Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • GfG 160: Daily DSA
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Data Visualization
  • Statistics in R
  • Machine Learning in R
  • Data Science in R
  • Packages in R
  • Data Types
  • String
  • Array
  • Vector
  • Lists
  • Matrices
  • Oops in R
Open In App
Next Article:
Subsetting in R Programming
Next article icon

Subsetting in R Programming

Last Updated : 08 Nov, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

In R Programming Language, subsetting allows the user to access elements from an object. It takes out a portion from the object based on the condition provided. There are 4 ways of subsetting in R programming. Each of the methods depends on the usability of the user and the type of object. For example, if there is a dataframe with many columns such as states, country, and population and suppose the user wants to extract states from it, then subsetting is used to do this operation. In this article, let us discuss the implementation of different types of subsetting in R programming.

R - subsetting

Method 1: Subsetting in R Using [ ] Operator

Using the '[ ]' operator, elements of vectors and observations from data frames can be accessed. To neglect some indexes, '-' is used to access all other indexes of vector or data frame. 

Example 1:  

In this example, let us create a vector and perform subsetting using the [ ] operator. 

R
# Create vector
x <- 1:15

# Print vector
cat("Original vector: ", x, "\n")

# Subsetting vector
cat("First 5 values of vector: ", x[1:5], "\n")

cat("Without values present at index 1, 2 and 3: ", 
                              x[-c(1, 2, 3)], "\n")

Output: 

Original vector:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
First 5 values of vector:  1 2 3 4 5
Without values present at index 1, 2 and 3:  4 5 6 7 8 9 10 11 12 13 14 15

Example 2: 

In this example, let us use mtcars data frame present in R base package for subsetting. 

R
# Dataset
cat("Original dataset: \n")
print(mtcars)

# Subsetting data frame
cat("HP values of all cars:\n")
print(mtcars['hp'])

# First 10 cars
cat("Without mpg and cyl column:\n")
print(mtcars[1:10, -c(1, 2)])

Output: 

Original dataset:
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

HP values of all cars:
                     hp
Mazda RX4           110
Mazda RX4 Wag       110
Datsun 710           93
Hornet 4 Drive      110
Hornet Sportabout   175
Valiant             105
Duster 360          245
Merc 240D            62
Merc 230             95
Merc 280            123
Merc 280C           123
Merc 450SE          180
Merc 450SL          180
Merc 450SLC         180
Cadillac Fleetwood  205
Lincoln Continental 215
Chrysler Imperial   230
Fiat 128             66
Honda Civic          52
Toyota Corolla       65
Toyota Corona        97
Dodge Challenger    150
AMC Javelin         150
Camaro Z28          245
Pontiac Firebird    175
Fiat X1-9            66
Porsche 914-2        91
Lotus Europa        113
Ford Pantera L      264
Ferrari Dino        175
Maserati Bora       335
Volvo 142E          109

Without mpg and cyl column:
                   disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant           225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360        360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D         146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230          140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280          167.6 123 3.92 3.440 18.30  1  0    4    4

Method 2: Subsetting in R Using [[ ]] Operator

[[ ]] operator is used for subsetting of list-objects. This operator is the same as [ ] operator but the only difference is that [[ ]] selects only one element whereas [ ] operator can select more than 1 element in a single command. 

Example 1: In this example, let us create a list and select the elements using [[]] operator. 

R
# Create list
ls <- list(a = 1, b = 2, c = 10, d = 20)

# Print list
cat("Original List: \n")
print(ls)

# Select first element of list
cat("First element of list: ", ls[[1]], "\n")

Output: 

Original List:
$a
[1] 1

$b
[1] 2

$c
[1] 10

$d
[1] 20

First element of list:  1 

Example 2: In this example, let us create a list and recursively select elements using c() function. 

R
# Create list
z <- list(a = list(x = 1, y = "GFG"), b = 1:10)

# Print list
cat("Original list:\n")
print(z)

# Print GFG using c() function
cat("Using c() function:\n")
print(z[[c(1, 2)]])

# Print GFG using only [[]] operator
cat("Using [[]] operator:\n")
print(z[[1]][[2]])

Output: 

Original list:
$a
$a$x
[1] 1

$a$y
[1] "GFG"


$b
 [1]  1  2  3  4  5  6  7  8  9 10

Using c() function:
[1] "GFG"

Using [[]] operator:
[1] "GFG"

Method 3: Subsetting in R Using $ Operator

$ operator can be used for lists and data frames in R. Unlike [ ] operator, it selects only a single observation at a time. It can be used to access an element in named list or a column in data frame. $ operator is only applicable for recursive objects or list-like objects. 

Example 1: In this example, let us create a named list and access the elements using $ operator 

R
# Create list
ls <- list(a = 1, b = 2, c = "Hello", d = "GFG")

# Print list
cat("Original list:\n")
print(ls)

# Print "GFG" using $ operator
cat("Using $ operator:\n")
print(ls$d)

Output: 

Original list:
$a
[1] 1

$b
[1] 2

$c
[1] "Hello"

$d
[1] "GFG"

Using $ operator:
[1] "GFG"

Example 2: In this example, let us use the mtcars dataframe and select a particular column using $ operator. 

R
# Dataset
cat("Original data frame:\n")
print(mtcars)

# Access hp column
cat("Using $ operator:\n")
print(mtcars$hp)

Output: 

Original data frame:
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Using $ operator:
[1] 110 110  93 110 175 105 245  62  95 123 123 180 180 180 205 215 230  66  52
[20]  65  97 150 150 245 175  66  91 113 264 175 335 109

Method 4: Subsetting in R Using subset() Function

subset() function in R programming is used to create a subset of vectors, matrices, or data frames based on the conditions provided in the parameters. 

Syntax: subset(x, subset, select)

Parameters: 

  • x: indicates the object
  • subset: indicates the logical expression on the basis of which subsetting has to be done
  • select: indicates columns to select

Example 1: In this example, let us use airquality data frame present in R base package and select Month where Temp < 65. 

R
# Subsetting
airq <- subset(airquality, Temp < 65, 
                  select = c(Month))

# Print subset
print(airq)

Output: 

    Month
4       5
5       5
8       5
9       5
15      5
16      5
18      5
20      5
21      5
23      5
24      5
25      5
26      5
27      5
144     9
148     9

Example 2: In this example, let us use mtcars data frame present in R base package and selects the car with 5 gears and hp > 200. 

R
# Subsetting
mtc <- subset(mtcars, gear == 5 & hp > 200, 
                      select = c(gear, hp))

# Print subset
print(mtc)

Output: 

               gear  hp
Ford Pantera L    5 264
Maserati Bora     5 335

Next Article
Subsetting in R Programming
author
utkarsh_kumar
Improve
Article Tags :
  • R Language
  • R-DataFrame
  • R-Objects

Similar Reads

  • Basic Syntax in R Programming
    R is the most popular language used for Statistical Computing and Data Analysis with the support of over 10, 000+ free packages in CRAN repository. Like any other programming language, R has a specific syntax which is important to understand if you want to make use of its features. This article assu
    3 min read
  • Control Statements in R Programming
    Control statements are expressions used to control the execution and flow of the program based on the conditions provided in the statements. These structures are used to make a decision after assessing the variable. In this article, we'll discuss all the control statements with the examples. In R pr
    4 min read
  • tidyr Package in R Programming
    Packages in the R language are a collection of R functions, compiled code, and sample data. They are stored under a directory called “library” in the R environment. By default, R installs a set of packages during installation.  One of the most important packages in R is the tidyr package. The sole p
    13 min read
  • How To Start Programming With R
    R Programming Language is designed specifically for data analysis, visualization, and statistical modeling. Here, we'll walk through the basics of programming with R, from installation to writing our first lines of code, best practices, and much more. Table of Content 1. Installation2. Variables and
    12 min read
  • 8 Coding Style Tips for R Programming
    R is an open-source programming language that is widely used as a statistical software and data analysis tool. R generally comes with the Command-line interface. R is available across widely used platforms like Windows, Linux, and macOS. Also, the R programming language is the latest cutting-edge to
    5 min read
  • How to Code in R programming?
    R is a powerful programming language and environment for statistical computing and graphics. Whether you're a data scientist, statistician, researcher, or enthusiast, learning R programming opens up a world of possibilities for data analysis, visualization, and modeling. This comprehensive guide aim
    4 min read
  • The Validation Set Approach in R Programming
    The validation set approach is a cross-validation technique in Machine learning. Cross-validation techniques are often used to judge the performance and accuracy of a machine learning model. In the Validation Set approach, the dataset which will be used to build the model is divided randomly into 2
    10 min read
  • Learn R Programming
    R is a Programming Language that is mostly used for machine learning, data analysis, and statistical computing. It is an interpreted language and is platform independent that means it can be used on platforms like Windows, Linux, and macOS. In this R Language tutorial, we will Learn R Programming La
    15+ min read
  • Working with Databases in R Programming
    Prerequisite: Database Connectivity with R Programming In R programming Language, a number of datasets are passed to the functions to visualize them using statistical computing. So, rather than creating datasets again and again in the console, we can pass those normalized datasets from relational da
    4 min read
  • Working with XML Files in R Programming
    XML which stands for Extensible Markup Language is made up of markup tags, wherein each tag illustrates the information carried by the particular attribute in the XML file. We can work with the XML files using the XML package provided by R. The package has to be explicitly installed using the follow
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

'); // $('.spinner-loading-overlay').show(); let script = document.createElement('script'); script.src = 'https://assets.geeksforgeeks.org/v2/editor-prod/static/js/bundle.min.js'; script.defer = true document.head.appendChild(script); script.onload = function() { suggestionModalEditor() //to add editor in suggestion modal if(loginData && loginData.premiumConsent){ personalNoteEditor() //to load editor in personal note } } script.onerror = function() { if($('.editorError').length){ $('.editorError').remove(); } var messageDiv = $('
').text('Editor not loaded due to some issues'); $('#suggestion-section-textarea').append(messageDiv); $('.suggest-bottom-btn').hide(); $('.suggestion-section').hide(); editorLoaded = false; } }); //suggestion modal editor function suggestionModalEditor(){ // editor params const params = { data: undefined, plugins: ["BOLD", "ITALIC", "UNDERLINE", "PREBLOCK"], } // loading editor try { suggestEditorInstance = new GFGEditorWrapper("suggestion-section-textarea", params, { appNode: true }) suggestEditorInstance._createEditor("") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } //personal note editor function personalNoteEditor(){ // editor params const params = { data: undefined, plugins: ["UNDO", "REDO", "BOLD", "ITALIC", "NUMBERED_LIST", "BULLET_LIST", "TEXTALIGNMENTDROPDOWN"], placeholderText: "Description to be......", } // loading editor try { let notesEditorInstance = new GFGEditorWrapper("pn-editor", params, { appNode: true }) notesEditorInstance._createEditor(loginData&&loginData.user_personal_note?loginData.user_personal_note:"") $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = true; } catch (error) { $('.spinner-loading-overlay:eq(0)').remove(); editorLoaded = false; } } var lockedCasesHtml = `You can suggest the changes for now and it will be under 'My Suggestions' Tab on Write.

You will be notified via email once the article is available for improvement. Thank you for your valuable feedback!`; var badgesRequiredHtml = `It seems that you do not meet the eligibility criteria to create improvements for this article, as only users who have earned specific badges are permitted to do so.

However, you can still create improvements through the Pick for Improvement section.`; jQuery('.improve-header-sec-child').on('click', function(){ jQuery('.improve-modal--overlay').hide(); $('.improve-modal--suggestion').hide(); jQuery('#suggestion-modal-alert').hide(); }); $('.suggest-change_wrapper, .locked-status--impove-modal .improve-bottom-btn').on('click',function(){ // when suggest changes option is clicked $('.ContentEditable__root').text(""); $('.suggest-bottom-btn').html("Suggest changes"); $('.thank-you-message').css("display","none"); $('.improve-modal--improvement').hide(); $('.improve-modal--suggestion').show(); $('#suggestion-section-textarea').show(); jQuery('#suggestion-modal-alert').hide(); if(suggestEditorInstance !== null){ suggestEditorInstance.setEditorValue(""); } $('.suggestion-section').css('display', 'block'); jQuery('.suggest-bottom-btn').css("display","block"); }); $('.create-improvement_wrapper').on('click',function(){ // when create improvement option clicked then improvement reason will be shown if(loginData && loginData.isLoggedIn) { $('body').append('
'); $('.spinner-loading-overlay').show(); jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.unlocked-status--improve-modal-content').css("display","none"); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status) }, }); } else { if(loginData && !loginData.isLoggedIn) { $('.improve-modal--overlay').hide(); if ($('.header-main__wrapper').find('.header-main__signup.login-modal-btn').length) { $('.header-main__wrapper').find('.header-main__signup.login-modal-btn').click(); } return; } } }); $('.left-arrow-icon_wrapper').on('click',function(){ if($('.improve-modal--suggestion').is(":visible")) $('.improve-modal--suggestion').hide(); else{ } $('.improve-modal--improvement').show(); }); const showErrorMessage = (result,statusCode) => { if(!result) return; $('.spinner-loading-overlay:eq(0)').remove(); if(statusCode == 403) { $('.improve-modal--improve-content.error-message').html(result.message); jQuery('.improve-modal--overlay').show(); jQuery('.improve-modal--improvement').show(); $('.locked-status--impove-modal').css("display","block"); $('.unlocked-status--improve-modal-content').css("display","none"); $('.improve-modal--improvement').attr("status","locked"); return; } } function suggestionCall() { var editorValue = suggestEditorInstance.getValue(); var suggest_val = $(".ContentEditable__root").find("[data-lexical-text='true']").map(function() { return $(this).text().trim(); }).get().join(' '); suggest_val = suggest_val.replace(/\s+/g, ' ').trim(); var array_String= suggest_val.split(" ") //array of words var gCaptchaToken = $("#g-recaptcha-response-suggestion-form").val(); var error_msg = false; if(suggest_val != "" && array_String.length >=4){ if(editorValue.length { jQuery('.ContentEditable__root').focus(); jQuery('#suggestion-modal-alert').hide(); }, 3000); } } document.querySelector('.suggest-bottom-btn').addEventListener('click', function(){ jQuery('body').append('
'); jQuery('.spinner-loading-overlay').show(); if(loginData && loginData.isLoggedIn) { suggestionCall(); return; } // script for grecaptcha loaded in loginmodal.html and call function to set the token setGoogleRecaptcha(); }); $('.improvement-bottom-btn.create-improvement-btn').click(function() { //create improvement button is clicked $('body').append('
'); $('.spinner-loading-overlay').show(); // send this option via create-improvement-post api jQuery.ajax({ url: writeApiUrl + 'create-improvement-post/?v=1', type: "POST", contentType: 'application/json; charset=utf-8', dataType: 'json', xhrFields: { withCredentials: true }, data: JSON.stringify({ gfg_id: post_id }), success:function(result) { $('.spinner-loading-overlay:eq(0)').remove(); $('.improve-modal--overlay').hide(); $('.create-improvement-redirection-to-write').attr('href',writeUrl + 'improve-post/' + `${result.id}` + '/', '_blank'); $('.create-improvement-redirection-to-write')[0].click(); }, error:function(e) { showErrorMessage(e.responseJSON,e.status); }, }); });
"For an ad-free experience and exclusive features, subscribe to our Premium Plan!"
Continue without supporting
`; $('body').append(adBlockerModal); $('body').addClass('body-for-ad-blocker'); const modal = document.getElementById("adBlockerModal"); modal.style.display = "block"; } function handleAdBlockerClick(type){ if(type == 'disabled'){ window.location.reload(); } else if(type == 'info'){ document.getElementById("ad-blocker-div").style.display = "none"; document.getElementById("ad-blocker-info-div").style.display = "flex"; handleAdBlockerIconClick(0); } } var lastSelected= null; //Mapping of name and video URL with the index. const adBlockerVideoMap = [ ['Ad Block Plus','https://media.geeksforgeeks.org/auth-dashboard-uploads/abp-blocker-min.mp4'], ['Ad Block','https://media.geeksforgeeks.org/auth-dashboard-uploads/Ad-block-min.mp4'], ['uBlock Origin','https://media.geeksforgeeks.org/auth-dashboard-uploads/ub-blocke-min.mp4'], ['uBlock','https://media.geeksforgeeks.org/auth-dashboard-uploads/U-blocker-min.mp4'], ] function handleAdBlockerIconClick(currSelected){ const videocontainer = document.getElementById('ad-blocker-info-div-gif'); const videosource = document.getElementById('ad-blocker-info-div-gif-src'); if(lastSelected != null){ document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.backgroundColor = "white"; document.getElementById("ad-blocker-info-div-icons-"+lastSelected).style.borderColor = "#D6D6D6"; } document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.backgroundColor = "#D9D9D9"; document.getElementById("ad-blocker-info-div-icons-"+currSelected).style.borderColor = "#848484"; document.getElementById('ad-blocker-info-div-name-span').innerHTML = adBlockerVideoMap[currSelected][0] videocontainer.pause(); videosource.setAttribute('src', adBlockerVideoMap[currSelected][1]); videocontainer.load(); videocontainer.play(); lastSelected = currSelected; }

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences