Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
Introduction to PySpark | Distributed Computing with Apache Spark
Next article icon

Introduction to PySpark | Distributed Computing with Apache Spark

Last Updated : 29 Apr, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report
Datasets are becoming huge. Infact, data is growing faster than processing speeds. Therefore, algorithms involving large data and high amount of computation are often run on a distributed computing system. A distributed computing system involves nodes (networked computers) that run processes in parallel and communicate (if, necessary). MapReduce - The programming model that is used for Distributed computing is known as MapReduce. The MapReduce model involves two stages, Map and Reduce.
  1. Map - The mapper processes each line of the input data (it is in the form of a file), and produces key - value pairs.
    Input data → Mapper → list([key, value])
  2. Reduce - The reducer processes the list of key - value pairs (after the Mapper's function). It outputs a new set of key - value pairs.
    list([key, value]) → Reducer → list([key, list(values)])
Spark - Spark (open source Big-Data processing engine by Apache) is a cluster computing system. It is faster as compared to other cluster computing systems (such as, Hadoop). It provides high level APIs in Python, Scala, and Java. Parallel jobs are easy to write in Spark. We will cover PySpark (Python + Apache Spark), because this will make the learning curve flatter. To install Spark on a linux system, follow this. To run Spark in a multi - cluster system, follow this. We will see how to create RDDs (fundamental data structure of Spark). RDDs (Resilient Distributed Datasets) - RDDs are immutable collection of objects. Since we are using PySpark, these objects can be of multiple types. These will become more clear further. SparkContext - For creating a standalone application in Spark, we first define a SparkContext - Python
from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test")
# setMaster(local) - we are doing tasks on a single machine
sc = SparkContext(conf = conf)
RDD transformations - Now, a SparkContext object is created. Now, we will create RDDs and see some transformations on them. Python
# create an RDD called lines from ‘file_name.txt’
lines = sc.textFile("file_name.txt", 2)

# print lines.collect() prints the whole RDD
print lines.collect()
One major advantage of using Spark is that it does not load the dataset into memory, lines is a pointer to the ‘file_name.txt’ ?file. A simple PySpark app to count the degree of each vertex for a given graph - Python
from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test")
# setMaster(local) - we are doing tasks on a single machine
sc = SparkContext(conf = conf)
def conv(line):
    line = line.split()
    return (int(line[0]), [int(line[1])])
def numNeighbours(x, y):
    return len(x) + len(y)
lines = sc.textFile('graph.txt')
edges = lines.map(lambda line: conv(line))
Adj_list = edges.reduceByKey(lambda x, y: numNeighbours(x, y))
print Adj_list.collect()
Understanding the above code -
  1. Our text file is in the following format - (each line represents an edge of a directed graph) 1    2 1    3 2    3 3    4 .    . .    . .    .PySpark
  2. Large Datasets may contain millions of nodes, and edges.
  3. First few lines set up the SparkContext. We create an RDD lines from it.
  4. Then, we transform the lines RDD to edges RDD.The function conv acts on each line and key value pairs of the form (1, 2), (1, 3), (2, 3), (3, 4), ... are stored in the edges RDD.
  5. After this the reduceByKey aggregates all the key - pairs corresponding to a particular key and numNeighbours function is used for generating each vertex's degree in a separate RDD Adj_list, which has the form (1, 2), (2, 1), (3, 1), ...
Running the code -
  1. The above code can be run by the following commands -
    $ cd /home/arik/Downloads/spark-1.6.0/
    $ ./bin/spark-submit degree.py
    
  2. You can use your Spark installation path in the first line.
We will see more on, how to run MapReduce tasks in a cluster of machines using Spark, and also go through other MapReduce tasks. References -
  1. http://lintool.github.io/SparkTutorial/
  2. https://spark.apache.org/

Next Article
Introduction to PySpark | Distributed Computing with Apache Spark

A

Arik Pamnani
Improve
Article Tags :
  • Misc
  • Data Science
  • Web Technologies
Practice Tags :
  • Misc

Similar Reads

    How to introduce the schema in a Row in Spark?
    The type of data, field names, and field types in a table are defined by a schema, which is a structured definition of a dataset. In Spark, a row's structure in a data frame is defined by its schema. To carry out numerous tasks including data filtering, joining, and querying a schema is necessary.
    3 min read
    Expected Properties of a Big Data System
    Prerequisite - Introduction to Big Data, Benefits of Big DataThere are various properties that mostly rely on complexity as per their scalability in big data. As per these properties, Big data systems should perform well, efficiently, and reasonably well. Let’s explore these properties step by step.
    6 min read
    Spark vs Impala
    Spark and Impala are the two most common tools used for big data analytics. This article focuses on discussing the pros, cons, and differences between the two tools. What is Spark?Spark is a framework that is open source and is used for making queries interactive, for machine learning, and for real-
    4 min read
    Hadoop Tutorial
    Big Data is a collection of data that is growing exponentially, and it is huge in volume with a lot of complexity as it comes from various resources. This data may be structured data, unstructured or semi-structured. So to handle or manage it efficiently, Hadoop comes into the picture. Hadoop is a f
    3 min read
    Components of Apache Spark
    Spark is a cluster computing system. It is faster as compared to other cluster computing systems (such as Hadoop). It provides high-level APIs in Python, Scala, and Java. Parallel jobs are easy to write in Spark. In this article, we will discuss the different components of Apache Spark. Spark proces
    5 min read
    Apache Spark with Scala - Resilient Distributed Dataset
    In the modern world, we are dealing with huge datasets every day. Data is growing even faster than processing speeds. To perform computations on such large data is often achieved by using distributed systems. A distributed system consists of clusters (nodes/networked computers) that run processes in
    3 min read
    How to Install PySpark in Kaggle
    PySpark is the Python API for powerful distributed computing framework called Apache Spark. Among its many usage areas, I would say it majorly includes big data processing, machine learning, and real-time analytics. Running PySpark within the hosted environment of Kaggle would be super great if you
    4 min read
    Overview of Apache Spark
    In this article, we are going to discuss the introductory part of Apache Spark, and the history of spark, and why spark is important. Let's discuss one by one. According to Databrick's definition "Apache Spark is a lightning-fast unified analytics engine for big data and machine learning. It was ori
    2 min read
    Wide and Narrow Dependencies in Apache Spark
    Apache Spark, a powerful distributed computing framework, is designed to process large-scale datasets efficiently across a cluster of machines. However, Dependencies play a crucial role in Spark's performance, particularly concerning shuffling operations. Shuffling, which involves moving data across
    6 min read
    How to create Spark session in Scala?
    Scala stands for scalable language. It was developed in 2003 by Martin Odersky. It is an object-oriented language that provides support for functional programming approach as well. Everything in scala is an object e.g. - values like 1,2 can invoke functions like toString(). Scala is a statically typ
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences