Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • DSA
  • Interview Problems on Graph
  • Practice Graph
  • MCQs on Graph
  • Graph Tutorial
  • Graph Representation
  • Graph Properties
  • Types of Graphs
  • Graph Applications
  • BFS on Graph
  • DFS on Graph
  • Graph VS Tree
  • Transpose Graph
  • Dijkstra's Algorithm
  • Minimum Spanning Tree
  • Prim’s Algorithm
  • Topological Sorting
  • Floyd Warshall Algorithm
  • Strongly Connected Components
  • Advantages & Disadvantages
Open In App
Next Article:
Introduction to Graph Data Structure
Next article icon

Graph Algorithms

Last Updated : 13 May, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Graph algorithms are methods used to manipulate and analyze graphs, solving various range of problems like finding the shortest path, cycles detection.

If you are looking for difficulty-wise list of problems, please refer to Graph Data Structure.

Basics

  • Graph and its representations

BFS and DFS

  • Breadth First Traversal
  • Depth First Traversal
  • Difference between BFS and DFS
  • Rotten Tomatoes
  • Islands in a Graph
  • Flood Fill
  • Check for Bipartite
  • Word Ladder
  • Snakes and Ladder
  • Water Jug problem
  • Pacific Atlantic Water Flow
  • Shortest Path in Binary Matrix
  • Clone a Graph
  • Transitive Closure of a Graph using DFS

Cycles

  • Cycle in a Directed Graph
  • Cycle in an undirected graph
  • Cycle in a graph using colors
  • Negative cycle in a Graph | (Bellman Ford)
  • Cycles of length n
  • Clone a Directed Acyclic Graph
  • Disjoint Set Data Structure or Union-Find Algorithm

Shortest Path

  • Dijkstra’s shortest path a
  • Bellman–Ford
  • Floyd Warshall
  • Johnson’s algorithm
  • Shortest Path in Directed Acyclic Graph
  • Dial’s Algorithm
  • Multistage Graph (Shortest Path)
  • Shortest path in an unweighted graph
  • Minimum mean weight cycle algorithm
  • 0-1 BFS (Shortest Path
  • Minimum weight cycle
  • D’Esopo-Pape Algorithm

Minimum Spanning Tree

  • Prim’s Minimum Spanning Tree (MST)
  • Kruskal’s Minimum Spanning Tree
  • Prim’s vs Kruskal’s algorithm for MST
  • Applications of Minimum Spanning Tree Problem
  • Minimum cost to connect all cities
  • Total number of Spanning Trees in a Graph
  • Minimum Product Spanning Tree
  • Reverse Delete Algorithm for Minimum Spanning Tree
  • Boruvka’s algorithm for Minimum Spanning Tree

Topological Sorting

  • Topological Sorting
  • All topological sorts of a Directed Acyclic Graph
  • Kahn’s Algorithm for Topological Sorting
  • Maximum edges that can be added to DAG so that is remains DAG
  • Longest Path in a Directed Acyclic Graph
  • Topological Sort of a graph using departure time of vertex
  • Find Itinerary from a given list of tickets

Connectivity in Graph

  • Articulation Points (or Cut Vertices) in a Graph
  • Biconnected Components
  • Bridges in a graph
  • Eulerian path and circuit
  • Fleury’s Algorithm for printing Eulerian Path or Circuit
  • Strongly Connected Components
  • Count all possible walks from a source to a destination with exactly k edges
  • Euler Circuit in a Directed Graph
  • Length of shortest chain to reach the target word
  • Find if an array of strings can be chained to form a circle
  • Tarjan’s Algorithm to find strongly connected Components
  • Paths to travel each nodes using each edge (Seven Bridges of Königsberg)
  • Dynamic Connectivity | Set 1 (Incremental)

Maximum Flow in Graph

  • Max Flow Problem Introduction
  • Ford-Fulkerson Algorithm for Maximum Flow Problem
  • Find maximum number of edge disjoint paths between two vertices
  • Find minimum s-t cut in a flow network
  • Maximum Bipartite Matching
  • Channel Assignment Problem
  • Introduction to Push Relabel Algorithm
  • Karger’s Algorithm- Set 1- Introduction and Implementation
  • Dinic’s algorithm for Maximum Flow

Some must do Problems

  • Find length of the largest region in Boolean Matrix
  • Count number of trees in a forest
  • A Peterson Graph Problem
  • Clone an Undirected Graph
  • Graph Coloring (Introduction and Applications)
  • Traveling Salesman Problem (TSP) Implementation
  • Vertex Cover Problem | Set 1 (Introduction and Approximate Algorithm)
  • K Centers Problem | Set 1 (Greedy Approximate Algorithm)
  • Erdos Renyl Model (for generating Random Graphs)
  • Chinese Postman or Route Inspection | Set 1 (introduction)
  • Hierholzer’s Algorithm for directed graph
  • Check whether a given graph is Bipartite or not
  • Snake and Ladder Problem
  • Boggle (Find all possible words in a board of characters)
  • Hopcroft Karp Algorithm for Maximum Matching-Introduction
  • Minimum Time to rot all oranges
  • Construct a graph from given degrees of all vertices
  • Determine whether a universal sink exists in a directed graph
  • Number of sink nodes in a graph
  • Two Clique Problem (Check if Graph can be divided in two Cliques)

Some Quizzes

  • Quizzes on Graph Traversal
  • Quizzes on Graph Shortest Path
  • Quizzes on Graph Minimum Spanning Tree
  • Quizzes on Graphs

Quick Links :

  • Top 10 Interview Questions on Depth First Search (DFS)
  • Some interesting shortest path questions
  • Practice Problems on Graphs

Recommended:

  • Learn Data Structure and Algorithms | DSA Tutorial

Next Article
Introduction to Graph Data Structure

H

harendrakumar123
Improve
Article Tags :
  • Graph
  • DSA
Practice Tags :
  • Graph

Similar Reads

    Graph Algorithms
    Graph algorithms are methods used to manipulate and analyze graphs, solving various range of problems like finding the shortest path, cycles detection. If you are looking for difficulty-wise list of problems, please refer to Graph Data Structure.BasicsGraph and its representationsBFS and DFS Breadth
    3 min read
    Introduction to Graph Data Structure
    Graph Data Structure is a non-linear data structure consisting of vertices and edges. It is useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structure can be used to analyze and understand the dynamics of
    15+ min read
    Graph and its representations
    A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is den
    12 min read
    Types of Graphs with Examples
    A graph is a mathematical structure that represents relationships between objects by connecting a set of points. It is used to establish a pairwise relationship between elements in a given set. graphs are widely used in discrete mathematics, computer science, and network theory to represent relation
    9 min read
    Basic Properties of a Graph
    A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph. The basic properties of a graph include: Vertices (nodes): The points where edges meet in a graph are kn
    4 min read
    Applications, Advantages and Disadvantages of Graph
    Graph is a non-linear data structure that contains nodes (vertices) and edges. A graph is a collection of set of vertices and edges (formed by connecting two vertices). A graph is defined as G = {V, E} where V is the set of vertices and E is the set of edges. Graphs can be used to model a wide varie
    7 min read
    Transpose graph
    Transpose of a directed graph G is another directed graph on the same set of vertices with all of the edges reversed compared to the orientation of the corresponding edges in G. That is, if G contains an edge (u, v) then the converse/transpose/reverse of G contains an edge (v, u) and vice versa. Giv
    9 min read
    Difference Between Graph and Tree
    Graphs and trees are two fundamental data structures used in computer science to represent relationships between objects. While they share some similarities, they also have distinct differences that make them suitable for different applications. Difference Between Graph and Tree What is Graph?A grap
    2 min read

    BFS and DFS on Graph

    Breadth First Search or BFS for a Graph
    Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
    15+ min read
    Depth First Search or DFS for a Graph
    In Depth First Search (or DFS) for a graph, we traverse all adjacent vertices one by one. When we traverse an adjacent vertex, we completely finish the traversal of all vertices reachable through that adjacent vertex. This is similar to a tree, where we first completely traverse the left subtree and
    13 min read
    Applications, Advantages and Disadvantages of Depth First Search (DFS)
    Depth First Search is a widely used algorithm for traversing a graph. Here we have discussed some applications, advantages, and disadvantages of the algorithm. Applications of Depth First Search:1. Detecting cycle in a graph: A graph has a cycle if and only if we see a back edge during DFS. So we ca
    4 min read
    Applications, Advantages and Disadvantages of Breadth First Search (BFS)
    We have earlier discussed Breadth First Traversal Algorithm for Graphs. Here in this article, we will see the applications, advantages, and disadvantages of the Breadth First Search. Applications of Breadth First Search: 1. Shortest Path and Minimum Spanning Tree for unweighted graph: In an unweight
    4 min read
    Iterative Depth First Traversal of Graph
    Given a directed Graph, the task is to perform Depth First Search of the given graph.Note: Start DFS from node 0, and traverse the nodes in the same order as adjacency list.Note : There can be multiple DFS traversals of a graph according to the order in which we pick adjacent vertices. Here we pick
    10 min read
    BFS for Disconnected Graph
    In the previous post, BFS only with a particular vertex is performed i.e. it is assumed that all vertices are reachable from the starting vertex. But in the case of a disconnected graph or any vertex that is unreachable from all vertex, the previous implementation will not give the desired output, s
    14 min read
    Transitive Closure of a Graph using DFS
    Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex pairs (u, v) in the given graph. Here reachable means that there is a path from vertex u to v. The reach-ability matrix is called transitive closure of a graph. For example, consider below graph: GraphTr
    8 min read
    Difference between BFS and DFS
    Breadth-First Search (BFS) and Depth-First Search (DFS) are two fundamental algorithms used for traversing or searching graphs and trees. This article covers the basic difference between Breadth-First Search and Depth-First Search.Difference between BFS and DFSParametersBFSDFSStands forBFS stands fo
    2 min read

    Cycle in a Graph

    Detect Cycle in a Directed Graph
    Given the number of vertices V and a list of directed edges, determine whether the graph contains a cycle or not.Examples: Input: V = 4, edges[][] = [[0, 1], [0, 2], [1, 2], [2, 0], [2, 3]]Cycle: 0 → 2 → 0 Output: trueExplanation: The diagram clearly shows a cycle 0 → 2 → 0 Input: V = 4, edges[][] =
    15+ min read
    Detect cycle in an undirected graph
    Given an undirected graph, the task is to check if there is a cycle in the given graph.Examples:Input: V = 4, edges[][]= [[0, 1], [0, 2], [1, 2], [2, 3]]Undirected Graph with 4 vertices and 4 edgesOutput: trueExplanation: The diagram clearly shows a cycle 0 → 2 → 1 → 0Input: V = 4, edges[][] = [[0,
    8 min read
    Detect Cycle in a directed graph using colors
    Given a directed graph represented by the number of vertices V and a list of directed edges, determine whether the graph contains a cycle.Your task is to implement a function that accepts V (number of vertices) and edges (an array of directed edges where each edge is a pair [u, v]), and returns true
    9 min read
    Detect a negative cycle in a Graph | (Bellman Ford)
    Given a directed weighted graph, your task is to find whether the given graph contains any negative cycles that are reachable from the source vertex (e.g., node 0).Note: A negative-weight cycle is a cycle in a graph whose edges sum to a negative value.Example:Input: V = 4, edges[][] = [[0, 3, 6], [1
    15+ min read
    Cycles of length n in an undirected and connected graph
    Given an undirected and connected graph and a number n, count the total number of simple cycles of length n in the graph. A simple cycle of length n is defined as a cycle that contains exactly n vertices and n edges. Note that for an undirected graph, each cycle should only be counted once, regardle
    10 min read
    Detecting negative cycle using Floyd Warshall
    We are given a directed graph. We need compute whether the graph has negative cycle or not. A negative cycle is one in which the overall sum of the cycle comes negative. Negative weights are found in various applications of graphs. For example, instead of paying cost for a path, we may get some adva
    12 min read
    Clone a Directed Acyclic Graph
    A directed acyclic graph (DAG) is a graph which doesn't contain a cycle and has directed edges. We are given a DAG, we need to clone it, i.e., create another graph that has copy of its vertices and edges connecting them. Examples: Input : 0 - - - > 1 - - - -> 4 | / \ ^ | / \ | | / \ | | / \ |
    12 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences