Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Data Visualization
  • Statistics in R
  • Machine Learning in R
  • Data Science in R
  • Packages in R
  • Data Types
  • String
  • Array
  • Vector
  • Lists
  • Matrices
  • Oops in R
Open In App
Next Article:
Calculate exponential of a number in R Programming - exp() Function
Next article icon

Calculate exponential of a number in R Programming - exp() Function

Last Updated : 01 Jun, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
exp() function in R Language is used to calculate the power of e i.e. e^y or we can say exponential of y. The value of e is approximately equal to 2.71828…..
Syntax: exp(y) Parameters: y: It is any valid R number either positive or negative. Returns: Floating point number by calculating e^y.
Example 1: Python3
# R program to calculate exp value 
  
# Using exp() method 
answer1 <- exp(4) 
answer2 <- exp(-3)  
answer3 <- exp(0.0)

print(answer1) 
print(answer2) 
print(answer3) 
Output:
54.59815
0.04978707
1
Example 2: Python3
# R program to calculate exp value 
  
# Using exp() method 
answer1 <- exp(c(pi, exp(1))) 

print(answer1)  
Output:
23.14069 15.15426

Next Article
Calculate exponential of a number in R Programming - exp() Function
author
spp____
Improve
Article Tags :
  • R Language
  • R Math-Function

Similar Reads

    Compute the Exponential minus 1 of a Number in R Programming - expm1() Function
    expm1() function in R Language is used to compute exponential minus 1 i.e, exp()-1. Syntax: expm1(x) Parameters: a, b: number or number vector Example 1: Python3 # R program to illustrate # expm1 function # Calling the expm1() function expm1(4) # e5 -1 expm1(10) expm1(15) Output: [1] 53.59815 [1] 22
    1 min read
    Calculate Inverse cosine of a value in R Programming - acos() Function
    acos() function in R Language is used to calculate the inverse cosine value of the numeric value passed to it as argument. Syntax: acos(x) Parameter: x: Numeric value Example 1: Python3 1== # R code to calculate inverse cosine of a value # Assigning values to variables x1 <- -1 x2 <- 0.5 # Usi
    1 min read
    Calculate Factorial of a value in R Programming - factorial() Function
    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. It is defined as: n! = n × (n - 1) × (n - 2) × ... × 2 × 1For example 5! = 5 × 4 × 3 × 2 × 1 = 1200! is defined to be 1.Factorials have important applications in mathematics, co
    3 min read
    Calculate Cumulative Sum of a Numeric Object in R Programming - cumsum() Function
    The cumulative sum can be defined as the sum of a set of numbers as the sum value grows with the sequence of numbers. cumsum() function in R Language is used to calculate the cumulative sum of the vector passed as argument. Syntax: cumsum(x)  Parameters:  x: Numeric Object Example 1:  Python3 # R pr
    1 min read
    Calculate Cumulative Product of a Numeric Object in R Programming – cumprod() Function
    cumprod() function in R Language is used to calculate the cumulative product of the vector passed as argument. Syntax: cumprod(x) Parameters: x: Numeric Object Example 1: Python3 1== # R program to illustrate # the use of cumprod() Function # Calling cumprod() Function cumprod(1:4) cumprod(-1:-6) Ou
    1 min read
    Calculate Hyperbolic cosine of a value in R Programming - cosh() Function
    cosh() function in R Language is used to calculate the hyperbolic cosine value of the numeric value passed to it as the argument.  Syntax: cosh(x)Parameter: x: Numeric value Example 1:   Python3 # R code to calculate cosine of a value # Assigning values to variables x1 <- 90 x2 <- 30 # Using c
    1 min read
    Convert a Numeric Object to Character in R Programming - as.character() Function
    as.character() function in R Language is used to convert a numeric object to character object. Syntax: as.character(x) Parameters: x: Numeric Object Example 1: Python3 1== # R program to convert a numeric object # to character object # Calling as.character() function as.character(1) as.character(2 +
    1 min read
    Calculate sine of a value in R Programming - sin() Function
    sin() function in R Language is used to calculate the sine value of the numeric value passed to it as argument. Syntax: sin(x) Parameter: x: Numeric value Example 1: Python3 1== # R code to calculate sine of a value # Assigning values to variables x1 <- -90 x2 <- -30 # Using sin() Function sin
    1 min read
    Calculate tangent of a value in R Programming - tan() Function
    tan() function in R Language is used to calculate the tangent of the numeric value passed to it as argument. Syntax: tan(x) Parameter: x: Numeric value Example 1: Python3 1== # R code to calculate tangent of a value # Assigning values to variables x1 <- -90 x2 <- -30 # Using tan() Function tan
    1 min read
    Exponential Distribution in R Programming - dexp(), pexp(), qexp(), and rexp() Functions
    The Exponential Distribution is a continuous probability distribution that models the time between independent events occurring at a constant average rate. It is widely used in fields like reliability analysis, queuing theory, and survival analysis. The exponential distribution is a special case of
    5 min read
top_of_element && top_of_screen articleRecommendedTop && top_of_screen articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences