the intensity of the light pixels. If r1 = s1 = 0 and r2 = s2 = L-1, the function becomes a straight dotted line in the graph (which gives no effect). The function is monotonically increasing so that the order of intensity levels between pixels is preserved. Below is the Python code to perform contrast stretching. Python 1==
import cv2
import numpy as np

# Function to map each intensity level to output intensity level.
def pixelVal(pix, r1, s1, r2, s2):
    if (0 <= pix and pix <= r1):
        return (s1 / r1)*pix
    elif (r1 < pix and pix <= r2):
        return ((s2 - s1)/(r2 - r1)) * (pix - r1) + s1
    else:
        return ((255 - s2)/(255 - r2)) * (pix - r2) + s2

# Open the image.
img = cv2.imread('sample.jpg')

# Define parameters.
r1 = 70
s1 = 0
r2 = 140
s2 = 255

# Vectorize the function to apply it to each value in the Numpy array.
pixelVal_vec = np.vectorize(pixelVal)

# Apply contrast stretching.
contrast_stretched = pixelVal_vec(img, r1, s1, r2, s2)

# Save edited image.
cv2.imwrite('contrast_stretch.jpg', contrast_stretched)
Output:

Next Article
Python PIL | ImageOps.equalize() method

A

Anannya Uberoi 1
Improve
Article Tags :
  • Python
  • Image-Processing
  • OpenCV
  • Python-OpenCV
Practice Tags :
  • python

Similar Reads

  • Python Pillow Tutorial
    sinceDigital Image processing means processing the image digitally with the help of a computer. Using image processing we can perform operations like enhancing the image, blurring the image, extracting text from images, and many more operations. There are various ways to process images digitally. He
    15+ min read
  • Introduction to Pillow

    • Python: Pillow (a fork of PIL)
      Python Imaging Library (expansion of PIL) is the de facto image processing package for Python language. It incorporates lightweight image processing tools that aids in editing, creating and saving images. Support for Python Imaging Library got discontinued in 2011, but a project named pillow forked
      4 min read

    Installation and setup

    • How to Install Pillow on MacOS?
      In this article, we will learn how to install Pillow in Python on MacOS. Python Imaging Library (expansion of PIL) is the de facto image processing package for Python language. Installation:Method 1: Using pip to install Pillow Follow the below steps to install the Pillow package on macOS using pip:
      2 min read

    • How to Install PIL on Windows?
      In this article, we will look into the various methods of installing the PIL package on a Windows machine. Prerequisite:Python PIP or Ananconda (Depending upon your preference)For PIP Users: Open up the command prompt and use the below command to install the PIL package: pip install Pillow The follo
      1 min read

    • How to Install PIL on Linux?
      PIL is an acronym for Python Image Library. It is also called Pillow. It is one of the most famous libraries for manipulating images using the python programming language. It is a free and open-source Python library. Installing PIL on Linux:Method 1: Using PIP command: Step 1: Open up the Linux term
      1 min read

    Loading and Saving Images

    • Python PIL | Image.save() method
      PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The Image module provides a class with the same name which is used to represent a PIL image. The module also provides a number of factory functions, including functions to load images from files,
      3 min read

    • Python PIL | Image.show() method
      PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The Image module provides a class with the same name which is used to represent a PIL image. The module also provides a number of factory functions, including functions to load images from files,
      1 min read

    • Finding Difference between Images using PIL
      Python interpreter in itself doesn't contain the ability to process images and making out a conclusion to it. So, PIL(Python Imaging Library) adds image processing powers to the interpreter. PIL is an open-source library that provides python with external file support and efficiency to process image
      2 min read

    Image Manipulation Basics

    • Python Pillow - Working with Images
      In this article, we will see how to work with images using Pillow in Python. We will discuss basic operations like creating, saving, rotating images. So let's get started discussing in detail but first, let's see how to install pillow. Installation To install this package type the below command in t
      4 min read

    • Python PIL | Image.resize() method
      PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The Image module provides a class with the same name which is used to represent a PIL image. The module also provides a number of factory functions, including functions to load images from files,
      4 min read

    • Python Pillow - Flip and Rotate Images
      Prerequisites: Pillow Python Pillow or PIL is the Python library that provides image editing and manipulating features. The Image Module in it provides a number of functions to flip and rotate images. image.transpose() is the function used to rotate and flip images with necessary keywords as paramet
      2 min read

    • Python PIL | paste() and rotate() method
      PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. PIL.Image.Image.paste() method is used to paste an image on another image. This is where the new() method comes in handy. Syntax: PIL.Image.Image.paste(image_1, image_2, box=None, mask=None) OR i
      2 min read

    Adjusting Image Properties

    • Change image resolution using Pillow in Python
      Prerequisites: Python pillow PIL is the Python Imaging Library which provides the python interpreter with an in-depth file format support, an efficient internal representation, and fairly powerful image processing capabilities. Changing the resolution of an image simply means reducing or increasing
      2 min read

    • Image Enhancement in PIL
      The Python Imaging Library(PIL) adds powerful image processing capabilities. It provides immense file format support, an efficient representation, and fairly powerful image processing capabilities. The core image library is intended for fast access to data stored in very few basic pixel formats. It
      4 min read

    Image Filtering and Effects

    • Python Pillow - Blur an Image
      Blurring an image is a process of reducing the level of noise in the image, and it is one of the important aspects of image processing. In this article, we will learn to blur an image using a pillow library. To blur an image we make use of some methods of ImageFilter class of this library on image o
      2 min read

    • How to merge images with same size using the Python 3 module pillow?
      In this article, the task is to merge image with size using the module pillow in python 3.  Python 3 module pillow : This is the update of Python Imaging Library. It is a free and open-source additional library for the Python programming language that adds support for opening, manipulating, and savi
      2 min read

    Drawing on Images

    • Adding Text on Image using Python - PIL
      In Python to open an image, image editing, saving that image in different formats one additional library called Python Imaging Library (PIL). Using this PIL we can do so many operations on images like create a new Image, edit an existing image, rotate an image, etc. For adding text we have to follow
      2 min read

    • Python Pillow - ImageDraw Module
      Python's Pillow which is a fork of the discontinued Python Imaging Library (PIL) is a powerful library that is capable of adding image processing capabilities to your python code. Pillow offers many modules that ease the process of working and modifying images. In this article, we will have a look a
      5 min read

    • Python Pillow - Colors on an Image
      In this article, we will learn Colors on an Image using the Pillow module in Python. Let's discuss some concepts: A crucial class within the Python Imaging Library is the Image class. It's defined within the Image module and provides a PIL image on which manipulation operations are often administere
      4 min read

    Image Transformations

    • How to rotate an image using Python?
      In this article, let's see how to rotate an Image using Python. By Image Rotation, the image is rotated about its center by a specified number of degrees. The rotation of an image is a geometric transformation. It can be done either by Forward Transformation (or) Inverse Transformation. Here Image P
      2 min read

    • Python PIL | Image.transform() method
      PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The Image module provides a class with the same name which is used to represent a PIL image. The module also provides a number of factory functions, including functions to load images from files,
      1 min read

    Working with Image Metadata

    • How to extract image metadata in Python?
      Prerequisites: PIL Metadata stands for data about data. In case of images, metadata means details about the image and its production. Some metadata is generated automatically by the capturing device.  Some details contained by image metadata is as follows: HeightWidthDate and TimeModel etc. Python h
      2 min read

    • Python | Working with the Image Data Type in pillow
      In this article, we will look into some attributes of an Image object that will give information about the image and the file it was loaded from. For this, we will need to import image module from pillow. Image we will be working on : size() method - It helps to get the dimensions of an image. IMG =
      2 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences