Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Python Tutorial
  • Interview Questions
  • Python Quiz
  • Python Glossary
  • Python Projects
  • Practice Python
  • Data Science With Python
  • Python Web Dev
  • DSA with Python
  • Python OOPs
Open In App
Next Article:
Pandas DataFrame
Next article icon

Pandas DataFrame

Last Updated : 28 Nov, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Pandas DataFrame is two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns. Pandas DataFrame consists of three principal components, the data, rows, and columns.

Pandas Dataframe

Creating a Pandas DataFrame

Pandas DataFrame will be created by loading the datasets from existing storage, storage can be SQL Database, CSV file, and Excel file. Pandas DataFrame can be created from the lists, dictionary, and from a list of dictionary etc.

Here are some ways by which we create a dataframe:

Creating a dataframe using List: DataFrame can be created using a single list or a list of lists.

Python
import pandas as pd
 
# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 
            'portal', 'for', 'Geeks']
 
# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
print(df)

Output:

Output

Creating DataFrame from dict of ndarray/lists: To create DataFrame from dict of narray/list, all the narray must be of same length. If index is passed then the length index should be equal to the length of arrays. If no index is passed, then by default, index will be range(n) where n is the array length.

Python
# Python code demonstrate creating 
# DataFrame from dict narray / lists 
# By default addresses.
 
import pandas as pd
 
# intialise data of lists.
data = {'Name':['Tom', 'nick', 'krish', 'jack'],
        'Age':[20, 21, 19, 18]}
 
# Create DataFrame
df = pd.DataFrame(data)
 
# Print the output.
print(df)


Output:

 
For more details refer to Creating a Pandas DataFrame

Table of Content

  • Dealing with Rows and Columns
  • Indexing and Selecting Data
  • Selecting a single row
  • Working with Missing Data
  • Iterating over rows and columns


Dealing with Rows and Columns in Pandas DataFrame

A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns. We can perform basic operations on rows/columns like selecting, deleting, adding, and renaming.

Column Selection: In Order to select a column in Pandas DataFrame, we can either access the columns by calling them by their columns name.

Python
# Import pandas package
import pandas as pd
 
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
 
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
 
# select two columns
print(df[['Name', 'Qualification']])


Output:

Row Selection: Pandas provide a unique method to retrieve rows from a Data frame. DataFrame.loc[] method is used to retrieve rows from Pandas DataFrame. Rows can also be selected by passing integer location to an iloc[] function.

Note: We’ll be using nba.csv file in below examples.

Python
# importing pandas package
import pandas as pd
 
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
 
# retrieving row by loc method
first = data.loc["Avery Bradley"]
second = data.loc["R.J. Hunter"]
 
 
print(first, "\n\n\n", second)


Output:
As shown in the output image, two series were returned since there was only one parameter both of the times.

For more Details refer to Dealing with Rows and Columns

Indexing and Selecting Data in Pandas

Indexing in pandas means simply selecting particular rows and columns of data from a DataFrame. Indexing could mean selecting all the rows and some of the columns, some of the rows and all of the columns, or some of each of the rows and columns. Indexing can also be known as Subset Selection.

Indexing a Dataframe using indexing operator [] 

Indexing operator is used to refer to the square brackets following an object. The .loc and .iloc indexers also use the indexing operator to make selections. In this indexing operator to refer to df[].

In order to select a single column, we simply put the name of the column in-between the brackets

Python
# importing pandas package
import pandas as pd
 
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
 
# retrieving columns by indexing operator
first = data["Age"]
 
 
 
print(first)


Output:

Indexing a DataFrame using .loc[ ]

This function selects data by the label of the rows and columns. The df.loc indexer selects data in a different way than just the indexing operator. It can select subsets of rows or columns. It can also simultaneously select subsets of rows and columns.

In order to select a single row using .loc[], we put a single row label in a .loc function.

Python
# importing pandas package
import pandas as pd
 
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
 
# retrieving row by loc method
first = data.loc["Avery Bradley"]
second = data.loc["R.J. Hunter"]
 
 
print(first, "\n\n\n", second)


Output:
As shown in the output image, two series were returned since there was only one parameter both of the times.

Indexing a DataFrame using .iloc[ ] 

This function allows us to retrieve rows and columns by position. In order to do that, we’ll need to specify the positions of the rows that we want, and the positions of the columns that we want as well. The df.iloc indexer is very similar to df.loc but only uses integer locations to make its selections.

In order to select a single row using .iloc[], we can pass a single integer to .iloc[] function.

Python
import pandas as pd
 
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
 
 
# retrieving rows by iloc method 
row2 = data.iloc[3] 
 
 
 
print(row2)


Output:

For more Details refer

  • Indexing and Selecting Data with Pandas
  • Boolean Indexing in Pandas

Working with Missing Data

Missing Data can occur when no information is provided for one or more items or for a whole unit. Missing Data is a very big problem in real life scenario. Missing Data can also refer to as NA(Not Available) values in pandas.

Checking for missing values using isnull() and notnull() :


In order to check missing values in Pandas DataFrame, we use a function isnull() and notnull(). Both function help in checking whether a value is NaN or not. These function can also be used in Pandas Series in order to find null values in a series.

Python
# importing pandas as pd
import pandas as pd
 
# importing numpy as np
import numpy as np
 
# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
        'Second Score': [30, 45, 56, np.nan],
        'Third Score':[np.nan, 40, 80, 98]}
 
# creating a dataframe from list
df = pd.DataFrame(dict)
 
# using isnull() function  
df.isnull()


Output:

Filling missing values using fillna(), replace() and interpolate()


In order to fill null values in a datasets, we use fillna(), replace() and interpolate() function these function replace NaN values with some value of their own. All these function help in filling a null values in datasets of a DataFrame. Interpolate() function is basically used to fill NA values in the dataframe but it uses various interpolation technique to fill the missing values rather than hard-coding the value.

Python
# importing pandas as pd
import pandas as pd
 
# importing numpy as np
import numpy as np
 
# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
        'Second Score': [30, 45, 56, np.nan],
        'Third Score':[np.nan, 40, 80, 98]}
 
# creating a dataframe from dictionary
df = pd.DataFrame(dict)
 
# filling missing value using fillna()  
df.fillna(0)


Dropping missing values using dropna()


In order to drop a null values from a dataframe, we used dropna() function this function drop Rows/Columns of datasets with Null values in different ways.

Python
# importing pandas as pd
import pandas as pd
 
# importing numpy as np
import numpy as np
 
# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
        'Second Score': [30, np.nan, 45, 56],
        'Third Score':[52, 40, 80, 98],
        'Fourth Score':[np.nan, np.nan, np.nan, 65]}
 
# creating a dataframe from dictionary
df = pd.DataFrame(dict)
   
df


Output:


Now we drop rows with at least one Nan value (Null value).

Python
# importing pandas as pd
import pandas as pd
 
# importing numpy as np
import numpy as np
 
# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
        'Second Score': [30, np.nan, 45, 56],
        'Third Score':[52, 40, 80, 98],
        'Fourth Score':[np.nan, np.nan, np.nan, 65]}
 
# creating a dataframe from dictionary
df = pd.DataFrame(dict)
 
# using dropna() function  
df.dropna()


Output:

For more Details refer to Working with Missing Data in Pandas
 

Iterating over rows and columns

Iteration is a general term for taking each item of something, one after another. Pandas DataFrame consists of rows and columns so, in order to iterate over dataframe, we have to iterate a dataframe like a dictionary.

Iterating over rows


In order to iterate over rows, we can use three function iteritems(), iterrows(), itertuples() . These three function will help in iteration over rows.

Python
# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe from a dictionary 
df = pd.DataFrame(dict)
 
print(df)


Output:

Now we apply iterrows() function in order to get a each element of rows.

Python
# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe from a dictionary 
df = pd.DataFrame(dict)
 
# iterating over rows using iterrows() function 
for i, j in df.iterrows():
    print(i, j)
    print()


Output:

Iterating over Columns


In order to iterate over columns, we need to create a list of dataframe columns and then iterating through that list to pull out the dataframe columns.

Python
# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe from a dictionary 
df = pd.DataFrame(dict)
 
print(df)


Output:

Now we iterate through columns in order to iterate through columns we first create a list of dataframe columns and then iterate through list.

Python
# creating a list of dataframe columns
columns = list(df)
 
for i in columns:
 
    # printing the third element of the column
    print (df[i][2])


Output:

 
For more Details refer to Iterating over rows and columns in Pandas DataFrame

DataFrame Methods:

FUNCTIONDESCRIPTION
index()Method returns index (row labels) of the DataFrame
insert()Method inserts a column into a DataFrame
add()Method returns addition of dataframe and other, element-wise (binary operator add)
sub()Method returns subtraction of dataframe and other, element-wise (binary operator sub)
mul()Method returns multiplication of dataframe and other, element-wise (binary operator mul)
div()Method returns floating division of dataframe and other, element-wise (binary operator truediv)
unique()Method extracts the unique values in the dataframe
nunique()Method returns count of the unique values in the dataframe
value_counts()Method counts the number of times each unique value occurs within the Series
columns()Method returns the column labels of the DataFrame
axes()Method returns a list representing the axes of the DataFrame
isnull()Method creates a Boolean Series for extracting rows with null values
notnull()Method creates a Boolean Series for extracting rows with non-null values
isin()Method extracts rows from a DataFrame where a column value exists in a predefined collection
dtypes()Method returns a Series with the data type of each column. The result’s index is the original DataFrame’s columns
astype()Method converts the data types in a Series
values()Method returns a Numpy representation of the DataFrame i.e. only the values in the DataFrame will be returned, the axes labels will be removed
sort_values()- Set1, Set2Method sorts a data frame in Ascending or Descending order of passed Column
sort_index()Method sorts the values in a DataFrame based on their index positions or labels instead of their values but sometimes a data frame is made out of two or more data frames and hence later index can be changed using this method
loc[]Method retrieves rows based on index label
iloc[]Method retrieves rows based on index position
ix[]Method retrieves DataFrame rows based on either index label or index position. This method combines the best features of the .loc[] and .iloc[] methods
rename()Method is called on a DataFrame to change the names of the index labels or column names
columns()Method is an alternative attribute to change the coloumn name
drop()Method is used to delete rows or columns from a DataFrame
pop()Method is used to delete rows or columns from a DataFrame
sample()Method pulls out a random sample of rows or columns from a DataFrame
nsmallest()Method pulls out the rows with the smallest values in a column
nlargest()Method pulls out the rows with the largest values in a column
shape()Method returns a tuple representing the dimensionality of the DataFrame
ndim()Method returns an ‘int’ representing the number of axes / array dimensions.
Returns 1 if Series, otherwise returns 2 if DataFrame
dropna()Method allows the user to analyze and drop Rows/Columns with Null values in different ways
fillna()Method manages and let the user replace NaN values with some value of their own
rank()Values in a Series can be ranked in order with this method
query()Method is an alternate string-based syntax for extracting a subset from a DataFrame
copy()Method creates an independent copy of a pandas object
duplicated()Method creates a Boolean Series and uses it to extract rows that have duplicate values
drop_duplicates()Method is an alternative option to identifying duplicate rows and removing them through filtering
set_index()Method sets the DataFrame index (row labels) using one or more existing columns
reset_index()Method resets index of a Data Frame. This method sets a list of integer ranging from 0 to length of data as index
where()Method is used to check a Data Frame for one or more condition and return the result accordingly. By default, the rows not satisfying the condition are filled with NaN value

More on Pandas

  1. Python | Pandas Series
  2. Python | Pandas Working With Text Data
  3. Python | Pandas Working with Dates and Times
  4. Python | Pandas Merging, Joining, and Concatenating.

Next Article
Pandas DataFrame

A

anuragtriarna
Improve
Article Tags :
  • Pandas
  • AI-ML-DS
  • Python pandas-dataFrame

Similar Reads

    Machine Learning Tutorial
    Machine learning is a branch of Artificial Intelligence that focuses on developing models and algorithms that let computers learn from data without being explicitly programmed for every task. In simple words, ML teaches the systems to think and understand like humans by learning from the data.It can
    5 min read
    Linear Regression in Machine learning
    Linear regression is a type of supervised machine-learning algorithm that learns from the labelled datasets and maps the data points with most optimized linear functions which can be used for prediction on new datasets. It assumes that there is a linear relationship between the input and output, mea
    15+ min read
    Support Vector Machine (SVM) Algorithm
    Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and regression tasks. It tries to find the best boundary known as hyperplane that separates different classes in the data. It is useful when you want to do binary classification like spam vs. not spam or
    9 min read
    Logistic Regression in Machine Learning
    Logistic Regression is a supervised machine learning algorithm used for classification problems. Unlike linear regression which predicts continuous values it predicts the probability that an input belongs to a specific class. It is used for binary classification where the output can be one of two po
    11 min read
    K means Clustering – Introduction
    K-Means Clustering is an Unsupervised Machine Learning algorithm which groups unlabeled dataset into different clusters. It is used to organize data into groups based on their similarity. Understanding K-means ClusteringFor example online store uses K-Means to group customers based on purchase frequ
    4 min read
    K-Nearest Neighbor(KNN) Algorithm
    K-Nearest Neighbors (KNN) is a supervised machine learning algorithm generally used for classification but can also be used for regression tasks. It works by finding the "k" closest data points (neighbors) to a given input and makesa predictions based on the majority class (for classification) or th
    8 min read
    Backpropagation in Neural Network
    Back Propagation is also known as "Backward Propagation of Errors" is a method used to train neural network . Its goal is to reduce the difference between the model’s predicted output and the actual output by adjusting the weights and biases in the network.It works iteratively to adjust weights and
    9 min read
    100+ Machine Learning Projects with Source Code [2025]
    This article provides over 100 Machine Learning projects and ideas to provide hands-on experience for both beginners and professionals. Whether you're a student enhancing your resume or a professional advancing your career these projects offer practical insights into the world of Machine Learning an
    5 min read
    Introduction to Convolution Neural Network
    Convolutional Neural Network (CNN) is an advanced version of artificial neural networks (ANNs), primarily designed to extract features from grid-like matrix datasets. This is particularly useful for visual datasets such as images or videos, where data patterns play a crucial role. CNNs are widely us
    8 min read
    Naive Bayes Classifiers
    Naive Bayes is a classification algorithm that uses probability to predict which category a data point belongs to, assuming that all features are unrelated. This article will give you an overview as well as more advanced use and implementation of Naive Bayes in machine learning. Illustration behind
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences